
Preimages under the bubblesort operator

Mathilde Bouvel
Université de Lorraine, CNRS, Inria, LORIA

F-54000 Nancy, France

mathilde.bouvel@loria.fr

Lapo Cioni∗ Luca Ferrari∗

Dipartimento di Matematica e Informatica “U.Dini”
Università degli studi di Firenze

Firenze, Italy

{lapo.cioni,luca.ferrari}@unifi.it

Submitted: Jul 14, 2022; Accepted: Oct 3, 2022; Published: Nov 18, 2022

© The authors. Released under the CC BY license (International 4.0).

Abstract

We study preimages of permutations under the bubblesort operator B. We
achieve a description of these preimages much more complete than what is known
for the more complicated sorting operators S (stacksort) and Q (queuesort). We
describe explicitly the set of preimages under B of any permutation π from the
left-to-right maxima of π, showing that there are 2k−1 such preimages if k is the
number of these left-to-right maxima. We further consider, for each n, the tree
Tn recording all permutations of size n in its nodes, in which an edge from child to
parent corresponds to an application of B (the root being the identity permutation),
and we present several properties of these trees. In particular, for each permutation
π, we show how the subtree of Tn rooted at π is determined by the number of left-
to-right maxima of π and the length of the longest suffix of left-to-right maxima of
π. Building on this result, we determine the number of nodes and leaves at every
height in such trees, and we recover (resp. obtain) the average height of nodes (resp.
leaves) in Tn.

Mathematics Subject Classifications: 05A05, 05A15, 05C05

1 Introduction

1.1 Motivation

The foundational work of Knuth [21, Section 2.2.1] defines the stacksorting procedure
and relates it to pattern-avoidance in permutations. Since then, many similar sorting

∗member of the INdAM research group GNCS; partially supported by the 2022 INdAM-GNCS project
“Stringhe e matrici. combinatoria, enumerazione e algoritmi”.

the electronic journal of combinatorics 29(4) (2022), #P4.32 https://doi.org/10.37236/11390

https://doi.org/10.37236/11390

procedures have been defined, where the sorting device is not necessarily a stack (e.g., a
queue, a deque, . . .) and where such devices can be combined. These sorting procedures
have been studied from various points of view, and we refer the reader to the surveys [3,
18] and to the introduction of [25] for an overview of the research on this topic and
bibliographic pointers.

Our focus in the present work is on the bubblesort operator, B, which corresponds to
one pass of the bubblesort algorithm. Although not strictly speaking a sorting procedure
associated with a particular device, B shares some features with such procedures, as
demonstrated in [1]. Our point of focus is the study of preimages of permutations under
B, a topic which has proved very rich for other sorting operators. We start by reviewing
the literature related to the study of preimages under a sorting operator, focusing on
different aspects of this study.

Existence and number of preimages To our knowledge, Bousquet-Mélou is the first
to investigate a sorting operator (here, the stacksorting operator S) through the lens of
preimages. In her article [4], she provides an algorithm to decide if a permutation has
at least one preimage under S, and in this case to compute one such preimage called
canonical, from which all other preimages can then be computed. She also derives an
equation for the generating functions of permutations having at least one preimage under
S.

Recent improvements on the study of permutations having preimages under S have
been obtained by Defant and co-authors. Specifically, [14] counts permutations having
exactly one preimage under S; [9] studies the number of preimages that a permutation
can have; and [8] uses a method involving the computation of preimages to give bounds
on the number of t-stack-sortable permutations of size n.

In [6, 5], Cioni and Ferrari consider another sorting operator: the queuesort operator
Q. They provide a recursive description of the preimages under Q, study the possible
numbers of preimages that a permutation can have, and compute the number of permu-
tations having 0, 1 or 2 preimages.

Sorting trees In [4], Bousquet-Mélou also defined the sorting trees associated with S.
For each integer n, the sorting tree (see [4, fig. 2]) for size n is the tree whose nodes are
the permutations of size n, with root the identity permutation 12 . . . n, and such that the
children τ of any permutation σ are those such that S(τ) = σ. The article [4] already
describes some properties of the sorting trees (although not phrased as such, the focus
in [4] being different).

Building on these, Defant [10] proved in disguise further properties of the sorting trees.
Namely, assigning to any permutation σ a “label” which consists of the skeleton of the
decreasing binary tree whose in-order reading is σ, he shows [10, Theorem 11] that the
label of σ determines the number and the labels of the children of σ in the sorting tree,
and hence recursively the whole skeleton of the subtree of the sorting tree rooted at σ.

We point out an easy consequence of this fact: for every permutation σ, there exists
a permutation τ which is at distance one from the root in the sorting tree, and such that
the subtrees of the sorting tree rooted at σ and at τ are isomorphic. This indeed follows

the electronic journal of combinatorics 29(4) (2022), #P4.32 2

from the two facts that permutations at distance one from the root in the sorting tree are
the stack-sortable permutations (i.e., those avoiding 231) and that every binary tree has
a decreasing labeling which avoids 231.

About queuesort, [6] mentions that it would be interesting to study the properties
of the sorting trees associated with Q, but we are not aware of any such results at the
moment.

Preimages of permutation classes The permutation class defined by a set of excluded
patterns B is the set of all permutations avoiding every pattern in B, and is denoted
Av(B). A consequence of the characterization of stack-sortable permutations as those
avoiding 231 is that the permutations sortable by two applications of S (called West-
two-stack-sortable) are the preimages of permutations in the class Av(231). Describing
the West-two-stack-sortable permutations is therefore an instance of the more general
question asking for a description of the preimages (for S) of a class of pattern-avoiding
permutations.

This question has been studied algorithmically in [7], where Claesson and Ulfarsson
provide an algorithm to describe preimages of principal pattern classes, in terms of dec-
orated patterns. Their approach has been extended in [22] to other sorting operators,
including Q.

A more enumerative perspective on preimages of permutation classes for S has later
been provided in [12, 11].

Finally, the problem of describing preimages of permutation classes for B has been
completely solved in [1] for principal permutation classes.

Complexity of sorting procedures As sorting algorithms, the procedures considered
above are clearly inefficient. Nevertheless, it makes sense to ask how many applications
of a sorting operator (like B or S or others) are needed to fully sort a permutation of size
n, either in the worst case or on average. Some bounds for the average case are provided
in [24] for various sorting operators, and in [13] for S.

1.2 Our results

We focus on the bubblesort operator B, and study preimages of permutations under B.
As previously indicated, a study of preimages of permutation classes has already been
done in [1], and we leave these aspects aside of our study.

About the first point above (characterizing the existence and number of preimages),
we can be very precise when confronting these questions with bubblesort. Indeed, it is
easy to fully describe the set B−1(σ) of preimages of any permutation σ. This is presented
in Section 2.

The description of B−1(σ) is actually rather simple, and involves essentially the left-
to-right maxima of σ. It can be traced back to ideas already present in the literature
under various forms, originating from the work of Knuth [21] (see Section 2 for more
details). From this description, we deduce that the number of preimages of a permutation
σ is 2k−1 for k the number of left-to-right maxima of σ if σ ends with its maximum (and 0

the electronic journal of combinatorics 29(4) (2022), #P4.32 3

otherwise). The results are therefore much more precise than what can be achieved with
S for instance. An informal explanation which we can offer to explain this fact is the
following. The operator B−1 acts only on the left-to-right maxima of a permutation, and
does so in a very controlled way, allowing to describe the left-to-right maxima after the
application of B−1. This is very useful in particular for describing iterated preimages for
B.

In Section 3, we turn to the study of these iterated preimages. Specifically, we define
for each permutation π the tree T (π) whose root is π such that the children of any
permutation are the preimages of this permutation. These trees are the analogue in the
case of B of the sorting trees defined by Bousquet-Mélou in [4] for S.

As expected from the informal discussion above, we show that these trees are com-
pletely determined by the left-to-right maxima of π. More precisely, they are determined
by what we call the label of π, which plays the same role as the “label” we presented
above in the case of S but is much simpler than it (recall that this was the skeleton of the
decreasing binary tree whose in-order reading is π). In the case of B, the label of π is the
pair consisting of the number of left-to-right maxima of π and the length of the longest
suffix of left-to-right maxima of π. We also prove, similarly to the case of S, that every
tree T (π) is isomorphic to a tree T (τ) for τ a permutation such that B(τ) is the identity.

Finally, in Section 4 we study heights of nodes and leaves in T (π). For π the identity
permutation of size n, the average height of a node in T (π) is the average number of
passes of B necessary to sort a permutation of size n, which is known from [19, Theorem
7.14] for instance. We modify this analysis to also compute the average height of a leaf
in T (π) (which corresponds to the number of passes of B necessary to sort a permutation
of size n which does not belong to the image of B). In addition, for any permutation π,
we provide closed formulas for the number of nodes and leaves at any possible height j in
T (π); these formulas depend only on j and on the label of π. Nevertheless, we could not
deduce the average height of a leaf or node in T (π) from these formulas.

Before moving to definitions and basic properties of B, we note that we see the ques-
tions studied here as bubblesort analogues of similar questions previously studied on the
stacksort and queuesort operators. The operator B being simpler, the answers obtained
are much more precise than in the case of S or Q. A possible direction for future research
is to confront these questions with other sorting operators as well. Those listed in [22]
can be a very good source of inspiration, as well as the recent promotion sorting [15, 20]
which generalizes B.

1.3 The operator B: definition and some basic properties

For any integer n, a permutation π of size n is a sequence π1π2 . . . πn containing exactly
once each symbol from {1, 2, . . . , n}. An element πj of a permutation π is a left-to-right
maximum if it is larger than all elements to its left, that is to say πj is such that πj > πi
for all i < j.

The bubblesort operator, denoted B, corresponds to applying one pass of the classical
bubblesort algorithm to a permutation. Specifically, B(π) is obtained from π scanning its
elements from left to right, each time exchanging an element with the one sitting to its

the electronic journal of combinatorics 29(4) (2022), #P4.32 4

right whenever the latter is smaller. Thereby (see also Lemma 2 below), the left-to-right
maxima of the permutation “bubble up” to the right, until they are blocked by the next
left-to-right maximum.

For example, for π = 42163785, the left-to-right maxima are 4, 6, 7 and 8 (shown in
bold) and B(π) = 21436758.

Observation 1. From the above definition, it is clear that B can be applied verbatim
to sequences of distinct integers which are not necessarily permutations. Consequently,
every statement about B on permutations also applies to sequences of distinct integers up
to relabeling the values with the order-isomorphic permutation.

For instance, B(42163) = 21436, and the preimages of 21436 for B are obtained from
the preimages of the permutation 21435 replacing 5 with 6.

The bubblesort operator may be described in several other ways, and we give two
below. The reader needing an explanation of the equivalence with the above definition
can find it in [1, Lemma 1 and the equation displayed just above it]. The first parallels
the recursive definition of the stacksorting operator S: decomposing π into π = πLnπR
with n the maximal value occurring in π, we have B(π) = B(πL)πRn (and by comparison
S(π) = S(πL)S(πR)n). The second focuses on the left-to-right maxima, and we record it
in a lemma for future reference.

Lemma 2. Let π be a permutation, and write π = µ1A1µ2A2 . . . µkAk, where the µi’s are
all the left-to-right maxima of π (and the Ai are possibly empty sequences of integers).
Then B(π) = A1µ1A2µ2 . . . Akµk.

In particular, a permutation is in the image of B if and only if it ends with its maxi-
mum. We record below another observation which follows immediately from Lemma 2

Corollary 3. For any π, the set of left-to-right maxima of π is included in the set of
left-to-right maxima of B(π).

2 Computing the preimages

In this section we present a procedure to compute the set B−1(σ) of all preimages of
any given permutation σ. This procedure is simple, and can also be implicitly found
(together with some of the consequences it bears) in [16]. In this article the authors,
using a different approach, obtain some of the results we also get in the present section,
such as Corollary 7.

First, as noted just after Lemma 2, for a permutation σ which does not end with its
maximum, B−1(σ) is empty. This trivial case being solved, we now focus on the interesting
case where σ does end with its maximum.

Let σ = σ1σ2 . . . σn be a permutation of size n which ends with its maximum. Define
P as a set which contains only σ. For each i from n down to 2, do the following: for each
π ∈ P ,

the electronic journal of combinatorics 29(4) (2022), #P4.32 5

• if πi−1 is not a left-to-right maximum of π, then replace π in the set P by the
permutation π1 . . . πiπi−1 . . . πn (that is to say, we swap πi and πi−1);

• if πi−1 is a left-to-right maximum of π, then π stays in the set P , and in addition
we add in P the permutation π1 . . . πiπi−1 . . . πn (where πi and πi−1 are swapped).

Example 4. The table below shows the evolution of the set P of the above procedure,
for σ = 325146.

i = . . . initialization 6 5 4 3 2
P contains 325146 325164 325614 325614 352614 352614, 532614

326514 362514 362514, 632514

We may note that, when starting any step i, for any π ∈ P , πi is always a left-to-right
maximum of π, and πi−1 is a left-to-right maximum of π if and only if σi−1 is a left-to-right
maximum of σ. Indeed, all steps until step i (excluded) of the above procedure leave the
prefixes of length i− 1 unchanged.

It is useful to have a different (although equivalent) presentation of this procedure,
which we now give. Starting from σ, where we see the rightmost element σn as distin-
guished, we move the distinguished element to the left until it becomes the leftmost,
according to the following rules.

• If the element immediately to the left of the distinguished one is not a left-to-right
maximum of the current sequence, then the distinguished element is forced to move
to the left (i.e. is swapped with its left neighbor). The distinguished element
remains the same.

• If the element immediately to the left of the distinguished one is a left-to-right
maximum of the current sequence, then the distinguished element may either move
to the left or stay in place. In the first case, the distinguished element remains the
same. In the second case, the distinguished element becomes the left neighbor of
the previously distinguished element.

It is easy to see that the set P computed by the original procedure consists of all possible
results of applying this alternative procedure.

Some remarks (all easily observed) about this alternative procedure are useful. First,
the index i (between n and 2) of a given step of the original procedure always corresponds
to the position of the distinguished element in the evolving sequence. Second, the distin-
guished element is always a left-to-right maximum of σ, and also of the evolving sequence.
Third, for any sequence π produced, the elements which were at some point distinguished
in the sequence are exactly the left-to-right maxima of π.

Theorem 5. Let σ be any permutation ending with its maximum, and P be the set
produced by the procedure above. Then P is the set of preimages of σ under B, that is to
say, P = B−1(σ).

the electronic journal of combinatorics 29(4) (2022), #P4.32 6

Proof. Assume first that a sequence π has been produced by the above procedure. It
means that π has been produced from σ by considering some left-to-right maxima of σ,
from the right to the left, and moving these left-to-right maxima to the left, until they
reach the position of the next left-to-right maximum which moves to the left. This is
exactly undoing the action of B. More precisely, assume that π = µ1A1 · · ·µkAk with the
µi the left-to-right maxima of π. By construction of π, Ai is not empty if and only if µi
has been moved by our procedure. Applying B to π yields A1µ1 · · ·Akµk, thus exactly
the elements that were moved by our procedure will be moved to the right by bubblesort.
Moreover, B moves µi to the right until it reaches the position immediately before µi+1,
and we claim that this is µi’s original position in σ: indeed, our procedure only moves
the µj’s, so it must have started moving µi to the left immediately after considering µi+1.
This proves that B(π) = σ, and therefore P ⊆ B−1(σ).

For the converse inclusion, we proceed by induction on the size of σ. The statement
is obvious for size 1. So, let us consider π ∈ B−1(σ), for σ of size greater than 1. We
decompose π around its maximal element as π = LnR. Then B(π) = B(L)Rn, so that
σ = B(L)Rn. Starting from σ = B(L)Rn, the above procedure is always allowed to move
n towards the left, and may decide when reaching B(L)nR to distinguish the last element
of B(L) instead of n. Indeed, B(L) necessarily ends with its maximum, so that the last
element of B(L) is a left-to-right maximum. Since B(L) is a sequence shorter than σ
ending with its largest value, we may apply the induction hypothesis to it, and deduce
that L has been produced by the above procedure applied to B(L). Combining these
two facts, it follows that our procedure applied to σ = B(L)Rn can produce LnR = π,
therefore showing that B−1(σ) ⊆ P .

Theorem 5 has several consequences. First, we can refine Corollary 3 and describe
B−1(σ) exactly from the left-to-right maxima of σ.

Corollary 6. Let σ be a permutation of size n ending with its maximum (i.e., σn = n).
Let k be the number of left-to-right maxima of σ (including n).

There is a bijective correspondence between the preimages of σ under B and the subsets
of the k − 1 left-to-right maxima of σ different from n.

More precisely, this correspondence works as follows. For any set S = {s1 < · · · < sj}
of j 6 k− 1 left-to-right maxima of σ different from n, writing σ = B0s1B1s2B2 . . . sjBjn
(for the Bi possibly empty sequences of integers, which contain the k− j left-to-right max-
ima not in S and the elements of σ which are not left-to-right maxima), the corresponding
preimage of σ is s1B0s2B1 . . . sjBj−1nBj.

Proof. From the alternative description of the procedure computing B−1(σ), we have
seen that the elements which are distinguished at some point are exactly the left-to-
right maxima of the preimage produced. In addition, by definition of this procedure, the
distinguished elements form a subset containing n of the set of left-to-right maxima of σ.
This proves the claimed bijective correspondence.

To describe precisely the preimage corresponding to a subset S, it is enough to note
that every distinguished element moves to the left until a new distinguished element is
chosen, leaving all other elements unchanged.

the electronic journal of combinatorics 29(4) (2022), #P4.32 7

This allows to count the preimages of any given permutation, in total or by the number
of their left-to-right maxima.

Corollary 7. Let σ be a permutation of size n ending with its maximum, and with k
left-to-right maxima.

The cardinality of B−1(σ) is 2k−1, and for any 1 6 j 6 k, the number of preimages of
σ with j left-to right maxima is

(
k−1
j−1

)
.

Proof. The cardinality of B−1(σ) follows immediately from Corollary 6. By Corollary 6,
a preimage of σ with j left-to-right maxima corresponds bijectively to a subset containing
j − 1 elements of the set of left-to-right maxima of σ different from n. We have

(
k−1
j−1

)
different ways to select these subsets, thus proving the lemma.

Second, we can characterize the permutations having a given number of preimages.

Corollary 8. For any k > 1, the permutations having exactly 2k−1 preimages under B
are those ending with their maximum and having k left-to-right maxima in total.

In particular, there are
[
n−1
k−1

]
permutations of size n having 2k−1 preimages under B,

where
[
n
k

]
are the (unsigned) Stirling numbers of the first kind.

Proof. The first statement follows immediately from Corollary 6. The second follows
from the well-known fact that Stirling numbers of the first kind enumerate permutations
according to their size and number of cycles, using the classical Foata bijection which
maps permutations of size n with k cycles to permutations of size n with k left-to-right
maxima.

3 The trees of iterated preimages

For any n, we denote by Sn the set of permutations of size n and by idn = 12 . . . n the
identity permutation of size n. We start by defining T (π) for any permutation π, and
Tn = T (idn).

Definition 9. Let Tn be the tree whose nodes are the permutations of Sn such that:

• Tn has root idn;

• for every σ, τ ∈ Sn, τ is a child of σ if and only if B(τ) = σ and σ 6= τ . Note that
the situation B(τ) = σ and σ = τ occurs only when σ = τ = idn.

Also, given a permutation π ∈ Sn, we define the tree of its preimages T (π) as the
subtree of Tn with root π.

For example, Fig. 1 shows the tree T4.

the electronic journal of combinatorics 29(4) (2022), #P4.32 8

1234

1243 1324

1342 1432 3142 4132

1423 2134

2314

4231 2431 2341 3241

2413 4213 3214

4321 3421

2143 3124

3412 4312

4123

Figure 1: The tree T4.

3.1 Isomorphisms between subtrees

For any permutation π, T (π) describes all possible preimages of π under repeated appli-
cations of B−1. From Section 2, we can see that the “shape” of this tree depends on π
only through the location of its left-to-right maxima. More precisely, the following lemma
holds.

Lemma 10. Let π and τ be two permutations of the same size. If π and τ have their
left-to-right maxima in the same positions, then T (π) and T (τ) are isomorphic.

Proof. Let π, τ be permutations of the same size n which have their left-to-right maxima
in the same positions, and let h and k be the depth of T (π) and T (τ), respectively
(the depth of a tree being defined as the maximum depth of its nodes). Without loss of
generality, we can assume that h > k. The proof is by induction on h. If h = 0, then
h = k = 0, and so T (π) and T (τ) both consist of a single node, and our claim trivially
holds.

Now suppose that h > 0. Unless π = idn, by definition, the nodes of T (π) at depth 1
are the preimages of π under B. By Corollary 6, these preimages are in bijection with all
possible subsets of left-to-right maxima of π which do not contain n. Instead of identifying
a subset of left-to-right maxima of π by the values of the left-to-right maxima it contains,
we can identify it by the positions of the left-to-right maxima it contains. Since π and
τ have their left-to-right maxima in the same positions, it follows from Corollary 6 that
there is a bijection between the preimages of π under B and the preimages of τ under
B. In addition, for every σ ∈ B−1(π), the corresponding ρ ∈ B−1(τ) has its left-to-right
maxima in the same positions as those of σ. Since T (σ) and T (ρ) have depth at most h−1
and k − 1 respectively, we can apply the inductive hypothesis and obtain that T (σ) and
T (ρ) are isomorphic. Summing up, we have that the children of π and τ are in a bijective
correspondence, and the trees rooted at two children paired together by this bijection are
isomorphic. Therefore T (π) and T (τ) are isomorphic.

Finally, if π is the identity permutation of size n, and τ (of the same size) has its
left-to-right maxima in the same positions as π, then necessarily τ = idn as well, and in
this case our claim trivially holds.

the electronic journal of combinatorics 29(4) (2022), #P4.32 9

As the next proposition shows, all possible shapes of the trees T (π) can be found start-
ing at depth 1 in Tn. To establish this proposition, we rely on the following decomposition
of π, which will be also essential in the description of T (π) in the next subsection.

Definition 11. Given π, we decompose it as π = M1P1M2P2 · · ·M`−1P`−1M`, where the
Mi’s are all the maximal sequences of consecutive left-to-right maxima of π (called blocks),
and the Pi’s collect all the remaining elements. In particular, all the Pi’s are nonempty,
and Mi is nonempty for all i except possibly for i = `. Moreover, mi = |Mi| denotes the
length of Mi, and analogously pi = |Pi| denotes the length of Pi, for all i.

Notice that m1 + · · ·+m` = k is the total number of left-to-right maxima of π.

Proposition 12. For every permutation π ∈ Sn, π 6= idn, there exists a child τ of idn in
Tn such that T (π) and T (τ) are isomorphic.

m1

m1 + p1

m1 + p1 +m2

m1 + p1 +m2 + p2

m1 + p1

m1 + p1 +m2 + p2

Figure 2: The permutation τ described in the proof of Proposition 12.

Proof. Let π = M1P1 · · ·M`−1P`−1M` ∈ Sn. Define τ as the permutation in which the
elements m1 + p1, m1 + p1 +m2 + p2, . . . , m1 + p1 + · · ·+m`−1 + p`−1, are in the positions
m1, m1 + p1 + m2,. . . , m1 + p1 + m2 + · · · + m`−2 + p`−2 + m`−1, respectively, while all
the other elements are in increasing order. We can see an example of this construction in
Fig. 2. Therefore, τ and π have their left-to-right maxima in the same positions, thus by
Lemma 10 the trees T (π) and T (τ) are isomorphic.

We are left with showing that τ is a child of idn in Tn. Since p1 6= 0, then τ 6= idn, so
we only need to check that B(τ) = idn. Observe that the elements m1 + p1 + · · ·+mi + pi
are the last left-to-right maxima of their blocks in τ , for every i = 1, . . . , ` − 1, and all
the elements before the positions m1 + p1 + · · · + mi + pi are smaller than or equal to
m1 + p1 + · · ·+mi + pi. Therefore B(τ) = idn, because the m1 + p1 + · · ·+mi + pi’s are
the only elements moved by bubblesort, and they are moved to their correct position.

the electronic journal of combinatorics 29(4) (2022), #P4.32 10

3.2 The skeleton of the tree of preimages

Here we describe how the “shape” of any tree T (π) is completely determined by a small
piece of information about π, which we encapsulate in its label.

Definition 13. The label of a permutation σ is the pair (k,m`), where k and m` are
defined as in Definition 11.1 The skeleton of a tree T (π) is obtained from T (π) by
replacing each permutation at a node with its label. Fig. 3 shows the skeleton of the
tree T (2134), and can be compared with the subtree T (2134) of T (1234) in Fig. 1.

(3, 2)

(1, 0) (2, 0) (2, 1)

(1, 0) (2, 0)

(3, 1)

(1, 0) (2, 0) (2, 0) (3, 0)

Figure 3: The skeleton of the tree T (2134).

Observation 14. Since they have their left-to-right maxima in the same positions, the
permutations π and τ of Proposition 12 have the same label. (It can also be observed
that the trees T (π) and T (τ) have the same skeleton. This follows by recursively applying
Corollary 6, as in the proof of Lemma 10.)

Given a permutation π, we can determine the skeleton of T (π) using only the pair
(k,m`). Specifically, it is the tree with root labeled by (k,m`), and whose children (and
recursively, descendants) are obtained as described in the next proposition.

Proposition 15. Let π ∈ Sn with label (k,m`). Let T be the skeleton of T (π). Then the
root of T has label (k,m`) and its children have the following labels:

• for every h = 0, . . . ,m` − 2:

– for every i = 1, . . . , k − 1− h, there are
(
k−2−h
i−1

)
children with label (k − i, h);

• if π 6= idn, we also have the case corresponding to h = m` − 1:

– for every i = 0, . . . , k−m`, there are
(
k−m`

i

)
children with label (k−i,m`−1) =

(k − i, h).

1In particular, by definition of k and m`, the first component of a label is always at least as large as
the second, with equality only in the case of the identity permutations.

the electronic journal of combinatorics 29(4) (2022), #P4.32 11

Proof. We want to find the number of preimages of π with any given label. If m` = 0,
then π does not end with its maximum, hence it has no preimage. Thus the root of T has
no children, and our claim vacuously holds.

Suppose that m` > 0. This means that π = π1 · · · πn−m`
(n − m` + 1) · · ·n. We can

apply the procedure described in Section 2 to find the preimages of π. From this procedure
we can see that, if π 6= idn, then its preimages can only have labels (k′, h) with k′ 6 k
and h < m`, which corresponds to the labels listed in the above statement.

If instead π = idn, then it has label (n, n) and its preimages can only have labels
(k′, h), with k′ 6 n and h 6 n, h 6= n − 1. Indeed, we cannot obtain a preimage of idn
with h = n− 1, because that would mean that only the element 1 is not part of the last
sequence of left-to-right maxima, which is impossible. Instead we can have h = n, but
only by leaving idn unchanged.

To obtain a permutation with label (k−i, h) with h < m`−1, referring to the procedure
of Section 2, we are forced to leave unchanged (i.e. not to swap) all the elements from n
down to n− h+ 1, then to swap n− h with n− h− 1. We are allowed to do so, because
they are all left-to-right maxima, since h < m` − 1.

After these steps, we obtain π′(n − h − 1)(n − h + 1)(n − h + 2) · · ·n, with2 π′ =
π1 · · · πn−h−2(n − h). Note that π′ has k − h − 1 left-to-right maxima. Moreover, there
is a bijection between the preimages of π′ and the preimages of π ending with the suffix
(n−h−1)(n−h+ 1)(n−h+ 2) · · ·n, which consists of just appending the suffix (n−h−
1)(n−h+1)(n−h+2). Under this bijection, if a preimage of π′ has k− i−h left-to-right
maxima (for some i such that 1 6 i 6 k − 1− h), then the corresponding preimage of π
has label (k − i, h).

From Corollary 7, the number of preimages of π′ with k − i− h left-to-right maxima
is
(
k−h−2
k−i−h−1

)
=
(
k−h−2
i−1

)
, for every h = 0, . . . ,m` − 2 and i = 1, . . . , k − 1 − h. Exploiting

the above bijection, this prove the first item of our proposition.
Consider now the case h = m`−1, π 6= idn. Then, applying the procedure of Section 2,

we are forced to leave unchanged all the elements from n down to n−m` + 2, then swap
n − m` + 1 with πn−m`

. Note that πn−m`
is an element of π which is not a left-to-

right maximum, so if we define π′ = π1 · · · πn−m`−1(n − m` + 1), we have that π′ has
k−m` + 1 = k−h left-to-right maxima. An argument analogous to the one we have used
for the case h < m`−1 shows that the number of preimages of π with label (k− i,m`−1)
are

(
k−m`

k−i−m`

)
=
(
k−m`

i

)
.

Finally, note that, if π = idn, then there is an additional preimage, which is idn,
with label (n, n). However it does not correspond to a child of idn, because Definition 9
prevents a permutation from being a child of itself.

Corollary 16. Let π be a permutation of size n with label (k,m`) such that π 6= idn.
Then T (π) has depth m`. In addition, for every n > 1, Tn has depth n− 1.

Proof. We prove the statement by induction on m`. If m` = 0, then T (π) consists only
of the root, and so has depth 0, as required. If m` > 1, then by Proposition 15 the root

2Note that π′ is not a permutation, but just a sequence of distinct integers. However, as we have seen
in Lemma 2, it still makes sense to consider B on such sequences.

the electronic journal of combinatorics 29(4) (2022), #P4.32 12

of T (π) has children whose labels are of the form (k′, h), for every 0 6 h 6 m` − 1 and
some k′. By induction hypothesis, the subtree rooted at each child with label (k′, h) has
depth h. It follows that T (π) has depth 1 + (m` − 1) = m`, since the maximum value of
h is m` − 1.

We now consider Tn. If n = 1 then Tn consists of a single node and the statement
is true. Otherwise, if n > 1, then (again by Proposition 15) the root of Tn has children
with labels (k′, h) for every 0 6 h 6 n− 2 and some k′. Since these children are not the
identity permutation, we can apply the first part of this corollary to them. We obtain
that each child with label (h, k′) is the root of a subtree of depth h. Since the maximum
value of h is n− 2, Tn has depth 1 + (n− 2) = n− 1.

Corollary 17. For any given node π 6= idn in Tn, either half of its children are leaves or
all of its children are leaves.

Proof. Let (k,m`) be the label of π 6= idn. If m` = 0, the statement is vacuously true,
because π is a leaf. Otherwise, if m` = 1, then by Proposition 15 we have that all of its
children have label (k′, 0) for some k′, and so they are all leaves.

Finally, if m` > 1, then (again by Proposition 15) the number of children of π which
are leaves, that is with label (k′, 0) for some k′, is

k−1∑
i=1

(
k − 2

i− 1

)
=

k−2∑
j=0

(
k − 2

j

)
= 2k−2.

By Corollary 7, π has 2k−1 preimages, or equivalently it has 2k−1 children (since
π 6= idn). This proves our statement.

Notice that, for π = idn (with label (n, n)), it is still true that it has 2n−2 children
which are leaves and 2n−1 preimages, but the total number of children is now 2n−1 − 1
(idn being a preimage of itself, but not one of its children).

3.3 The inverse problem: deciding if a tree is isomorphic to T (π) for some π

We now consider the following problem: given a (rooted unlabeled) tree T , does there
exist a permutation π such that T coincides with the (unlabeled) skeleton of T (π)? This
problem can be easily solved thanks to our previous results on the labels of the nodes
of T (π). If T consists of just a leaf, then of course T is isomorphic to T (π) for some π
(just take π = 1 or any permutation of size at least 2 not ending with its maximum). So,
assume that T has depth at least 1.

The first step is to determine the label of a candidate π. By Corollary 7, we can
immediately say that, if the root of T has neither 2k−1 nor 2k−1 − 1 children, for some
k > 0, then T cannot be the (unlabeled) skeleton of any T (π).

If the root of T has 2k−1− 1 children, then the only candidate permutation is π = idk.
In particular, by Corollary 16, it is necessary that T has depth k − 1. We can then use
Proposition 15 to check if the number of children of every node of T matches with the
numbers given in that proposition.

the electronic journal of combinatorics 29(4) (2022), #P4.32 13

Otherwise, suppose that the number of children of the root of T is 2k−1 for some k. Let
m` be the depth of T . By Corollary 7 and Corollary 16, we know that a permutation needs
to have label (k,m`) for T (π) to have 2k−1 children of its root and depth m`. Therefore
we can use Proposition 15 to check if the number of children of every node of T matches
with the numbers given in Proposition 15 for a permutation π 6= idn with label (k,m`).

The next proposition summarizes the above discussion.

Proposition 18. Let T be a (rooted unlabeled) tree, let i be the number of children of the
root of T , and m` be the depth of T . Then

• if i = 2m` − 1, then T may only coincide with the (unlabeled) skeleton of Tm`+1;

• if there exists a positive integer k such that i = 2k−1, then T may only coincide with
the (unlabeled) skeleton of a permutation π with label (k,m`);

• in all the other cases, T does not coincide with the unlabeled skeleton of any permu-
tation.

4 Heights of nodes and leaves in Tn

4.1 Nodes

Recall that the height of a node in a rooted tree is the number of edges on the path
connecting that node to the root. The height of a node of the tree Tn corresponds to the
number of passes of Bubblesort needed to sort the permutation at this node. Therefore,
we can refer to [1, Prop. 17] to find information on the number of nodes of Tn.

Proposition 19 ([1]). The set of permutations of size n sorted by at most k passes of
Bubblesort is the set Avn(Γk+2), where Γk is the set of all permutations of size k whose

final element is 13. As a consequence, setting ϕ
(k)
n = |Avn(Γk)|, the number of nodes at

height at most k in Tn is given by ϕ
(k+2)
n = (k + 1)n−k−1(k + 1)!

We can thus immediately deduce the number of nodes at a given height in Tn.

Corollary 20. The number f
(k)
n of nodes at height k in Tn is given by

f (k)
n = ϕ(k+2)

n − ϕ(k+1)
n = (k + 1)n−k−1(k + 1)!− kn−kk! = k! · ((k + 1)n−k − kn−k).

The first lines of the infinite triangular matrix of the coefficients f
(k)
n are given in Table

1. This is sequence A056151 in [23].
We notice that the elements on the diagonal of Table 1 are the factorial numbers,

more specifically f
(n−1)
n = (n− 1)!. Indeed, the set of permutations of size n needing the

maximum number of passes of Bubblesort to be sorted (that is, n − 1 passes) is the set
of permutations of size n ending with 1, whose cardinality is clearly (n− 1)!.

3We warn the reader that we have made a slight change of notation with respect to [1] here; more
specifically, our set Γk is Γk−2 in [1].

the electronic journal of combinatorics 29(4) (2022), #P4.32 14

n
k

0 1 2 3 4 5

1 1
2 1 1
3 1 3 2
4 1 7 10 6
5 1 15 38 42 24
6 1 31 130 222 216 120

Table 1: Number of nodes in Tn having height k.

From the expression of ϕ
(k)
n in Proposition 19, we can derive the asymptotic behavior

of the average height of a node in Tn. This analysis is described in [19, Theorem 7.14]
and follows easily from the asymptotic behavior of the Ramanujan P-function (see [19,
Table 4.11] or [21, p. 119-120]), which we state in Lemma 21 below. We then reproduce
the analysis of [19, Theorem 7.14], as a preparation for Proposition 27 below.

Lemma 21 ([19]). The Ramanujan P-function, defined by P (n) =
∑n−1

k=0
k!kn−k

n!
, behaves

asymptotically as
√

πn
2

+O(1).

Proposition 22 ([19]). The average height of a node in Tn is asymptotically equal to
n−

√
πn
2

+O(1).

Proof. The average height of a node in Tn is given by

Hn :=
1

n!

n−1∑
k=1

number of nodes of height at least k in Tn,

each node at height k contributing indeed exactly k times to this sum. Writing the number
of nodes of height at least k in Tn as the difference of n! (the total number of nodes) and
the number of nodes of height at most k − 1 in Tn, we then compute

Hn =
1

n!

n−1∑
k=1

(n!−ϕ(k+1)
n) =

1

n!

n−1∑
k=1

(n!− kn−kk!) = (n− 1)−
n−1∑
k=0

kn−kk!

n!
= (n− 1)−P (n),

proving our claim.

Recall the (obvious) fact that Tn contains n! nodes. With Proposition 19 and Corol-
lary 20, we have refined this counting according to the height of the nodes in Tn. We now
address the analogous problems in T (π) for π 6= idn. More precisely, given a permutation
π (of size n) having label (k,m`), we determine an expression for the number of nodes of
T (π) (which does not depend on n). This expression is a summation formula in which
each summand counts nodes in T (π) of a prescribed height.

the electronic journal of combinatorics 29(4) (2022), #P4.32 15

Lemma 23. Let π and τ be two permutations having labels (k,m`) and (k,m` − 1),
respectively, with 1 6 m` 6 k− 1. Then the tree obtained by removing the leaves at height
m` in T (π) is isomorphic to T (τ).

Proof. Remember that, by Corollary 16, T (π) has height m` and T (τ) has height m`− 1.
The proof is by induction on m`.

If m` = 1, then T (τ) consists of the single node τ , while T (π) has height 1, therefore
the statement is true.

Now let m` > 2, and suppose that the statement is true for m` − 1. We will show
that there is a bijective correspondence between the children of τ and the children of π
such that the subtree rooted at a child of τ is isomorphic to the subtree rooted at the
corresponding child of π, after removing the leaves at height m` (if any).

Proposition 15 allows us to determine the labels of the children of τ and π in T (τ)
and T (π), respectively. Specifically, τ and π have the same number of children with labels
(k − i, h), for every h = 0, . . . ,m` − 3 and every i = 0, . . . , k − 1 − h. Regarding the
remaining children, we have that the number of children of τ labeled (k − i,m` − 2) is
equal to the sum of the number of children of π labeled (k− i,m`− 2) and (k− i,m`− 1),
for every i = 0, . . . , k − m` + 1. This induces the announced bijective correspondence
between the children of τ in T (τ) and those of π in T (π).

The children of τ and π with the same labels give isomorphic subtrees by Proposi-
tion 15. In addition, if this label is (k − i, h) for some h 6 m` − 2 (and some suitable i),
then the subtrees contain no leaf at height m` in T (τ) or T (π) (again by Corollary 16),
ensuring our claim restricted to such children of π and τ .

Therefore, we are left with considering a child of π in T (π) with label (k−i,m`−1), to
which corresponds a child of τ in T (τ) of label (k− i,m`−2). We can apply the inductive
hypothesis to such children of π and τ , thus obtaining that each subtree of T (τ) rooted
at a child of τ with label (k − i,m` − 2) is isomorphic to a subtree of T (π) rooted at a
child of π with label (k − i,m` − 1) after removing the leaves at height m` − 1 (in the
subtree, i.e. at height m` in T (π)). This concludes the proof.

Proposition 24. For a permutation π having label (k,m`), different from an identity
permutation, the number of nodes of the tree T (π) of its preimages under B is

N(k,m`) =

m∑̀
j=0

j!(j + 1)k−j. (1)

Moreover, each summand in Eq. (1) records the contribution of each level of T (π). In
other words, denoting with Nj(k,m`) the number of nodes at height j in T (π), we have
that Nj(k,m`) = j!(j + 1)k−j.

Proof. In order to prove Eq. (1) we proceed by induction on m`. If m` = 0, then π has
no children, hence N(k, 0) = 1, which is consistent with Eq. (1).

Now suppose that Eq. (1) holds when the cardinality of the longest suffix of left-to-
right maxima of π is strictly smaller than m`. Recalling Proposition 15, we have the
following recursive expression for the number of nodes of T (π):

the electronic journal of combinatorics 29(4) (2022), #P4.32 16

N(k,m`) = 1+

m`−2∑
h=0

k−1−h∑
i=1

(
k − 2− h
i− 1

)
N(k − i, h) +

k−m`∑
i=0

(
k −m`

i

)
N(k − i,m` − 1)

= 1+

m`−2∑
h=0

k−1−h∑
i=1

(
k − 2− h
i− 1

) h∑
j=0

j!(j + 1)k−i−j +

k−m`∑
i=0

(
k −m`

i

)m`−1∑
j=0

j!(j + 1)k−i−j

= 1+

m`−2∑
h=0

h∑
j=0

j!(j + 1)k−j−1
k−2−h∑
i=0

(
k − 2− h

i

)
(j + 1)−i

+

m`−1∑
j=0

j!(j + 1)k−j
k−m`∑
i=0

(
k −m`

i

)
(j + 1)−i

= 1+

m`−2∑
h=0

h∑
j=0

j!(j + 1)k−j−1
(

1 +
1

j + 1

)k−2−h
+

m`−1∑
j=0

j!(j + 1)k−j
(

1 +
1

j + 1

)k−m`

= 1+

m`−2∑
h=0

h∑
j=0

j!(j + 1)h−j+1(j + 2)k−2−h +

m`−1∑
j=0

j!(j + 1)m`−j(j + 2)k−m` .

We then exchange the order of the two sums in the middle term of the last expression,
use the geometric sum formula and we get:

N(k,m`) = 1+

m`−2∑
j=0

j!(j + 1)1−j(j + 2)k−2
m`−2∑
h=j

(j + 1)h(j + 2)−h +

m`−1∑
j=0

j!(j + 1)m`−j(j + 2)k−m`

= 1+

m`−2∑
j=0

j!(j + 1)(j + 2)k−1−j −
m`−2∑
j=0

j!(j + 1)m`−j(j + 2)k−m`

+

m`−1∑
j=0

j!(j + 1)m`−j(j + 2)k−m`

= 1+

m`−1∑
j=1

j!(j + 1)k−j +m`!(m` + 1)k−m` =

m∑̀
j=0

j!(j + 1)k−j ,

which gives Eq. (1).
Concerning the evaluation ofNj(k,m`), Lemma 23 implies thatNj(k,m`) = Nj(k,m`−

1), for all j 6 m` − 1. By a repeated application of the lemma, we get that Nj(k,m`) =
Nj(k, j) = N(k, j)−N(k, j − 1) = j!(j + 1)k−j, as desired.

4.2 Leaves

In the tree Tn the leaves represent permutations that cannot be obtained as output of
Bubblesort, i.e., which do not belong to the image of B. We saw just after Lemma 2 that

the electronic journal of combinatorics 29(4) (2022), #P4.32 17

these permutations are those not ending with their maximum, so that the total number
of leaves in Tn is given by (n− 1) · (n− 1)!.

Our next result is a closed formula for the number of leaves at height k in Tn, for any
k 6 n− 1. To this aim, we make use of the so-called ECO method, illustrated in [2] and
further developed and employed by many authors (see for instance [17]). We will not give
a detailed description of this method here, since our application is simple enough to be
outlined directly.

Recall that leaves in Tn correspond to permutations whose last element is not the
maximum. Thus, denoting with Av∗n(Γk) the set of permutations of size n avoiding Γk
and such that their last element is different from n, we are interested in the coefficients
γ
(k)
n = |Av∗n(Γk)|, since γ

(k+2)
n gives the number of leaves at height at most k in Tn.

Proposition 25. For all n, k, we have

γ(k)n =

{
(n− 1)(n− 1)! n < k,

(k − 2)(k − 1)n−k(k − 1)! n > k.

Proof. We consider the following general procedure to generate all permutations of size
n. Given any permutation of size n − 1, construct n different permutations of size n by
adding a new rightmost element k, for any choice of k between 1 and n, and suitably
rescaling the other elements (namely, all elements of the starting permutation which are
greater than or equal to k are increased by 1, whereas all the remaining elements are left
untouched). It is immediate to realize that, starting from the set of all permutations of
size n− 1, the above procedure generates exactly once every permutation of size n.

We now adapt the above construction to our setting. Every permutation of Av∗n(Γk)
can be obtained from a permutation of Avn−1(Γk) by adding a suitable rightmost element.
More specifically, we cannot add n (because we require that our permutation does not
end with its maximum); moreover, if n > k, we cannot add any element between 1 and
n − k + 1 as well (otherwise we would create one of the forbidden patterns belonging
to Γk). On the other hand, any of the remaining elements is allowed and generates a
valid permutation. This means that every permutation in Avn−1(Γk) generates k − 2
distinct permutations of Av∗n(Γk) and every permutation in Av∗n(Γk) is obtained in this
way exactly once. We thus deduce that, when n > k,

γ(k)n = (k − 2)ϕ
(k)
n−1 = (k − 2)(k − 1)n−k(k − 1)!,

whereas for n < k we have that γ
(k)
n = (n− 1)(n− 1)!, which concludes the proof.

Corollary 26. The number g
(k)
n of leaves of Tn at height k is given by

g(k)n = k!(k(k + 1)n−k−1 − (k − 1)kn−k−1).

Proof. Just observe that g
(k)
n = γ

(k+2)
n − γ(k+1)

n and that the maximum height of a node of
Tn is n−1, so we are only interested in the case n > k+1 of the previous proposition.

the electronic journal of combinatorics 29(4) (2022), #P4.32 18

As in the case of nodes, Proposition 25 allows us to derive the asymptotic behavior of
the average height of a leaf in Tn.

Proposition 27. The average height of a leaf in Tn is asymptotically equal to n−
√

πn
2

+
O(1).

Proof. As in the proof of Proposition 25, we have that the average height of a leaf in Tn
is

Gn =
1

(n− 1)(n− 1)!

n−1∑
k=1

number of leaves of height at least k in Tn

=
1

(n− 1)(n− 1)!

n−1∑
k=1

(
(n− 1)(n− 1)!− γ(k+1)

n

)
= (n− 1)−

n−1∑
k=1

(k − 1)kn−k−1k!

(n− 1)(n− 1)!

= (n− 1)− n

n− 1

n−1∑
k=1

kn−kk!

n!
+

1

n− 1

n−1∑
k=1

kn−1−kk!

(n− 1)!

= (n− 1)− nP (n)

n− 1
+
P (n− 1) + 1

n− 1
,

and the asymptotic behavior of the Ramanujan P-function yields the announced result.

In the same manner as we have done for the nodes, we now address the analogous
problem of counting the leaves in T (π), for π 6= idn. More precisely, given a permutation
π (of size n) having label (k,m`), we determine an expression for the number of leaves of
T (π) (which does not depend on n but only on the label (k,m`)). This expression is a
summation formula in which each summand counts the leaves of a prescribed height in
T (π).

Proposition 28. For a permutation π having label (k,m`), different from an identity
permutation, the number of leaves of the tree T (π) of its preimages under B is

L(k,m`) =

m`−1∑
j=1

j!j(j + 1)k−j−1 +m`!(m` + 1)k−m` . (2)

Moreover, each summand in Eq. (2) records the contribution of each level of T (π). In
other words, denoting with Lj(k,m`) the number of leaves at height j in T (π), we have
that Lj(k,m`) = j!j(j + 1)k−j−1 for j < m`, and Lm`

(k,m`) = m`!(m` + 1)k−m`.

Proof. The proof of Eq. (2) is by induction, following the exact same steps as the proof of
Proposition 24. The recursive equation for the number of leaves in T (π), which is needed
in the inductive step of the proof, is again obtained from Proposition 15. It actually
differs from the one for nodes in the proof of Proposition 24 only by the initial term 1
(accounting for the root node); namely for m` > 1, we have

L(k,m`) =

m`−2∑
h=0

k−1−h∑
i=1

(
k − 2− h
i− 1

)
L(k − i, h) +

k−m`∑
i=0

(
k −m`

i

)
L(k − i,m` − 1),

the electronic journal of combinatorics 29(4) (2022), #P4.32 19

and for m` = 0 it holds that L(k, 0) = 1. From there, the same steps of computations as
in the proof of Proposition 24 (followed by additional elementary simplifications) yield,
for m` > 1:

L(k,m`) =

m`−1∑
j=1

j!j(j + 1)k−j−1 +m`!(m` + 1)k−m` ,

as claimed.
We now move to the claimed expression for Lj(k,m`). We shall first establish it for

j = m`, then for j = m` − 1, and then for smaller j iterating the argument.
We first note that all the nodes of T (π) at height m` are leaves (since m` is the

height of this tree). Using Proposition 24, we therefore have Lm`
(k,m`) = Nm`

(k,m`) =
m`!(m` + 1)k−m` . As a consequence, the total number of leaves having height at most
m` − 1 in T (π) is

∑m`−1
j=1 j!j(j + 1)k−j−1.

Next, we claim that the number of leaves having height at most m` − 2 in T (π) is∑m`−2
j=1 j!j(j + 1)k−j−1. From this claim, the announced formula Lm`−1(k,m`) = (m` −

1)!(m` − 1)mk−m`
` immediately follows by taking the difference.

To prove our claim, we use Lemma 23. This lemma indeed implies that Lj(k,m`) =
Lj(k,m` − 1), for all j 6 m` − 2. This shows that the number of leaves having height at
most m` − 2 in T (π) is the same as the number of leaves having height at most m` − 2
in T (σ) for σ a permutation with label (k,m` − 1). The latter is equal to L(k,m` − 1)−
Lm`−1(k,m`−1), hence equal to

∑m`−2
j=1 j!j(j+1)k−j−1 as established earlier, thus proving

our claim.
We are now left with showing that Lh(k,m`) = h!h(h + 1)k−h−1 for h 6 m` − 2. We

proceed iteratively, for decreasing values of h. At each step, the reasoning is similar to
the above case for h = m` − 1. We first use Lemma 23 (several times, as in the proof of
Proposition 24) to argue that the number of leaves having height at most h− 1 in T (π) is
the same as the number of leaves having height at most h−1 in T (σ) for σ a permutation
with label (k, h). This number is

∑h−1
j=1 j!j(j + 1)k−j−1. Then, Lh(k,m`) is the difference

between L(k,m`)−
∑

h+16j6m`
Lj(k,m`) and the above quantity. The result follows from

the formulas previously established for Lj(k,m`) for j > h+ 1.

Remark 29. Combining Propositions 24 and 28 tells us that, for π a permutation of label
(k,m`), at height j < m` in T (π), the ratio between the number of leaves and the number
of nodes is j

j+1
(equivalently, the ratio between the number of internal nodes and the

number of nodes is 1
j+1

).

References

[1] Michael H. Albert, M. D. Atkinson, Mathilde Bouvel, Anders Claesson, and Mark
Dukes. On the inverse image of pattern classes under bubble sort. Journal of Com-
binatorics, 2(2):231–243, 2011.

the electronic journal of combinatorics 29(4) (2022), #P4.32 20

[2] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a methodology for the
enumeration of combinatorial objects. Journal of Difference Equations and Applica-
tions, 5:435–490, 1999.

[3] Miklós Bóna. A survey of stack-sorting disciplines. The Electronic Journal of Com-
binatorics, 9(2):Article A1, 2003.

[4] Mireille Bousquet-Mélou. Sorted and/or sortable permutations. Discrete Mathemat-
ics, 225(1–3):25–50, 2000.

[5] Lapo Cioni and Luca Ferrari. Characterization and enumeration of preimages un-
der the queuesort algorithm. In J. Nešetřil, G. Perarnau, J. Rué, and O. Serra,
editors, Extended Abstracts EuroComb 2021. Trends in Mathematics, volume 14 of
Birkhäuser, Cham, 2021.

[6] Lapo Cioni and Luca Ferrari. Preimages under the queuesort algorithm. Discrete
Mathematics, 344:Article A112561, 2021.

[7] Anders Claesson and Henning Ulfarsson. Sorting and preimages of pattern classes.
DMTCS Proceedings, AR:595–606, 2012.

[8] Colin Defant. Preimages under the stack-sorting algorithm. Graphs and Combina-
torics, 33:103–122, 2017.

[9] Colin Defant. Fertility numbers. Journal of Combinatorics, 11:527–548, 2020.

[10] Colin Defant. Polyurethane toggles. Electronic Journal of Combinatorics,
27(2):#P2.46, 2020.

[11] Colin Defant. Stack-sorting preimages of permutation classes. Séminaire Lotharingien
de Combinatoire, 82:Article B82b, 2020.

[12] Colin Defant. Enumeration of stack-sorting preimages via a decomposition lemma.
Discrete Mathematics and Theoretical Computer Science, 22(2):Article 3, 2021.

[13] Colin Defant. Fertility monotonicity and average complexity of the stack-sorting
map. European Journal of Combinatorics, 93:Article 103276, 2021.

[14] Colin Defant, Michael Engen, and Jordan A. Miller. Stack-sorting, set partitions, and
Lassalle’s sequence. Journal of Combinatorial Theory, Series A, 175:Article 105275,
2020.

[15] Colin Defant and Noah Kravitz. Promotion sorting. Order, 2022, to appear.

[16] Colin Defant and James Propp. Quantifying noninvertibility in discrete dynamical
systems. Electronic Journal of Combinatorics, 27(3):#P3.51, 2020.

[17] L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi. Some applications arising from
the interactions between the theory of Catalan-like numbers and the ECO method.
Ars Combinatoria, 99:109–128, 2011.

[18] Luca Ferrari. Sorting with stacks and queues: some recent developments. Keynote
address at the on-line conference Permutation Patterns 2021. Available at https:

//www.youtube.com/watch?v=cTT9t5gddmE.

the electronic journal of combinatorics 29(4) (2022), #P4.32 21

https://www.youtube.com/watch?v=cTT9t5gddmE
https://www.youtube.com/watch?v=cTT9t5gddmE

[19] P. Flajolet and R. Sedgewick. An Introduction to the Analysis of Algorithms, second
edition. Addison-Wesley, 2013.

[20] Eliot Hodges. On promotion and quasi-tangled labelings of posets.
arXiv:2208.08665.

[21] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algo-
rithms. Addison-Wesley, third edition, 1997.

[22] Hjalti Magnusson. Sorting operators and their preimages. Master’s thesis, Reykjavik
University, 2013.

[23] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences. oeis.org.

[24] Jiang Tao, Li Ming, and Paul M.B. Vitanyi. Average-case analysis of algorithms using
Kolmogorov complexity. Journal of Computer Science and Technology, 15:402–408,
2000.

[25] Vincent Vatter. Permutation Classes, chapter 12 of The Handbook of Enumerative
Combinatorics, pages 753–834. Chapman and Hall/CRC Press, 2015.

the electronic journal of combinatorics 29(4) (2022), #P4.32 22

https://arxiv.org/abs/2208.08665
oeis.org

	Introduction
	Motivation
	Our results
	The operator B: definition and some basic properties

	Computing the preimages
	The trees of iterated preimages
	Isomorphisms between subtrees
	The skeleton of the tree of preimages
	The inverse problem: deciding if a tree is isomorphic to T(pi) for some pi

	Heights of nodes and leaves in Tn
	Nodes
	Leaves

