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Abstract

Inversion sequences of length n are integer sequences e1, . . . , en with 0 6 ei < i
for all i, which are in bijection with the permutations of length n. In this paper,
we classify all Wilf equivalence classes of pattern-avoiding inversion sequences of
length-4 patterns except for one case (whether 3012 ≡ 3201) and enumerate some
of the length-4 pattern-avoiding inversion sequences that are in the OEIS.

Mathematics Subject Classifications: 05A05

1 Introduction

Pattern avoidance for permutations is a robust and well-established branch of enumer-
ative combinatorics. We refer readers to Stanley [18] for an overview of this field, and
to Simion and Schmidt [16] in 1985 for the first systematic study of pattern avoidance
on permutations. Classical pattern avoidance represents permutations using one-line no-
tation π = π1 · · · πn; an alternative representation for permutations is using inversion
sequences e = e1 · · · en, sequences of integers such that 0 6 ei < i for all i. Inversion
sequences are in natural bijection with permutations via the well-known Lehmer code [8],
an example of an inversion table: one can biject an inversion sequence e to a permutation
π via ensuring that for each i, there exist ei values j < i such that πj > πi. Inversion
sequences have been studied in many contexts and fields, not just pattern avoidance; for
example, see Savage and Schuster [15].

The study of pattern avoidance on inversion sequences was concurrently initiated by
Mansour and Shattuck [12] in 2015 and Corteel, Martinez, Savage, and Weselcouch [6]
in 2016. The former obtained the explicit number and/or generating function of inver-
sion sequences avoiding any element of S3; the latter further enumerated the number
of pattern-avoiding sequences for all patterns of length 3 and related these quantities to
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well-known combinatorial sequences including the Bell numbers, Euler up/down numbers,
Fibonacci numbers, and Schröder numbers. For patterns of length 4, Chern [4] proved
the exact formula for 0012-avoiding inversions, answering a conjecture by Lin and Ma
(see the end of [9]) in 2020. However, the enumeration, or even the determination of the
Wilf equivalence classes, for all other patterns of length 4 remains open. For simultaneous
avoidance of multiple patterns, Lin and Yan [10] in 2020 studied inversion sequences avoid-
ing certain combinations of two length-3 patterns by establishing correspondences with
objects enumerated by the Bell numbers, Fishburn numbers, powered Catalan numbers,
semi-Baxter numbers, and 3-noncrossing partitions. In 2018, Martinez and Savage [13]
rephrased and generalized the question, investigating the avoidance of triples of binary
relations, that is, no simultaneous appearances eiR1ej, ejR2ek, and eiR3ek are allowed to
appear with i < j < k for some given R1, R2, R3 ∈ {<,>,6,>,=, 6=,−}. On the other
hand, in 2019 Auli and Elizalde [1] enumerated the length-3 consecutive pattern-avoiding
inversion sequences as well as classified consecutive patterns up to length 4 according
to the corresponding Wilf equivalence relations. In a following 2021 paper [3], the same
authors gave a complete list of generalized Wilf equivalences between hybrid vincular
patterns of length 3, completing the classification of Wilf equivalence classes for all vin-
cular patterns of length 3. They further built on Martinez and Savage’s framework and
extended the enumeration to inversion sequences avoiding eiR1ei+1R2ei+2 configurations
[2] in 2019.

Our main result classifies all Wilf equivalence classes for length-4 patterns, except one
unresolved case of 3012 possibly belonging to the last class, as demarcated below by a
question mark. A computer search for lengths n 6 10 demonstrates that no other Wilf
equivalences are possible: in particular, 2001 agrees with the second Wilf equivalence class
2110 ≡ 2101 ≡ 2011 for all lengths n 6 9, but diverges at n = 10.

1011 ≡ 1101 ≡ 1110

2110 ≡ 2101 ≡ 2011

0221 ≡ 0212

0312 ≡ 0321

1102 ≡ 1012

2201 ≡ 2210

2301 ≡ 2310

3201 ≡ 3210
?≡ 3012.

(1)

Theorem 1. Length-4 patterns satisfy the Wilf equivalences listed in Eq. (1), with possible
exception as demarcated with a question mark.

The paper is organized as follows. In Section 2, we introduce necessary definitions and
notation. In Section 3, we establish the aforementioned equivalences using techniques in-
cluding double induction and direct characterization, together with explicitly constructed
correspondences. In Section 4, we enumerate the 0000 and 0111-avoiding inversion se-
quences. Aside from 0012 as addressed by Chern [4], the only other length-4 pattern that
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is on the OEIS [17] is 0021, whose enumeration we leave as an open question, which after
the writing of the original version of this paper has been resolved (see Remark 24).

2 Preliminaries

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. An inversion sequence of
length n is a sequence e = e1 · · · en of integers such that 0 6 ei < i for all i ∈ [n]. We
denote the length of e by |e| = n. The set of inversion sequences of length n is denoted
by In, where we use the convention that I0 contains exactly one sequence, the empty
sequence.

Two sequences of integers π = π1 · · · πk and σ = σ1 · · ·σk of the same length are said
to be order isomorphic, denoted π ∼ σ, if both πiRπj and σiRσj have the same relation
R ∈ {<,=, >}, for all 1 6 i, j 6 n. For example, 0212 ∼ 5969. A pattern refers to such a
sequence of integers π = π1 · · · πk.

For an inversion sequence e ∈ In and a pattern π = π1 · · · πk for k 6 n, we say e
contains π as a pattern if there is a not necessarily consecutive subsequence e′ of e with
|e′| = k such that e′ ∼ π. For S ⊆ [n], we let eS denote the subsequence of e consisting of
the elements ei for i ∈ S, sorted in ascending order of i. Using this notation, e contains
π if there exists S ⊆ [n] with |S| = k such that eS ∼ π. If e does not contain π, it is said
to avoid π. In particular, if |e| < |π|, we also say e avoids π. The same definition can be
used to define pattern avoidance on permutations.

The avoidance class of π is

In(π) = {e ∈ In | e avoids π}.

We say two patterns π and σ are Wilf equivalent, denoted π ≡ σ, if for all n > 1, we have
|In(π)| = |In(σ)|.

We now define the following generalization of an inversion sequence, as originally
introduced by Savage and Schuster [15].

Definition 2. For a finite set of positive integers S ⊂ Z+ enumerated in increasing order
s1 < · · · < sn, an S-inversion sequence is a sequence e = e1 · · · en of length n such that
0 6 ei < si for all i ∈ [n]. The set of S-inversion sequences is denoted by IS.

Notice that for S = [n], we recover the original definition of an inversion sequence of
length n, i.e., I[n] = In. We continue to use the same notation for pattern avoidance on
S-inversion sequences as on inversion sequences: IS(π) is the set of S-inversion sequences
that avoid π. We note that we define I∅ to contain the empty sequence, which avoids all
patterns, consistent with the previous observation that I[n] = In when n = 0.

Finally, define e · f as the concatenation of sequences e and f . For example, e · f =
142857 for e = 14 and f = 2857.
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3 Wilf equivalences of length-4 patterns

Before we prove the Wilf equivalences of length-4 patterns, we present the following useful
result.

Theorem 3. For any n > 1 and a pattern π = π1 · · · πk where π1 = 0 and πi > 0 for all
i > 1,

|In(π)| =
∑

S⊆[n−1]

|IS(π2 · · · πk)|.

Proof. Define π′ = π2 · · · πk. Notice that all elements of π′ are positive. Consider e ∈ In,
and let S be the set of indices i ∈ [2, n] such that ei > 0. We claim that eS avoids π′ if and
only if e avoids π. If eS contains π′, then suppose ei1 · · · eik−1

∼ π′ for i1, . . . , ik−1 ∈ S. By
definition of S, we have ei1 , . . . , eik−1

> 0, and thus adding in e1 = 0 yields e1ei1 · · · eik−1
∼

π. Conversely, if e contains π, suppose ei0 · · · eik−1
∼ π for 1 6 i0 < i1 < · · · < eik−1

6 n.
Then as all elements of π are positive except for π1 = 0, we have ei1 , . . . , eik−1

> ei0 > 0,
so ei1 · · · eik−1

∼ π′ is a subsequence of eS, which thus contains π′.
Let S− = {s − 1 | s ∈ S}. Notice that e−S is a S−-inversion sequence, and there is

a natural bijection between IS− and the elements of In with ei > 0 if and only if i ∈ S.
Thus, for a fixed subset S ⊆ [2, n], the number of elements of In(π) with ei > 0 if and
only if i ∈ S is equal to |IS−(π′)|. Summing over all such subsets S and re-indexing over
S− instead yields the result.

The following result was initially stated for inversion sequences rather than S-inversion
sequences, but we note that the same proof works to obtain the following stronger result.

Theorem 4 ([6, Theorem 5]). For any finite set S of positive integers,

|IS(210)| = |IS(201)|.

This allows us to prove that 0312 and 0321 are Wilf equivalent.

Theorem 5. For n > 1,

|In(0312)| = |In(0321)| =
∑

S⊆[n−1]

|IS(210)|.

Proof. The result follows from applying Theorem 4 to Theorem 3.

3.1 Wilf equivalences by double induction

The following lemma is useful for many of our later results. A binary word of length n
is an element of {0, 1}n, i.e., a string of n zeros and ones. Pattern avoidance on binary
words is defined analogously.

Lemma 6. Let π = π1 · · · π` be a pattern of length ` > 2 such that πi ∈ {0, 1} for all i, and
there exists exactly one j such that πj = 0. Then for any two integers j, k > 0, the number

of binary words of length j + k with j zeros and k ones that avoid π is
(
j+min{k,`−2}

j

)
.
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Proof. There are
(
j+k
k

)
binary words of length j+k with j zeros and k ones, corresponding

to choosing the positions of the ones. If k 6 `− 2, as π has `− 1 ones, all of these binary
words avoid π, so there are

(
j+k
k

)
=
(
j+min{k,`−2}

j

)
valid binary words. If k > ` − 1,

suppose πj for j ∈ [`] is the unique zero in π. If j = 1 or j = `, then all but ` − 2 of
the k ones must be at the beginning or end of the binary word, respectively, which yields(
j+`−2
`−2

)
=
(
j+min{k,`−2}

j

)
valid binary words. Otherwise 2 6 j 6 `−1, and then the i-th and

(i+ 1)-th ones of any valid binary word must be consecutive, for all j− 1 6 i 6 k+ j− `.
If this were not the case, then suppose there exists such an i where the i-th and (i + 1)-
th ones are not consecutive. Then the (i − j + 2)-th through i-th ones, a zero between
the i-th and (i + 1)-th ones, and the (i + 1)-th through (i + ` − j)-th ones, form a π
pattern. Notice that i − j + 2 > 1 and i + ` − j 6 k, so the indices are valid. Note
that this condition is a necessary and sufficient condition for the binary word to avoid π.
Thus, the (j − 1)-th through (k + j − ` + 1)-th ones in the binary word are consecutive;
viewing this block of k − ` + 3 ones as a single entity allows us to determine that there
are

(
j+k−(k−`+2)

j

)
=
(
j+min{k,`−2}

j

)
such valid binary words.

Lemma 6 allows us to prove the following result.

Theorem 7. Let π = π1 · · · π` and σ = σ1 · · ·σ` be two patterns of length ` > 3 such that
πi, σi ∈ {0, 1} for all 2 6 i 6 ` and π1 = σ1 = 1. If there exists exactly one j such that
πj = 0 and exactly one j′ such that σj′ = 0, then for any finite set S of positive integers,
|IS(π)| = |IS(σ)|.

Proof. Let xS,j,k denote the number of π-avoiding S-inversion sequences with j zeros and
k ones, and similarly define yS,j,k for σ-avoidance. We will prove the refinement that
xS,j,k = yS,j,k for all S, j, and k by induction on |S|.

When |S| < `, the result trivially holds as all S-inversion sequences avoid all patterns
of length `. For the inductive step, assume the result holds for all S with |S| = n− 1; we
will show the result holds for all S with |S| = n via a second induction on minS. For the
base case minS = 1, any e ∈ IS has e1 = 0, which cannot be part of a π or σ pattern,
so e = e1 · · · en ∈ IS avoids π if and only if e2 · · · en avoids π, and similarly for σ. Hence,
xS,j,k = xS\{1},j−1,k = yS\{1},j−1,k = yS,j,k.

Now assume the result holds for all S of size n with minS = m− 1 > 1; we will show
the result holds for all S with S = m. Consider a given S of size n with minS = m > 2,
and let S− = {s − 1 | s ∈ S}. Define φ : IS → IS− by φ(e1 · · · en)i = max{ei − 1, 0}.
Notice that π-avoidance and σ-avoidance are both preserved under φ.

Consider a π-avoiding S-inversion sequence e′ with j zeros and k ones. Then φ(e′)
has k + j zeros. We claim that for any d ∈ IS−(π) with k + j zeros, there exist exactly(
j+min{k,`−2}

j

)
sequences e ∈ IS(π) with j zeros and k ones such that φ(e) = d. This would

then show that

xS,j,k =

(
j + min{k, `− 2}

j

) n−k−j∑
i=0

xS−,k+j,i.

Consider some d ∈ IS−(π) with k + j zeros. As φ(e) = d and e has j zeros and k ones,
we find e is completely determined apart from selecting which k of the k + j zeros in d
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become ones in e. As d avoids π, we find that e avoids π if and only if the zeros and ones
of e avoid π. By Lemma 6, we find there are

(
j+min{k,`−2}

j

)
such choices of zeros and ones

of e that avoid π, each yielding a distinct valid e ∈ IS(π).
As S− satisfies the conditions of the inductive hypothesis, it now suffices to similarly

show that for any d ∈ IS−(σ) with k+ j zeros, there exist exactly
(
j+min{k,`−2}

j

)
sequences

e ∈ IS(σ) with j zeros and k ones such that φ(e) = d. The argument is identical to that
for π, as σ also satisfies the conditions of Lemma 6. This implies xS,j,k = yS,j,k for all j
and k, and by induction, for all S. This completes the proof.

Corollary 8. For any finite set S of positive integers,

|IS(1011)| = |IS(1101)| = |IS(1110)|.

This implies 1011, 1101, and 1110 are Wilf equivalent over inversion sequences.

Corollary 9. For n > 1,

|In(0221)| = |In(0212)| =
∑

S⊆[n−1]

|IS(110)|.

Proof. Theorem 7 implies |IS(110)| = |IS(101)| for any finite set S of positive integers,
from which the result follows by applying Theorem 3.

The following result augments the method of Theorem 7 to prove that π · ρ and σ · ρ
are Wilf equivalent over S-inversion sequences, where π and σ satisfy the assumptions of
Theorem 7 and ρ consists only of twos.

Theorem 10. Let ρ = ρ1 · · · ρh be a pattern of length h > 0 such that ρi = 2 for all i. Let
π = π1 · · · π` and σ = σ1 · · · σ` be two patterns of length ` > 3 such that πi, σi ∈ {0, 1} for
all 2 6 i 6 ` and π1 = σ1 = 1. If there exists exactly one j such that πj = 0 and exactly
one j′ such that σj′ = 0, then for any finite set S of positive integers, |IS(π·ρ)| = |IS(σ·ρ)|.

Proof. When h = 0, the result follows from Theorem 7.
For convenience, define π′ = π · ρ and σ′ = σ · ρ. We use a similar double induction

approach as in Theorem 7. Let the terminal h-repeat statistic of an S-inversion sequence
e be the largest integer r such that there are at least r zeros in e, and letting z denote the
index of the r-th zero in e, then there exist positive integers z < i1 < i2 < · · · < ih 6 |S|
where ei1 = ei2 = · · · = eih > 0; if no such r exists, define the terminal h-repeat statistic
to be 0. For example, the terminal 1-repeat statistic is simply the number of non-terminal
zeros, where a terminal zero only has zeros after it, if anything.

Let xS,j,k,r denote the number of π′-avoiding S-inversion sequences with j zeros, k
ones, and terminal h-repeat statistic r, and similarly define yS,j,k,r for σ′-avoidance. We
will prove the refinement that xS,j,k,r = yS,j,k,r for all S, j, k, r by induction on |S|.

When |S| < ` + h, the result trivially holds as all S-inversion sequences avoid all
patterns of length `+h > 3. For the inductive step, assume the result holds for all S with
|S| = n− 1; we will show the result holds for all S with |S| = n via a second induction on
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minS. For the base case minS = 1, any e ∈ IS has e1 = 0, which cannot be part of a π′

or σ′ pattern, so e = e1 · · · en ∈ IS avoids π′ if and only if e2 · · · en avoids π′, and similarly
for σ′. Hence, xS,j,k,r = yS,j,k,r using the inductive hypothesis for S \ {1}.

Now assume the result holds for all S of size n with minS = m− 1 > 1; we will show
the result holds for all S with S = m. Consider a given S of size n with minS = m > 2,
and let S− = {s − 1 | s ∈ S}. Define φ as in Theorem 7, and notice that π′-avoidance
and σ′-avoidance are both preserved under φ.

Suppose d ∈ IS−(π′), and consider the S-inversion sequences e ∈ IS such that φ(e) = d.
Similarly, suppose d′ ∈ IS−(σ′), and consider the S-inversion sequences e′ ∈ IS such that
φ(e′) = d′. Suppose d and d′ both have j + k zeros and terminal h-repeat statistic r. By
the inductive hypothesis, the number of such d equals the number of such d′.

As d and d′ both have j + k zeros, e and e′ must each have j + k total zeros and
ones. Now restrict consideration to those e and e′ that have j zeros and k ones. As d is
π′-avoiding, e avoids π′ if and only if no π pattern occurs within its first r zero and one
entries. Similarly, e′ avoids σ′ if and only if no σ pattern occurs within its first r zero and
one entries.

Consider some choice of zeros and ones for the last j + k − r zeros of d and d′, i.e.,
some binary sequence in {0, 1}j+k−r. We claim that the number of e whose last j + k− r
zeros and ones follow this binary sequence equals the number of e′ whose last j + k − r
zeros and ones follow this binary sequence. Notice that all such e and e′ have the same
terminal h-repeat statistic r′: if the binary sequence contains at least h ones, then r′ is
the number of zeros before the h-th-to-last one in e or respectively e′; otherwise, r′ is the
number of zeros within the first r zeros and ones of e or respectively e′. As e and e′ both
have k ones and j zeros, and this binary sequence fixes the terminal h-repeat statistic,
this would be a stronger refinement that implies xS,j,k,r′ = yS,j,k,r′ for all j, k, r′.

Suppose this binary sequence has j′ zeros and k′ = j + k− r− j′ ones, where we may
assume j′ 6 j and k′ 6 k, as otherwise no valid e or e′, with k ones and j zeros, exist.
Hence both e and e′ must have j− j′ zeros and k−k′ ones among the positions of the first
r zeros in d and d′, respectively. These zeros and ones in e must avoid π, and these zeros
and ones in e′ must avoid σ. Then Lemma 6 implies that the number of such e equals the
number of such e′, namely equaling

(
j−j′+min{k−k′,`−2}

j−j′
)
.

This implies xS,j,k,r′ = yS,j,k,r′ for all j, k, r′, and by induction, for all S, which completes
the proof.

Corollary 11. For any finite set S of positive integers,

|IS(1012)| = |IS(1102)|.

This implies 1012 and 1102 are Wilf equivalent over inversion sequences.
Similar to Theorem 10, which appends twos to π and σ that satisfy the assumptions of

Theorem 7, the following result augments the method of Theorem 7 to prove that ρ ·π and
ρ ·σ are Wilf equivalent over S-inversion sequences, where π and σ satisfy the assumptions
of Lemma 6 and ρ consists only of twos.
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Theorem 12. Let ρ = ρ1 · · · ρh be a pattern of length h > 1 such that ρi = 2 for all i.
Let π = π1 · · · π` and σ = σ1 · · ·σ` be two patterns of length ` > 2 such that πi, σi ∈ {0, 1}
for all i ∈ [`], and there exists exactly one j such that πj = 0 and exactly one j′ such that
σj′ = 0. Then for any finite set S of positive integers, |IS(ρ · π)| = |IS(ρ · σ)|.

Proof. For convenience, define π′ = ρ·π and σ′ = ρ·σ. We use an almost identical approach
as in Theorem 10, reversing the definition of the terminal h-repeat statistic. Let the initial
h-repeat statistic of an S-inversion sequence e be the largest integer r such that there are
at least r zeros in e, and letting z denote the index of the r-th-to-last zero in e, then
there exist positive integers 1 6 i1 < i2 < · · · < ih < z where ei1 = ei2 = · · · = eih > 0;
if no such r exists, define the initial h-repeat statistic to be 0. For example, the initial
1-repeat statistic is simply the number of non-initial zeros, where an initial zero only has
zeros before it, if anything.

Let xS,j,k,r denote the number of π′-avoiding S-inversion sequences with j zeros, k
ones, and initial h-repeat statistic r, and similarly define yS,j,k,r for σ′-avoidance. We will
prove the refinement that xS,j,k,r = yS,j,k,r for all S, j, k, r by induction on |S|.

The proof then follows the same reasoning as that of Theorem 10. For sake of brevity
and clarity, we comment on some of the minor differences between the proofs. We assume
h > 1 so that neither π′ and σ′ start with a 0, allowing the base case minS = 1 for the
second induction to hold; this in turn allows us to lift the restriction that π1 = σ1 = 1.
Using the same notation as in the proof of Theorem 10, the characterization of e becomes
as follows: e avoids π′ if and only if no π pattern occurs within its last r zero and one
entries, and similarly for e′ avoiding σ′. We then consider some binary sequence for the
first j + k − r zeros of d and d′, as opposed to the last, where fixing this binary sequence
fixes the initial h-repeat statistic of e and e′, so the proof proceeds identically.

Corollary 13. For any finite set S of positive integers,

|IS(2011)| = |IS(2101)| = |IS(2110)|.

This implies 2011, 2101, and 2110 are Wilf equivalent over inversion sequences.

Corollary 14. For any finite set S of positive integers,

|IS(2201)| = |IS(2210)|.

This implies 2201 and 2210 are Wilf equivalent over inversion sequences.

Theorem 15. Let π = π1 · · · π` and σ = σ1 · · ·σ` be two patterns of length ` > 2 such that
πi, σi ∈ {0, 1} for all i ∈ [`], and there exists exactly one j such that πj = 0 and exactly one
j′ such that σj′ = 0. Then for any finite set S of positive integers, |IS(23·π)| = |IS(23·σ)|.

Proof. For convenience, define π′ = 23 · π and σ′ = 23 · σ. We use a similar double
induction approach as in Theorem 12.

Let the initial non-inversion statistic of an S-inversion sequence e be the largest integer
z such that there are at least z zeros in e, and there does not exist two elements 0 < ei1 <
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ei2 of e where i1 < i2 and both come before the z-th zero in e; this statistic can equal
zero. Furthermore, let the initial positive set of an S-inversion sequence e be the set P of
integers i for 0 6 i < z, where z is the initial non-inversion statistic of e, such that there
exists a positive element between the i-th and (i + 1)-th zeros of e, where “between the
zeroth and first zeros of e” is interpreted to mean before the first zero of e.

Let xS,j,k,z,P denote the number of π′-avoiding S-inversion sequences with j zeros,
k ones, initial non-inversion statistic z, and initial positive set P , and similarly define
yS,j,k,z,P for σ′-avoidance. We will prove the refinement that xS,j,k,z,P = yS,j,k,z,P for all
S, j, k, z, P by induction on |S|.

The initial argument, from the base cases of |S| < ` + 2 up to the beginning of the
second inductive step using φ, follow the same reasoning as in Theorem 12. We use the
same definitions for S− and φ, where we note that π′-avoidance and σ′-avoidance are both
preserved under φ.

Suppose d ∈ IS−(π′), and consider the S-inversion sequences e ∈ IS such that φ(e) = d.
Similarly, suppose d′ ∈ IS−(σ′), and consider the S-inversion sequences e′ ∈ IS such that
φ(e′) = d′. Suppose d and d′ both have j + k zeros, initial non-inversion statistic z,
and initial positive set P . By the inductive hypothesis, the number of such d equals the
number of such d′.

As d and d′ both have j + k zeros, e and e′ must each have j + k total zeros and
ones. Now restrict consideration to those e and e′ that have j zeros and k ones. As d is
π′-avoiding, e avoids π′ if and only if no π pattern occurs within its last j + k − z zero
and one entries. Similarly, e′ avoids σ′ if and only if no σ pattern occurs within its last
j + k − z zero and one entries.

Consider some choice of zeros and ones for the first z zeros of d and d′, i.e., some
binary sequence in {0, 1}z. We claim that the number of e whose first z zeros and ones
follow this binary sequence equals the number of e′ whose first z zeros and ones follow
this binary sequence. However, we first show that all such e and e′ have the same initial
non-inversion statistic z′ and initial positive set P ′, as then the claim yields a stronger
refinement that implies xS,j,k,z′,P ′ = yS,j,k,z′,P ′ for all j, k, z′, P ′.

If the binary sequence contains no ones, then z′ = z and P ′ = P . Otherwise, the ones
in this binary sequence will cause z′ < z and may cause P ′ to change. If P is empty,
then notice z′ is simply the number of zeros in this binary sequence, and P ′ is defined
according to which zeros in the binary sequence have ones in between them. If P is non-
empty, suppose i1 is the index of the first one in the binary sequence; and let i2 be the
minimum element of (P ∪ {z}) ∩ [i1,∞). Then z′ is the number of zeros within the first
i2 elements of the binary sequence, and P ′ is uniquely determined from P and the binary
sequence. Hence, given z, P , and the binary sequence, z′ and P ′ are uniquely determined,
as desired.

We conclude the proof by proving our claim that the number of such e equals the
number of such e′. Suppose this binary sequence has j′ 6 j zeros and k′ = z − j′ 6 k
ones. Then both e and e′ have j − j′ zeros and k − k′ ones among the positions of the
last j + k − z zeros in d and d′, respectively. These zeros and ones in e must avoid π,
and these zeros and ones in e′ must avoid σ. Lemma 6 implies that the number of such e
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equals the number of such e′, namely equaling
(
j−j′+min{k−k′,`−2}

j−j′
)
.

This implies xS,j,k,z′,P ′ = yS,j,k,z′,P ′ for all j, k, z′, P ′, and by induction, for all S, which
completes the proof.

Corollary 16. For any finite set S of positive integers,

|IS(2301)| = |IS(2310)|.

This implies 2301 and 2310 are Wilf equivalent over inversion sequences.

3.2 Wilf equivalences by characterization

For a sequence e1 · · · en of nonnegative integers, a position j ∈ [n] is a weak left-to-right
maximum if ei 6 ej for all i < j. We use this definition to characterize 3210 and
3201-avoiding inversion sequences, allowing us to construct an explicit bijection between
In(3210) and In(3201). First, we characterize 3210-avoiding inversion sequences.

Lemma 17. The 3210-avoiding inversion sequences are precisely those that can be parti-
tioned into three weakly increasing subsequences.

Proof. Suppose e ∈ In has such a partition ex1 6 ex2 6 · · · 6 ext , ey1 6 ey2 6 · · · 6 eyr ,
and ez1 6 ez2 6 · · · 6 ezn−t−r . If there exist i < j < k < ` such that ei > ej > ek > e`,
then no two of i, j, k, ` can both be in any of the three sets {x1, . . . , xt}, {y1, . . . , yr},
and {z1, . . . , zn−t−r}, but this is impossible due to the Pigeonhole principle. Therefore, e
avoids 3210. Conversely, if e is 3210-avoiding, let x = (x1, . . . , xt) be the sequence of weak
left-to-right maxima of e. Then ex1 6 ex2 6 · · · 6 ext . We then let y = (y1, . . . , yr) be
the sequence of weak left-to-right maxima of the sequence obtained by deleting positions
{x1, . . . , xt} from e, and in general we call these positions weak 2nd left-to-right maxima.
Similarly ey1 6 ey2 6 · · · 6 eyr . We then consider the remaining terms of the sequence,
and take i, j 6∈ ({x1, . . . , xt}) ∪ ({y1, . . . , yr}) where i < j. The fact that i is not included
in {y1, . . . , yr} implies there exists some v ∈ {y1, . . . , yr} such that v < i and ev > ei. The
fact that v is not a weak left-to-right maxima implies there exists some u such that u < v
and eu > ev. Now we have eu > ev > ei with u < v < i < j. Thus, to avoid 3210, we
must have ei 6 ej. Both directions are thus concluded.

Now, we characterize 3201-avoiding inversion sequences.

Lemma 18. Let (e1, e2, . . . , en) ∈ In. For any i ∈ [n], let M1
i and M2

i be the largest
and second largest value among {e1, e2, . . . , ei−1}, respectively. Then e ∈ In(3201) if and
only if for every i ∈ [n], the entry ei is either a weak left-to-right maximum, a weak 2nd
left-to-right maximum, or for every j > i, we have ej 6 ei or ej >M2

i .

Proof. Let e ∈ In satisfy the conditions of Lemma 18 and, for the sake of contradiction,
assume that there exists i < j < k < ` such that ek < e` < ej < ei. Notice that we have
M1

k > ei and thus M2
k > ej. Then ek < e` < ej 6M2

k , a contradiction to our assumption.
Conversely, suppose e is 3201-avoiding. If ei is neither a weak left-to-right maximum

nor a weak 2nd left-to-right maximum, then there exists some 2nd maximum value M2
i
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such that M2
i = ev > ei for some v < i. By definition of 2nd maximum, there is some

maximum value M1
v = eu > ev for some u < v. To avoid 3201, we must have that for all

j > i, ej 6 ei or ej > ev = M2
i .

Combining these two results allows us to prove 3210 ≡ 3201.

Theorem 19. For n > 1,
|In(3210)| = |In(3201)|.

Proof. We exhibit a bijection based on the characterizations in Lemma 17 and Lemma 18.
Given e ∈ In(3210), we define f ∈ In(3201) as follows. Let ex1 6 ex2 6 · · · 6 ext and

ey1 6 ey2 6 · · · 6 eyr be the subsequences of weak left-to-right maxima and weak 2nd
left-to-right maxima of e, respectively, and let ez1 6 ez2 6 · · · 6 ezn−t−r be the remaining
entries.

For i ∈ [t], we set fxi
= exi

and for i ∈ [r], we set fyi = eyi . For each j ∈ [n −
t − r], we extract an element of the multiset Z = {ez1 , ez2 , . . . , ezn−t−r} and assign it to
fz1 , fz2 , . . . , fzn−t−r , one at a time in order, as follows:

fzj := max{k | k ∈ Z − {fz1 , fz2 , . . . , fzj−1
} and k < M2

zj
}.

By definition, f will satisfy the characterization property in Lemma 18 of In(3201). One
can see that this is invertible, hence a bijection.

A computer search proves no other length-4 patterns are Wilf equivalent, except pos-
sibly 3012 and the aforementioned Wilf equivalence class 3210 ≡ 3201. We leave this last
case as an open question.

Conjecture 20. For n > 1,

|In(3201)| = |In(3012)|.

This has been verified for all n 6 12.

4 Enumeration of inversion sequences avoiding patterns of
length 4

Define a label-increasing tree on n vertices to be a rooted unordered tree in which each
vertex is labeled with a distinct label from the set {0, . . . , n − 1} and labels increase
along any path from the root to a leaf. Then define a label-increasing tree with branching
bounded by k to be a label-increasing tree such that each vertex has at most k children.
Let Ln,k denote the set of n-vertex label-increasing trees with branching bounded by k.

Kuznetsov, Pak, and Postnikov [7] showed that Ln,2 is in bijection with the up/down
permutations, that is, the permutations π of [n] such that π1 < π2 > π3 < π4 > · · · ; the
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number of up/down permutations is the Euler number En, whose exponential generating
function is well-known, namely∑

n>0

En
xn

n!
= tan(x) + sec(x).

Corteel, Martinez, Savage, and Weselcouch [6] proved that |In(000)| = En+1 via a bijection
between In(000) and Ln+1,2. We generalize their result to patterns 00 · · · 0 of any length
k.

Theorem 21. For k > 1, let π = 00 · · · 0 be the pattern consisting of k zeros. Then for
all n > 1,

|In(π)| = |Ln+1,k−1|.

Proof. Notice that In(π) is the set of inversion sequences of length n where each entry
occurs at most k−1 times, and Ln+1,k−1 is the set of label-increasing trees of n+1 vertices
labeled 0, . . . , n, with branching bounded by k. Then it is easy to see that the mapping
sending T ∈ Ln+1,k−1 to e ∈ In(π), where ei is the parent of i in T , is a bijection between
Ln+1,k−1 and In(π).

Theorem 21 implies In(0000) is in bijection with the label-increasing trees with branch-
ing bounded by 3, which is OEIS sequence A297196 [17]. Theorem 21 also enables us to
determine the exponential generating function for |In(00 · · · 0)|, as Riordan [14] showed
the exponential generating function

Tk(x) =
∑
n>0

|Ln,k|
xn

n!
(2)

satisfies the differential equation

T ′k(x) =
k∑

i=0

(Tk(x)− 1)i

i!
.

In other words, Tk(x) satisfies Tk(0) = 1 and

k!T ′k(x) = (Tk(x))k +
k−2∑
m=0

cm,k(Tk(x))m,

where

cm,k =
1

m!

(
k−m∑
j=0

(−1)jk(k − 1) · · · (j + 1)

)
.

These are the same coefficients satisfying

k!
k∑

j=0

xj

j!
= (x+ 1)k +

k−2∑
m=0

cm,k(x+ 1)m
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coming from the differential equation.
Let L′n,k denote the set of n-vertex label-increasing trees with unbounded root degree

and branching bounded by k at all other nodes. An alternative way to think about these
combinatorial objects is to consider the possible ways how n sufficiently large boxes can
contain each other under the condition that each box may contain at most k (themselves
possibly nested) boxes. Similar to Theorem 21, we have the following result for patterns
of the form 011 · · · 1.

Theorem 22. For k > 1, let π = 011 · · · 1 be the pattern consisting of a zero and k ones.
Then for all n > 1,

|In(π)| = |L′n+1,k−1|.
Proof. Notice that In(π) is the set of inversion sequences of length n where each entry
except 0 occurs at most k − 1 times, and L′n+1,k−1 is the set of label-increasing trees of
n+1 vertices labeled 0, 1, . . . , n, with branching bounded by k except at the root. Then it
is easy to see that the mapping sending T ∈ L′n+1,k−1 to e ∈ In(π), where ei is the parent
of i in T , is a bijection between L′n+1,k−1 and In(π).

Theorem 22 implies In(0111) is in bijection with the label-increasing trees (of un-
bounded root degree) with branching bounded by 2, which is OEIS sequence A000772
[17].

More generally, it is well-established that |L′n,k| equals Dn(exp(x)) evaluated at x = 0,
where the operator D is defined by

D =

(
k∑

j=0

xj

j!

)
d

dx
.

Therefore, we have the general formulae of exponential generating function

Rk(x) :=
∑
n>0

|L′n,k|
xn

n!
= exp

(
Tk(x)− 1

)
,

where Tk(x) is defined above in Eq. (2). When k = 1, the exponential generating function
is R1(x) = exp(exp(x)− 1), whose coefficients yield OEIS sequence A000110 [17]. When
k = 2, the exponential generating function is

R2(x) = exp
(

tan(x) + sec(x)− 1
)
.

It is hard to explicitly write down R3(x), whose coefficients form OEIS sequence A094198.
Next, we present the following conjecture.

Conjecture 23. Let An = |In(0021)|. We have that A(x) =
∑

n>1Anx
n satisfies

1(
1− A(x)

)(
1 + A(x)

)2 = 1− x.

In other words, |In(0021)| corresponds to the OEIS sequence A218225 [17]. This has
been verified for all n 6 11.

Remark 24. Since the writing of the original version of this paper, Conjecture 23 has been
simultaneously proven by Chern, Fu, and Lin [5] and Mansour [11].
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