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Abstract

In this paper, we establish infinite families of congruences in consecutive arith-
metic progressions modulo any odd prime ` for the function p

(
n,m,N

)
, which

enumerates the partitions of n into at most m parts with no part larger than N .
We also treat the function p

(
n,m, (a, b]

)
, which bounds the largest part above and

below, and obtain similar infinite families of congruences.
For m 6 4 and ` = 3, simple combinatorial statistics called “cranks” witness

these congruences. We prove this analytically for m = 4, and then both analyti-
cally and combinatorially for m = 3. Our combinatorial proof relies upon explicit
dissections of convex lattice polygons.

Mathematics Subject Classifications: 05A17, 11P82, 11P83

This paper is dedicated to the memory of Freeman Dyson, his contributions to
the theory of partitions, and his contributions to science in general.
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1 Introduction and Main Theorems

1.1 Partition Congruences

In 1919, Ramanujan [12] observed and proved the following congruences in arithmetic
progressions for the ordinary partition function,

p
(
5n+ 4

)
≡ 0 (mod 5),

p
(
7n+ 5

)
≡ 0 (mod 7), (1)

and p
(
11n+ 6

)
≡ 0 (mod 11).

Fifty years later, A. O. L. Atkin showed that p(n) enjoys many more congruences in
arithmetic progressions [3]. For example,

p(206839n+ 2623) ≡ 0 (mod 17). (2)

In 2000, Ono [10] showed that congruences like (2) are individual instances of infinitely
many such congruences, by proving that for any prime ` > 5, there exists integers A,B
such that

p
(
An+B

)
≡ 0 (mod `). (3)

Recently, the third author established several infinite families of congruences for the
function enumerating partitions of n into exactly m parts [7, 8, 9]. In this paper, we
redefine p(n,m) to be the number of partitions of n into at most m parts. Since p(n+m,m)
is equal to the number of partitions of n into exactly m parts, we can readily translate
the results in [7, 8, 9] into our current notation. Below, we cite one of the aforementioned
families, where the congruences occur in intervals of consecutive arithmetic progressions
of the form p

(
An + B,m

)
≡ 0 (mod `), where B can take on any value in a particular

interval.
We require a definition.

Definition 1. We write lcm(m) to indicate the least common multiple of the numbers
from 1 through m.

Theorem 2. [8] Let ` be an odd prime and suppose 2 6 m 6 ` + 1. Then for each
1 6 t 6

(
m+1
2

)
− 1. we have

p
(
` lcm(m) k − t,m

)
≡ 0 (mod `) (4)

holds for all k > 0.

Example 3. Setting ` = 3 and m = 3 we have p(18k − t, 3) ≡ 0 (mod 3) for 1 6 t < 5.

In this paper, we consider several refinements of Theorem 2.
Our first refinement treats the number of partitions of n into at most m parts with

largest part at most N , denoted p
(
n,m,N

)
. This theorem shows that adding certain

bounds on the largest part of our partitions preserves many of the congruences in Theorem
2.
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Theorem 4. Let ` be an odd prime and suppose 2 6 m 6 ` + 1, 1 6 s 6 m, and j > 1.
Set A = ` lcm(m) and C = ` lcm(m − 1). Then for each s(s−1)

2
< t < ms − s(s−1)

2
, the

congruence
p
(
Ak − t,m,Cj − s

)
≡ 0 (mod `) (5)

holds for all k > 1.

We add a second level of refinement by treating p
(
n,m, (a, b]

)
, the number of partitions

of n with at most m parts, largest part greater than a but at most b. Notice that

p
(
n,m, (a, b]

)
= p
(
n,m, b

)
− p
(
n,m, a

)
. (6)

To simplify our notation, we define Ij to be (j − 1, j] throughout the paper, CIj =
(C(j − 1), Cj] to be the dilation of Ij by C, and for any interval I = (a, b], I − s =
(a− s, b− s] to be the translation of I by −s.

Corollary 5. Let ` be an odd prime and suppose 2 6 m 6 `+ 1, 1 6 s 6 m, and j > 1.
Set A = ` lcm(m) and C = ` lcm(m − 1). Then for each s(s−1)

2
< t < ms − s(s−1)

2
, the

congruence
p
(
Ak − t,m,CIj − s

)
≡ 0 (mod `) (7)

holds for all k > 1.

Examples of Theorem 4 and Corollary 5 can be found in Section 2.1.
In the following subsection, we discuss witnesses for these congruences which demon-

strate a way in which these new refinements and the original Theorem 2 can be seen by
directly examining the combinatorics of the associated sets of partitions.

1.2 Combinatorial Witnesses for Partition Congruences

We recall the definition of an integer partition.

Definition 6. A partition λ of a positive integer n is a finite nonincreasing sum of positive
integers
λ1, λ2, . . . , λr such that

∑r
i=1 λi = n. We refer to λi as the ith part of the partition.

In 1944, Freeman Dyson [5] called for direct proofs of Ramanujan’s congruences that
show how the sets of partitions enumerated in (1) can be divided into five, seven, and
eleven equinumerous subclasses, respectively. He remarked,

“. . . it is unsatisfactory to receive no concrete idea of how the division is to be
made. We require a proof which will not appeal to generating functions, but
will demonstrate by cross-examination of the partitions themselves. . .

Dyson conjectured that a very simple statistic on partitions called the “rank” of a parti-
tion, the largest part minus the number of parts, witnesses this division when considered
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modulo 5 and 7. Dyson denoted the number of partitions of n whose rank is congruent
to r modulo ` by N

(
r, `, n

)
, and so he wrote his conjecture as

N
(
0, 5, 5n+ 4

)
= N

(
1, 5, 5n+ 4

)
= N

(
2, 5, 5n+ 4

)
= N

(
3, 5, 5n+ 4

)
= N

(
4, 5, 5n+ 4

)
and

N
(
0, 7, 7n+ 5

)
= N

(
1, 7, 7n+ 5

)
= · · · = N

(
6, 7, 7n+ 5

)
.

Using analytic methods, Atkin and Swinnerton-Dyer [3] proved Dyson’s conjecture.
However, a combinatorial proof that the rank witnesses Ramanujan’s first two congruences
remains elusive. Dyson further hypothesized the existence of a different statistic, called
the “crank”, that would witness Ramanujan’s congruence modulo 11 in the same way.
In 1988, Andrews and Garvan [2] found a crank that not only witnessed Ramanujan’s
congruence modulo 11, but also witnessed Ramanujan’s congruences modulo 5 and 7
with a new division into 5 and 7 classes, respectively. However, in both cases, the proofs
were analytic, and they did not employ a cross-examination of the partitions themselves
as Dyson had hoped.

In most of the literature, the Andrews-Garvan crank is referred to as “the crank.”
In addition, we may refer to any statistic on partitions (especially one that witnesses
divisibilities) that is not Dyson’s rank as “a crank.” In Theorem 7 below, we consider the
congruences modulo 3 in both Theorem 4 and Corollary 5, and we find that there is a
simple crank that witnesses these congruences. Remarkably, this crank allows us to give
a direct combinatorial proof of some of those congruences by cross-examination of the
partitions themselves, in the way Dyson had imagined that his original conjecture would
be treated.

When we have designated a crank other than Dyson’s rank or the Andrews-Garvan
crank, we define
M ′(r, n,m) to be the number of partitions of n into at most m parts with crank value
r, and M ′(r, n,m,N) to be the number of those partitions that have no part larger than
N . We further define M ′(r, `, n,m) to be the number of partitions of n into at most m
parts with crank value r modulo `, M ′(r, `, n,m,N) to be the number of those partitions
that have no part larger than N , and M ′(r, `, n,m, (a, b]) to be the number of those
partitions with largest part confined to the interval (a, b]. For each r between 0 and
`−1, we refer to the sets of partitions counted by each of M ′(r, `, n,m),M ′(r, `, n,m,N),
and M ′(r, `, n,m, (a, b]) as the rth crank class modulo ` of the partitions counted by
p
(
n,m

)
, p
(
n,m,N

)
, and p

(
n,m, (a, b]

)
, respectively.

Theorem 7. For ` = 3, the second part of the partition is a crank witnessing the congru-
ences of Theorem 4 and Corollary 5 when m ∈ {2, 3}. For ` = 3 and m = 4, if n 6 2N ,
the second part of the partition is a crank witnessing the congruences of Theorem 4 and
Corollary 5, whereas if n > 2N , the third part of the partition is a crank witnessing those
congruences.

In cases where a kth part of a partition with less than k parts is referenced, the kth part
is to be interpreted as zero.
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In Section 3, we restate Theorem 7 with additional details, and we then prove the
theorem case by case according to m, the maximum number of parts. The proof for
m = 2 is direct and requires minimal background. For m = 3, we offer two proofs; the first
is a purely combinatorial realization where we treat partitions as integer lattice points,
while the second proof uses generating functions (q-series) to produce closed formulas
for M ′(r, 3, n, 3, N). A highlight of the combinatorial proof is that we work up from the
smaller setsM′(r, 3, n, 3, (a, b]) to the larger setsM′(r, 3, n, 3, N) and thenM′(r, 3, n, 3),
which is the opposite order in which we treat these in the analytic proof. The case m = 4
is treated with the same q-series procedure as m = 3.

2 Examples, Background, and Proofs of Theorem 4 and Corol-
lary 5

2.1 Examples of Theorem 4 and Corollary 5

With many parameters, Theorem 4 and Corollary 5 are quite general, and can be difficult
to parse. The examples below illustrate how the results of Theorem 4 and Corollary 5
change as we vary the upper bound on the size of the parts in our partitions.

Example 8. Set ` = 5, m = 5, and j = 4. By Theorem 4, we have:

• For s = 1, the following congruences in an interval of four (0 < t < 5) consecutive
arithmetic progressions within the Gaussian polynomial[
239+5

5

]
=
∑1195

n=0 p
(
n, 5, 239

)
qn

p
(
296, 5, 239

)
≡ p
(
596, 5, 239

)
≡ p
(
896, 5, 239

)
≡ 0 (mod 5)

p
(
297, 5, 239

)
≡ p
(
597, 5, 239

)
≡ p
(
897, 5, 239

)
≡ 0 (mod 5)

p
(
298, 5, 239

)
≡ p
(
598, 5, 239

)
≡ p
(
898, 5, 239

)
≡ 0 (mod 5)

p
(
299, 5, 239

)
≡ p
(
599, 5, 239

)
≡ p
(
899, 5, 239

)
≡ 0 (mod 5).

• Lowering the upper bound on the part sizes by one, we have a new Gaussian poly-
nomial with even more congruences.

For s = 2, we have seven (1 < t < 9) consecutive arithmetic progressions within the
Gaussian polynomial

[
238+5

5

]
=
∑1190

n=0 p
(
n, 5, 238

)
qn.

p
(
292, 5, 238

)
≡ p
(
592, 5, 238

)
≡ p
(
892, 5, 238

)
≡ 0 (mod 5)

p
(
293, 5, 238

)
≡ p
(
593, 5, 238

)
≡ p
(
893, 5, 238

)
≡ 0 (mod 5)

p
(
294, 5, 238

)
≡ p
(
594, 5, 238

)
≡ p
(
894, 5, 238

)
≡ 0 (mod 5)

p
(
295, 5, 238

)
≡ p
(
595, 5, 238

)
≡ p
(
895, 5, 238

)
≡ 0 (mod 5)

p
(
296, 5, 238

)
≡ p
(
596, 5, 238

)
≡ p
(
896, 5, 238

)
≡ 0 (mod 5)

p
(
297, 5, 238

)
≡ p
(
597, 5, 238

)
≡ p
(
897, 5, 238

)
≡ 0 (mod 5)

p
(
298, 5, 238

)
≡ p
(
598, 5, 238

)
≡ p
(
898, 5, 238

)
≡ 0 (mod 5).
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• Lowering the upper bound on the part sizes by one more, we have yet another
Gaussian polynomial with even more congruences.

For s = 3, we have eight (3 < t < 12) consecutive arithmetic progressions for the
coefficients of the Gaussian polynomial

[
237+5

5

]
=
∑1185

n=0 p
(
n, 5, 237

)
qn,

p
(
289, 5, 237

)
≡ p
(
589, 5, 237

)
≡ p
(
889, 5, 237

)
≡ 0 (mod 5)

p
(
290, 5, 237

)
≡ p
(
590, 5, 237

)
≡ p
(
890, 5, 237

)
≡ 0 (mod 5)

p
(
291, 5, 237

)
≡ p
(
591, 5, 237

)
≡ p
(
891, 5, 237

)
≡ 0 (mod 5)

p
(
292, 5, 237

)
≡ p
(
592, 5, 237

)
≡ p
(
892, 5, 237

)
≡ 0 (mod 5)

p
(
293, 5, 237

)
≡ p
(
593, 5, 237

)
≡ p
(
893, 5, 237

)
≡ 0 (mod 5)

p
(
294, 5, 237

)
≡ p
(
594, 5, 237

)
≡ p
(
894, 5, 237

)
≡ 0 (mod 5)

p
(
295, 5, 237

)
≡ p
(
595, 5, 237

)
≡ p
(
895, 5, 237

)
≡ 0 (mod 5)

p
(
296, 5, 237

)
≡ p
(
596, 5, 237

)
≡ p
(
896, 5, 237

)
≡ 0 (mod 5).

We now demonstrate Corollary 5 in Example 9 below. This highlights that many
of the congruences for p(n,m) in Theorem 2 can be doubly refined as congruences for
p
(
n,m, (a, b]

)
. We also vary the upper and lower bounds on the size of the parts in

our partitions to demonstrate how a single congruence for p(n,m) can be refined into
collections of congruences for p

(
n,m, (a, b]

)
in several different ways.

Example 9. Set ` = 5, m = 5, k = 1, and t = 6, so that p
(
294, 5

)
≡ 0 (mod 5).

Corollary 5 reveals many intervals (a, b] for which p
(
294, 5, (a, b]

)
≡ 0 (mod 5). Varying

the parameter s = 2, 3, 4 gives us three distinct sums equal to p
(
294, 5

)
where each

summand p
(
294, 5, (a, b]

)
= p
(
294, 5, 60Ij − s

)
is also a multiple of 5.

• s = 2

p
(
294, 5

)
=
∑
j>1

p
(
294, 5, 60Ij − 2

)
= p
(
294, 5, (−2, 58]

)
+ p
(
294, 5, (58, 118]

)
+ p
(
294, 5, (118, 178]

)
+ p
(
294, 5, (178, 238]

)
+ p
(
294, 5, (238, 298]

)
= 0 + 1,069,755 + 1,432,910 + 342,485 + 23,160

= 2,868,310 ≡ 0 (mod 5).

• s = 3

p
(
294, 5

)
=
∑
j>1

p
(
294, 5, 60Ij − 3

)
= p
(
294, 5, (−3, 57]

)
+ p
(
294, 5, (57, 117]

)
+ p
(
294, 5, (117, 177]

)
+ p
(
294, 5, (177, 237]

)
+ p
(
294, 5, (237, 297]

)
= 0 + 1,034,725 + 1,455,640 + 353,210 + 24,735

= 2,868,310 ≡ 0 (mod 5).
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• s = 4

p
(
294, 5

)
=
∑
j>1

p
(
294, 5, 60Ij − 4

)
= p
(
294, 5, (−4, 56]

)
+ p
(
294, 5, (56, 116]

)
+ p
(
294, 5, (116, 176]

)
+ p
(
294, 5, (176, 236]

)
+ p
(
294, 5, (236, 296]

)
= 0 + 999,650 + 1,478,115 + 364,160 + 26,385

= 2,868,310 ≡ 0 (mod 5).

2.2 Background Material for Theorem 4 and Corollary 5

We use the standard q-rising factorial notation throughout,

(a; q)d =
d∏
i=1

(1− aqi−1).

It is well-known that the generating function for p
(
n,m

)
is given by

∞∑
n=0

p
(
n,m

)
qn =

1

(q; q)m
.

Gaussian polynomials, denoted by
[
N+m
m

]
, are generating functions for p

(
n,m,N

)
.

mN∑
n=0

p
(
n,m,N

)
qn =

[
N +m

m

]
=

(q; q)N+m

(q; q)m(q; q)N
=

(qN+1; q)m
(q; q)m

. (8)

Gaussian polynomials are reciprocal polynomials of degree mN .

Lemma 10. [1] We have

(z; q)m =
m∑
h=0

(−1)h
[
m

h

]
qh(h−1)/2zh. (9)

2.3 Proof of Theorem 4 and Corollary 5

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let ` be an odd prime, and for 2 6 m 6 `+ 1, consider

mN∑
n=0

p(n,m,N)qn =

[
N +m

m

]
=

(qN+1; q)m
(q; q)m

=
m∑
h=0

(−1)h

(q; q)m

[
m

h

]
qhN+h(h+1)/2

=
m∑
h=0

(−1)hqhN+h(h+1)/2

(q; q)m−h(q; q)h
, (10)
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by the definition of the Gaussian polynomial and an application of Lemma 10 with z =
qN+1.

Let N = ` lcm(m− 1) j − s. We now prove our theorem by showing that the desired
congruences in arithmetic progressions hold for each individual term of the sum in (10).
For h = 0, the summand in (10) simplifies to 1/(q; q)m. By Theorem 2, we have that for ev-
ery n = ` lcm(m) k−t, the summand in (10) is 0 (mod `) for 1 6 t 6

(
m+1
2

)
−1. Similarly,

for h = m, the summand in (10) simplifies to (−1)mqm` lcm(m−1) j−ms+m(m+1)/2/(q; q)m. By
Theorem 2, we have that for every n = ` lcm(m) k − t, the summand in (10) is then 0
(mod `) for ms −

(
m+1
2

)
< t < ms. Thus the sum of the h = 0 and h = m terms of

the sum in (10) is 0 (mod `) for 0 < t < ms if s 6 (m + 1)/2, and is 0 (mod `) for
ms−

(
m+1
2

)
< t <

(
m+1
2

)
if s > (m+ 1)/2.

For 1 6 h 6 m− 1, we now also show congruences in an interval of consecutive arith-
metic progressions for the summands in (10). In these cases, our arithmetic progressions
have a much smaller common difference, and they fill a more narrow interval. We rewrite
the summand in (10) as

Eh(q)q
h(` lcm(m−1) j−s)+h(h+1)/2

(1− q lcm(m−1))`
≡ Eh(q)q

h` lcm(m−1) j+h(h+1)/2−hs

(1− q` lcm(m−1))

≡ Eh(q)q
h(h+1)/2−hsg

(
q` lcm(m−1)) (mod `), (11)

for some function g, where Eh(q) = (−1)h(1−q lcm(m−1))`

(q;q)m−h(q;q)h
. Notice that when m 6 `, each

of the m factors in the denominator of Eh(q) divides (1 − q lcm(m−1)), so in fact Eh(q)

is a polynomial. In the case m = ` + 1, Eh(q) ≡ (−1)h(1−q lcm(`))`−1(1−q lcm(`−1))`

(1−q)2(q2;q)`−h(q2;q)h−1
(mod `).

We then have that (1 − q)2 divides (1 − q lcm(`−1))` and each of the ` − 1 factors in
(q2; q)`−h(q

2; q)h−1 divide (1 − q lcm(`)), so again Eh(q) is a polynomial. In either case,
the degree of the polynomial Eh(q) is ` lcm(m − 1) + h(m − h) −m(m + 1)/2, which is
always strictly less than ` lcm(m− 1). Thus the power series expansion of the right-hand
side of (11) only has terms where the exponent of q is congruent to r modulo ` lcm(m−1)
for r ∈ {h(h+ 1− 2s)/2, . . . . . . , ` lcm(m− 1)− h(h− 1− 2(m− s))/2−m(m+ 1)/2}.
Taking the union of these sets from h = 1 to m− 1, we have

m−1⋃
h=1

{
h(h+ 1− 2s)

2
, . . . , ` lcm(m− 1)− h(h− 1− 2(m− s))

2
− m(m+ 1)

2

}
=

{
−s(s− 1)

2
, . . . , ` lcm(m− 1) +

s(s− 1)

2
−ms

}
This means that when s(s − 1)/2 < t < ms − s(s − 1)/2, exponents of the form `
lcm(m− 1) k′− t do not appear in the power series expansion of any summand in (11) for
h 6= 0,m. In particular, for t in that same range, exponents of the form ` lcm(m) k− t do
not appear in the power series expansion of any summand in (11) for h = 0,m.

Now, for any 1 6 s 6 m, we see that summing (10) over all h, the theorem follows.
Corollary 5 follows immediately from (6).
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3 Combinatorial Witnesses and the Proof of Theorem 7

The proof of Theorem 7 comes in three cases depending on m ∈ {2, 3, 4}. For the case
m = 2, the proof is direct and requires almost no background information. For the case
m = 3, we supply two proofs, one combinatorial and another analytic, in Sections 3.1 and
3.4. We offer an analytic proof in Section 3.5 for the case m = 4 that follows the very
same procedure as the case m = 3.

We restate Theorem 7 with additional details.

Theorem 7. For ` = 3, the second part of the partition is a crank witnessing the congru-
ences of Theorem 4 and Corollary 5 when m ∈ {2, 3}. In other words, (12)-(17) hold.

When m = 2, for r ∈ {0, 1, 2}, j, k > 1, and the ordered pairs
(s, t) ∈ {(1, 1), (2, 2)}, we have

M ′(r, 3, 6k − t, 2, 3Ij − s) =
p
(
6k − t, 2, 3Ij − s

)
3

, (12)

M ′(r, 3, 6k − t, 2, 3j − s) =
p
(
6k − t, 2, 3j − s

)
3

, (13)

and M ′(r, 3, 6k − t, 2) =
p
(
6k − t, 2

)
3

. (14)

When m = 3 we have for r ∈ {0, 1, 2}, j, k > 1, and the ordered pairs
(s, t) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5)}, we have

M ′(r, 3, 18k − t, 3, 6Ij − s
)

=
p
(
18k − t, 3, 6Ij − s

)
3

, (15)

M ′(r, 3, 18k − t, 3, 6j − s
)

=
p
(
18k − t, 3, 6j − s

)
3

, (16)

and M ′(r, 3, 18k − t, 3
)

=
p
(
18k − t, 3

)
3

. (17)

For the case ` = 3 and m = 4, when 36k− t 6 2N , a crank witnessing the congruences
of Theorem 4 and Corollary 5 is second part modulo 3, and when 36k − t > 2N , a crank
witnessing the congruences of Theorem 4 and Corollary 5 is third part modulo 3. In other
words, (18)-(20) hold.

When m = 4 and for r ∈ {0, 1, 2}, j, k > 1, and the ordered pairs
(s, t) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5),
(3, 6), (3, 7), (3, 8), (4, 7), (4, 8), (4, 9)}, we have

M ′(r, 3, 36k − t, 4, 18Ij − s
)

=
p
(
36k − t, 4, 18Ij − s

)
3

, (18)

M ′(r, 3, 36k − t, 4, 18j − s
)

=
p
(
36k − t, 4, 18j − s

)
3

, (19)

and M ′(r, 3, 36k − t, 4
)

=
p
(
36k − t, 4

)
3

. (20)
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Remark 11. In Theorem 7, when m = 4, the reader may be surprised to see a crank that
is defined piecewise as the second part when n 6 2N and the third part when n > 2N .
This piecewise definition is a byproduct of the combinatorics underlying the well-known
symmetry p(n,m,N) = p(mN − n,m,N). Specifically, by taking the complement of
Ferrers diagrams inside an m×N rectangle, we have that the ith part of such a partition
of n is equal to N minus the (m− i)th part of a partition of mN − n.

We prove the case m = 2 of Theorem 7 below.

Proof of Theorem 7 for m = 2. We begin by proving (12). Let (s, t) ∈ {(1, 1), (2, 2)}.
When 3j − s < d(6k − t)/2e + 3 or 3j − s > 6k − t, there are no partitions counted

by p
(
6k− t, 2, 3Ij − s

)
. For d(6k− t)/2e+ 3 6 3j − s 6 6k− t, there are three partitions

counted by p
(
6k − t, 2, 3Ij − s

)
, and they are

(3j − s) + (6k − 3j),

(3j − s− 1) + (6k − 3j + 1), and

(3j − s− 2) + (6k − 3j + 2).

We see that the second parts of these three partitions form a complete residue system
modulo 3, and therefore

M ′(0, 3, 6k − t, 2, 3Ij − s) = M ′(1, 3, 6k − t, 2, 3Ij − s)
= M ′(2, 3, 6k − t, 2, 3Ij − s) = 1.

Now (13) follows from (12) since

M ′(r, 3, 6k − t, 2, 3J − s) =
J∑
j=1

M ′(r, 3, 6k − t, 2, 3Ij − s)
for each r ∈ {0, 1, 2}. Finally, (14) follows from (13) by setting j = 2k.

In the case m = 2, we note that the first part is also a crank witnessing the congruences
of Theorem 4 and Corollary 5, which again follows by the combinatorics underlying the
symmetry p(n,m,N) = p(mN − n,m,N).

3.1 Integer Lattices and a Combinatorial/Bijective Proof of the case m = 3
of Theorem 7

In this section, we give a direct proof of the case m = 3 of Theorem 7. To do this, we
treat partitions into at most three parts as vectors in Z3. We define the sets of partitions
counted by each of p

(
n,m

)
, p
(
n,m,N

)
, and p

(
n,m, (a, b]

)
to be P

(
n,m

)
,P
(
n,m,N

)
,

and P
(
n,m, (a, b]

)
, respectively. We then construct five triplets of vectors such that each

triplet contains one partition from each of the three possible crank classes determined by
λ2 modulo 3. Then, we give an explicit covering of P

(
18k− t, 3, 6Ij−s

)
with translations

of our five triplets, such that the translated triplets are disjoint.
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We treat a partition λ of n = λ1 + λ2 + λ3 as an integer vector λ =

λ1λ2
λ3

 ∈ Z3 so

that the set of partitions of n into at most three parts becomes

P
(
n, 3
)

=


λ1λ2
λ3

 ∈ Z3 | λ1 + λ2 + λ3 = n, λ1 > λ2 > λ3 > 0

 . (21)

For example, in Figure 1, we see the set P(51, 3).

Figure 1: Two views of the set P
(
51, 3

)
⊂ Z3. On the left we include the ambient large

equilateral triangle

51
0
0

,

 0
51
0

,

 0
0
51

 and its medians. On the right we display a

planar version of P
(
51, 3

)
. The node on the bottom left is the partition

51
0
0

, the

bottom right is

26
25
0

, and the node at the top is

17
17
17

.

Remark 12. Notice that when a set of partitions is displayed as in the right side of Figure
1, for each partition λ, the crank value λ2 corresponds to the apparent horizontal location
of the lattice point/partition on the page.

Combinatorial proof of Theorem 7 for m = 3. For the crank λ2, we begin by choosing
triplets of integer lattice points that each span all three crank classes modulo 3. We then
cover P

(
18k− t, 3, 6Ij− s

)
with disjoint translations of these triplets, demonstrating that

that those partitions are equally distributed among the three crank classes.
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The five lattice point triplets are

A =


0

0
0

 ,

−2
1
1

 ,

−4
2
2


,

B =


0

0
0

 ,

−2
1
1

 ,

−2
2
0

 ,

C =


0

0
0

 ,

−1
1
0

 ,

−2
2
0

 ,

D =


0

0
0

 ,

−1
1
0

 ,

−1
2
−1

 , and

E =


0

0
0

 ,

 0
1
−1

 ,

 0
2
−2


.

(22)

In Figure 2, we give the cover for P
(
87, 3) by translations of the triplets A,B,C,D and E.

Note that triplet of the second coordinates in each of A,B,C,D and E form a complete
residue system modulo 3. In other words, once translated, each triplet of partitions spans
the three crank classes modulo 3.

29
29
29



87
0
0

 44
43
0



P
(
87, 3, 6I8 − 2

)
P
(
87, 3, 6I9 − 2

)
P
(
87, 3, 6I10 − 2

)

Figure 2: P
(
87, 3) =

15⋃
j=6

P
(
87, 3, 6Ij − 2

)
, with each set of the form P

(
87, 3, 6Ij −

2
)

covered by translations of triplets described in (22). We indicate a few individual
partitions and sets P

(
87, 3, 6Ij−2

)
. The set P

(
87, 3, 6I8−2

)
= P

(
87, 3, (40, 46]

)
is in the

first regime and consists of 42 triplets, while the sets P
(
87, 3, 6I9− 2

)
= P

(
87, 3, (46, 52]

)
and P

(
87, 3, 6I10 − 2

)
= P

(
87, 3, (52, 58]

)
are in the second regime and consist of 39 and

33 triplets, respectively.
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We consider the sets P
(
18k − t, 3, 6Ij − s

)
in two separate regimes depending on j.

The first regime is defined by k+ 1 6 j 6 d3k
2
e. We require translations of all five triplets

A,B,C,D,E to cover the sets P
(
18k− t, 3, 6Ij − s

)
in this regime. This cover is given in

Table 1 and is followed by a discussion and an example in Figure 3. The second regime
is defined by d3k

2
e + 1 6 j 6 3k. We require translations of only the three triplets A,C,

and D to cover the sets P
(
18k− t, 3, 6Ij − s

)
in this regime. This cover is given in Table

2 and is followed by a discussion and an example in Figure ??.

Table 1: P
(
18k − t, 3, 6Ij − s

)
for k + 1 6 j 6 d3k

2
e. Let j′ = (j − k − 1).

Triplet Translations Conditions

A #»a1(x) =

 6k + 6j′ + 6− s
6k + 6j′ − s− x

6k − 12j′ − 6 + 2s− t+ x

 0 6 x 6 9j′ + b t−3s
2
c+ 3

#»a2(y) =

 6k + 6j′ + 5− s
6k + 6j′ − 1− s− y

6k − 12j′ + 2s− 4− t+ y

 0 6 y 6 9j′ + d t−3s
2
e+ 1

B

 6k + 6j′ + 5− s
6k + 6j′ − s

6k − 12j′ − 5 + 2s− t


#»c1 =

 6k + 6j′ + 5− s
6k + 6j′ + 1− s

6k − 12j′ − 6 + 2s− t

 unless j = 3k+1
2

, in which case,
for pairs (s, t), C is translated by

C #»c2 =

 6k + 6j′ + 6− s
6k + 6j′ + 1− s

6k − 12j′ − 7 + 2s− t




#»c1,
#»c2,

#»c3 for (2, 2), (3, 4)
#»c1,

#»c2 for (1, 1), (2, 3), (3, 5)
#»c1 for (1, 2), (2, 4)

#»c3 =

 6k + 6j′ + 6− s
6k + 6j′ + 2− s

6k − 12j′ − 8 + 2s− t


D

 6k + 6j′ + 6− s
6k + 6j′ + 3− s

6k − 12j′ − 3 + 2s− t

 unless j = 3k+1
2

, in which case
D is not translated at all

E

 6k + 6j′ + 6− s
6k + 6j′ + 4− s

6k − 12j′ − 4 + 2s− t

 unless j = 3k+1
2

, in which case
E is not translated at all

We begin with a discussion of “first regime” coverings in general. To see that Table
1 does indeed describe a disjoint covering of the partitions in the first regime, we begin
by setting j′ = (j − k − 1), so that the first regime is the union of the sets P

(
18k −

t, 3, 6Ij′+k+1 − s
)

over 0 6 j′ 6 d3k
2
e − k − 1. From Table 1, we see that for 0 6

j′ < d3k
2
e − k − 1, P

(
18k − t, 3, 6Ij′+k+1 − s

)
is covered by 18j′ + t − 3s + 6 copies of

A, three copies of C, one copy of D, and one copy of E. Observe that this covers all
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of the relevant partitions, starting with E translated by

 6k + 6j′ + 6− s
6k + 6j′ + 4− s

6k − 12j′ − 4 + 2s− t

, and

ending with A translated by #»a1
(
9j′ + b t−3s

2
c+ 3

)
=

 6k + 6j′ + 6− s
6k − 3j′ − t−s

2
− 3

6k − 3j′ − t−s
2
− 3

 if t− s is even

or by #»a2
(
9j′ + d t−3s

2
e + 1

)
=

 6k + 6j′ + 5− s
6k − 3j′ − t−s−1

2
− 3

6k − 3j′ − t−s−1
2
− 3

 if t − s is odd. Notice that the

aforementioned starting translation of E covers the three partitions that have their third
parts as small as possible within P

(
18k − t, 3, 6Ij′+k+1 − s

)
and their first parts as large

as possible within P
(
18k − t, 3, 6Ij′+k+1 − s

)
, while the final translation of A covers the

partitions within P
(
18k − t, 3, 6Ij′+k+1 − s

)
where the second and third part are equal.

When j′ = d3k
2
e − k − 1, the set of possible configurations of triplets that cover

P
(
18k− t, 3, 6Ij′+k+1− s

)
is more complicated, and we break the analysis into four cases.

In the first case, when k is even, in the same configuration described above, we have
18j′+ t− 3s+ 6 copies of A, three copies of C, one copy of D, and one copy of E. In the
second case, when k is odd and (s, t) ∈ {(1, 2), (2, 4)}, we have 18j′ + t− 3s+ 6 copies of
A and one copy of C. Notice that in the second case, the translation of C covers the three
partitions that have their third parts as small as possible within P

(
18k−t, 3, 6Ij′+k+1−s

)
,

while again the final translation of A covers the partitions within P
(
18k−t, 3, 6Ij′+k+1−s

)
where the second and third part are equal. In the third case, when k is odd and (s, t) ∈
{(1, 1), (2, 3), (3, 5)}, we have 18j′+ t−3s+6 copies of A and two copies of C. Notice that
in the third case, the second translation of C covers the three partitions that have their
third parts as small as possible within P

(
18k − t, 3, 6Ij′+k+1 − s

)
, while again the final

translation of A covers the partitions within P
(
18k − t, 3, 6Ij′+k+1 − s

)
where the second

and third parts are equal. In fourth case, when k is odd and (s, t) ∈ {(2, 2), (3, 4)}, we
have 18j′+ t−3s+6 copies of A and three copies of C. Notice that in the fourth case, the
third translation of C covers the three partitions that have their third parts as small as
possible within P

(
18k− t, 3, 6Ij′+k+1−s

)
, while again the final translation of A covers the

partitions within P
(
18k − t, 3, 6Ij′+k+1 − s

)
where the second and third parts are equal.

Hence, Table 1 describes a disjoint covering of the partitions in the first regime.
We now discuss “second regime” coverings in general. To see that Table 2 describes

a disjoint covering of the partitions in the second regime, we begin by noting that for
d3k

2
e + 1 6 j 6 3k, the set P

(
18k − t, 3, 6Ij − s

)
is covered by 18k − 6j + s − t + 2

copies of A, one copy of C, and one copy of D. Observe that this covers all of the

relevant partitions, starting with C and D translated by

 6j − 2− s
18k − 6j + 2 + s− t

0

 and 6j − 4− s
18k − 6j + 3 + s− t

1

, respectively. The covering of the set P
(
18k− t, 3, 6Ij − s

)
ends

immediately if j = 3k and t > s + 2, and otherwise it ends with the aforementioned
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A translated by

27
12
11


A translated

by

28
11
11



A translated by

27
21
2


B translated by

27
22
1


A translated by

28
22
0


C translated by

27
23
0



Figure 3: In this figure we have highlighted the set P
(
50, 3, 6I5 − 2

)
= P

(
50, 3, (22, 28]

)
within P

(
50, 3

)
. This set has parameter values k = 3, t = 4, s = 2, and j = 5, and since

3 + 1 6 5 6 d3(3)/2e, we are
in the first regime, described by Table 1. A is translated by #»a1(0), #»a1(1), . . . , #»a1(11)

beginning with

28
22
0

 at the bottom right and ending with

28
11
11

, and again by

#»a2(0), #»a2(1), . . . , #»a2(9) beginning with

27
21
2

 and ending with

27
12
11

 near the top left.

B is translated once by

27
22
1

, and C is translated once by

27
23
0

.

18k− 6j + s− t+ 2 translations of A. The last translation of A is #»a4(9k− 3j + b s−t
2
c) = 6j − s

9k − 3j + s−t
2

9k − 3j + s−t
2

 if s− t is even or #»a3(9k − 3j + d s−t
2
e) =

 6j − 1− s
9k − 3j + s−t+1

2

9k − 3j + s−t+1
2

 if s− t is

odd. Notice that the aforementioned starting translations of C and D cover the partitions
 6j − 2− s

18k − 6j + 2 + s− t
0

 ,

 6j − 3− s
18k − 6j + 3 + s− t

0

 ,

 6j − 4− s
18k − 6j + 4 + s− t

0


and


 6j − 4− s

18k − 6j + 3 + s− t
1

 ,

 6j − 5− s
18k − 6j + 4 + s− t

1

 6j − 5− s
18k − 6j + 5 + s− t

0

,

respectively, while the final translation of A covers the partitions within P
(
18k−t, 3, 6Ij−

s
)

where the second and third part are equal. Hence, Table 2 describes a disjoint covering
of the partitions in the second regime.

Thus, we have shown that Tables 1 and 2 describe for each j a covering of P
(
18k −
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Table 2: P
(
18k − t, 3, 6Ij − s

)
for d3k

2
e+ 1 6 j 6 3k.

Triplet Translations Conditions

A #»a3(x) =

 6j − 1− s
18k − 6j + 1 + s− t− x

x

 0 6 x 6 9k − 3j + d s−t
2
e

#»a4(y) =

 6j − s
18k − 6j + s− t− y

y

 0 6 y 6 9k − 3j + b s−t
2
c

C

 6j − 2− s
18k − 6j + 2 + s− t

0


D

 6j − 4− s
18k − 6j + 3 + s− t

1



t, 3, 6Ij−s
)

by disjoint translations of the lattice point triplets A,B,C,D, and E. There-
fore, since the triplet of second coordinates in each of A,B,C,D and E forms a complete
residue system modulo 3, the partitions in P

(
18k − t, 3, 6Ij − s

)
are equally distributed

among the three crank classes modulo 3, making the second part of the partition a crank
witnessing the congruences of Theorem 4 and Corollary 5 for ` = m = 3.

3.2 Formulas for p
(
18k− t, 3, 6Ij − s

)
, p
(
18k− t, 3, 6j− s

)
, and p

(
18k− t, 3

)
A byproduct of the combinatorial proof of the case m = 3 of Theorem 7 is that it allows
us to establish formulas for p

(
18k − t, 3, 6Ij − s

)
, p
(
18k − t, 3, 6j − s

)
, and p

(
18k − t, 3

)
.

Examining Table 1 and Table 2, we have

p
(
18k − t, 3, 6Ij − s

)
=



0 for j < k + 1

3
(
18j − 18k − 6− 3s+ t

)
for k + 1 6 j <

⌈
3k
2

⌉
3
(
18j − 18k − 10− s

)
for j = 3k+1

2

= 27k − 3(1 + s)

3
(
18k − 6j + 4 + s− t

)
for
⌈
3k
2

⌉
< j 6 3k

0 for j > 3k.

(23)

Summing the appropriate values from (23), we have proved the following proposition.

Proposition 13. For integers j, k and the ordered pairs
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(s, t) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5)}, one has

p
(
18k − t, 3, 6j − s

)

=



0 for j < k + 1

3(k − j)(9k − 9j − 3 + 3s− t) for k + 1 6 j <
⌈
3k
2

⌉
3(k − j)(9k − 9j − 3 + 3s− t)− 3(1 + s) for j = 3k+1

2

3
(
j(18k + s− t+ 1)− 3j2 + k(−18k − 3s+ 2t)

)
for
⌈
3k
2

⌉
< j < 3k

27k2 + 3k(t− 3) = p
(
18k − t, 3

)
for j > 3k.

(24)

Note that each of the five expressions in (24) is a multiple of 3.

3.3 An Interlude Prior to the Analytic Proofs for the Cases m ∈ {3, 4} of
Theorem 7 and a Definition

In Sections 3.4 and 3.5, we give analytic proofs of the cases m ∈ {3, 4} of Theorem
7. We follow a procedure for producing formulas detailed in [4] for producing formulas
for p

(
n,m,N

)
to similarly establish formulas for each crank class M ′(r, 3, n, 3, N) for

r ∈ {0, 1, 2} and observe that these three formulas are the same. The procedure begins
with a generating function and the end result is a collection of polynomial formulas for
M ′(r, 3, n, 3, N) for all r and n. The resulting collection of formulas is called a “quasipoly-
nomial”.

Definition 14. A function f(n) is a quasipolynomial if there exist d polynomials
f0(n), . . . , fd−1(n) such that

f(n) =


f0(n) if n ≡ 0 (mod d)

f1(n) if n ≡ 1 (mod d)
...

...

fd−1(n) if n ≡ d− 1 (mod d)

for all n ∈ Z. The polynomials fi are called the constituents of the quasipolynomial f
and the number of them, d, is the period of f .

The method used to generate such quasipolynomials obligates us to adhere to a strict
interpretation of binomial coefficients for the constituents of p(n,m,N). For a and b
natural numbers, when a < b then

(
a
b

)
= 0, and when a > b, then

(
a
b

)
= a!

b!(a−b)! .

A quasipolynomial consisting of 36 constituents describing p
(
n, 3, N

)
for all n and N

can be found in the Appendix of [4]. Applying some arithmetic to these constituents, it
is possible to express p

(
18k− t, 3, 6j− s

)
for all k, j ∈ Z>0 for the seven ordered pairs de-

termined by the hypotheses of Theorem 4, (s, t) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4),
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(3, 5)}, with one formula.

p
(
18k − t, 3, 6j − s

)
= (6− t)

(
3k+1
2

)
+ t
(
3k
2

)
− 3(s− t+ 4)

(
3k−j+1

2

)
− 3(6− (s− t+ 4))

(
3k−j
2

)
+ 3(2s− t+ 2)

(
3k−2j+1

2

)
+ 3(6− (2s− t+ 2))

(
3k−2j

2

)
− (t− 3s)

(
3k−3j+1

2

)
− (6− (t− 3s))

(
3k−3j

2

)
. (25)

Compare (25) to (24) and note that each term in (25) is a multiple of 3.
From the analytic proof of the case m = 3 of Theorem 7 we obtain a similarly con-

densed formula for the relevant functions M ′(r, 3, 18k − t, 3, 6j − s
)

for s and t listed in
the same seven ordered pairs above. We do not attempt to condense the formulas for the
case m = 4.

3.4 Analytic Proof of the case m = 3 of Theorem 7

For each r ∈ {0, 1, 2}, we produce a quasipolynomial formula forM ′(r, 3, 18k−t, 3, 18j−s+
6x) for x ∈ {0, 1, 2} and the ordered pairs (s, t) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4),
(3, 5)} below. Then by inspection, we find the following constituents to be equal:

M ′(0, 3, 18k − t, 3, 18j − s+ 6x) = M ′(1, 3, 18k − t, 3, 18j − s+ 6x)

= M ′(2, 3, 18k − t, 3, 18j − s+ 6x). (26)

Because the sequence {6j − s}j>0 is comprised of the three subsequences {18j − s, 18j −
s+ 6, 18j − s+ 12}j>0, (16) follows.

Analytic proof of Theorem 7 for m = 3. Our first goal is to establish a generating func-
tion for the partitions of n into at most 3 parts, no part larger than N , with crank value
r, where the crank value is determined by the second part.

Combinatorial arguments produce the generating function:

f(z, q) =
∞∑
n=0

∞∑
r=0

M ′(r, n, 3, N)zrqn

=
N∑
j=0

(
qj + qj+1 + · · ·+ qN

)
zjqj

(
1 + q + · · ·+ qj

)
. (27)

We rewrite (27) as the following rational function.

f(z, q) =
∞∑
n=0

∞∑
r=0

M ′(r, n, 3, N)zrqn

=
1− qN+1 − zq + zqN+4 + zN+2q2N+3 − zN+2q3N+6 − zN+3q2N+6 + zN+3q3N+7

(1− q)(1− zq)(1− zq2)(1− zq3)
. (28)
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We multiply the far right side of (28) by E(z, q)/E(z, q) where

E(z, q) =
17∑
i=0

qi ×
17∑
i=0

(zq)i ×
8∑
i=0

(
zq2
)i × 5∑

i=0

(
zq3
)i
.

We note that the polynomial E(z, q) is constructed specifically so that E(z, q) × (1 −
q)(1 − zq)(1 − zq2)(1 − zq3) = (1 − q18)(1 − z18q18)(1 − z9q18)(1 − z6q18). Please see [4]
for more details including a generalization of E(q). Now,

E(z, q)

E(z, q)
× 1− qN+1 − zq + zqN+4 + zN+2q2N+3 − zN+2q3N+6 − zN+3q2N+6 + zN+3q3N+7

(1− q)(1− zq)(1− zq2)(1− zq3)

=
A(z, q)

(1− q18)(1− z18q18)(1− z9q18)(1− z6q18)
, (29)

where we write A(z, q) for the numerator on the left side of (29).
So that we may analyze M ′(r, 3, n, 3, N), the rth crank classes modulo 3, we now

dissect A(z, q) as a sum of three polynomials organized by their powers of z taken modulo
3: A(z, q) = A0(z

3, q) + zA1(z
3, q) + z2A2(z

3, q). Using this dissection and replacing z by
ζ = e2πi/3, we have

f(ζ, q) =
∞∑
n=0

∞∑
r=0

M ′(r, 3, n, 3, N)ζrqn =
A0(1, q) + ζA1(1, q) + ζ2A2(1, q)

(1− q18)4
. (30)

We may then express the right side of (30) as(
A0(q) + ζA1(q) + ζ2A2(q)

)
×
∑
k>0

(
k + 3

3

)
q18k, (31)

since
1

(1− q)b
=
∑
a>0

(
a+ b− 1

b− 1

)
qa.

Hence,

f(ζ, q) =
∑
n>0

2∑
r=0

M ′(r, 3, n, 3, N)ζrqn

=
∑
n>0

M ′(0, 3, n, 3, N)qn +
∑
n>0

M ′(1, 3, n, 3, N)ζqn +
∑
n>0

M ′(2, 3, n, 3, N)ζ2qn

= A0(q)×
∑
k>0

(
k + 3

3

)
q18k + ζA1(q)×

∑
k>0

(
k + 3

3

)
q18k + ζ2A2(q)×

∑
k>0

(
k + 3

3

)
q18k. (32)

Multiplying and collecting like terms from each of the series in the right side of (32), we
are able to build three period 18 quasipolynomials.
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Example 15. Setting (s, t) = (2, 4), with x = 2, so that n = 18k = 4 and N = 18j + 10,
we compute the constituent M ′(1, 3, 18k − 4, 3, 18j + 10

)
.∑

k>1

M ′(1, 3, 18k−4, 3, 18j+10
)
ζq18k−4 =

∑
k>1

M ′(1, 3, 18(k−1)+14, 3, 18j+10
)
ζq18k−4

= ζ
(
8q14 + 2q32 − 10q50 − 2q18j+14 − · · ·+ 10q54j+86

)
×
∑
k>1

(
k + 2

3

)
q18k. (33)

Hence, we arrive at

M ′(1, 3, 18k − 4, 3, 18j + 10) = 8
(
k+2
3

)
+ 2
(
k+1
3

)
− 10

(
k
3

)
− 2
(
k+2−j

3

)
− 36

(
k+2−(j+1)

3

)
+ 24

(
k+2−(j+2)

3

)
+ 14

(
k+2−(j+3)

3

)
+ 10

(
k+2−(2j+1)

3

)
+ 30

(
k+2−(2j+2)

3

)
− 36

(
k+2−(2j+3)

3

)
− 4
(
k+2−(2j+4)

3

)
− 8
(
k+2−(3j+2)

3

)
− 2
(
k+2−(3j+3)

3

)
+ 10

(
k+2−(3j+4)

3

)
. (34)

By examining the three quasipolynomials for M ′(r, 3, n, 3, 18j + 6x− s) for r = 0, 1, 2
we are able to show that for x = 0, 1, 2 and the ordered pairs

(s, t) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (3, 5)}

the following constituents are equal:

n = 18k − t, N = 18j − s

M ′(0, 3, 18k−t, 3, 18j−s) = M ′(1, 3, 18k−t, 3, 18j−s) = M ′(2, 3, 18k−t, 3, 18j−s)

= −(t−12)

(
k + 2

3

)
+2(t−3)

(
k + 1

3

)
−(t+6)

(
k

3

)
+ 3(t− s− 10)

(
k − j + 2

3

)
− 6(t− s− 1)

(
k − j + 1

3

)
+ 3(t− s+ 8)

(
k − j

3

)
−3(t−2s−8)

(
k − 2j + 2

3

)
+6(t−2s+1)

(
k − 2j + 1

3

)
−3(t−2s+10)

(
k − 2j

3

)
+ (t− 3s− 6)

(
k − 3j + 2

3

)
− 2(t− 3s+ 3)

(
k − 3j + 1

3

)
+ (t− 3s+ 12)

(
k − 3j

3

)
=
p
(
18k − 4, 3, 18j − s

)
3

(35)

n = 18k − t, N = 18j − s + 6

M ′(0, 3, 18k − t, 3, 18j − s+ 6) = M ′(1, 3, 18k − t, 3, 18j − s+ 6)

= M ′(2, 3, 18k − t, 3, 18j − s+ 6)

= −(t− 12)

(
k + 2

3

)
+ 2(t− 3)

(
k + 1

3

)
− (t+ 6)

(
k

3

)
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+ 2(t− s− 7)

(
k − j + 2

3

)
− 3(t− s+ 8)

(
k − j + 1

3

)
+ 36

(
k − j

3

)
+ (t− s+ 2)

(
k − j − 1

3

)
− (t− 2s− 2)

(
k − 2j + 2

3

)
+ 36

(
k − 2j + 1

3

)
+ 3(t− 2s− 8)

(
k − 2j

3

)
− 2(t− 2s+ 7)

(
k − 2j − 1

3

)
+ (t− 3s− 6)

(
k − 3j + 1

3

)
− 2(t− 3s+ 3)

(
k − 3j

3

)
+ (t− 3s+ 12)

(
k − 3j − 1

3

)
=
p
(
18k − 3, 3, 18j − s+ 6

)
3

(36)

n = 18k − t, N = 18j − s + 12

M ′(0, 3, 18k − t, 3, 18j − s+ 12) = M ′(1, 3, 18k − t, 3, 18j − s+ 12)

= M ′(2, 3, 18k − t, 3, 18j − s+ 12)

= −(t− 12)

(
k + 2

3

)
+ 2(t− 3)

(
k + 1

3

)
− (t+ 6)

(
k

3

)
+ (t− s− 4)

(
k − j + 2

3

)
− 36

(
k − j + 1

3

)
− 3(t− s− 10)

(
k − j

3

)
+ 2(t− s+ 5)

(
k − j − 1

3

)
− 2(t− 2s− 5)

(
k − 2j + 1

3

)
+ 3(t− 2s+ 10)

(
k − 2j

3

)
− 36

(
k + 2j − 1

3

)
− (t− 2s+ 4)

(
k − 2j − 2

3

)
+ (t− 3s− 6)

(
k − 3j

3

)
− 2(t− 3s+ 3)

(
k − 3j − 1

3

)
+ (t− 3s+ 12)

(
k − 3j − 2

3

)
=
p
(
18k − 4, 3, 18j − s+ 12

)
3

(37)

Thus, (35), (36), and (37) together, amount to an analytic proof of the case m = 3 of
Theorem 7.

3.5 Analytic Proof of the case m = 4 from Theorem 7

In the case m = 4, since the crank is defined differently depending on whether or not
n 6 2N , we require the following proposition to deduce the truth of Theorem 7 in the
case n > 2N from the case when n 6 2N .
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Proposition 16. If the coefficient of zrqn in f(z, q) is the number of partitions of n with
largest part at most N , number of parts at most m, and λa = r, then the coefficient of
zrqmN−n in f(z, q) is the number of partitions of n with largest part at most N , number
of parts at most m, and λm+1−a = N − r.

Proposition 16 follows by the reasoning given in Remark 11.

Analytic proof of Theorem 7 for m = 4. We follow the same procedure here that was done
for the case m = 3 in Section 3.4, however, we now have 16 ordered pairs (s, t) meeting
the hypotheses of Theorem 4: (s, t) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (2, 5),
(2, 6), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (4, 7), (4, 8), (4, 9)}.

Our first goal is to establish a generating function for the partitions of n into at most 4
parts, no part larger than N , with crank value r, where the crank value is determined by
the second part of the partition for n 6 2N . Combinatorial arguments give the generating
function

f(z, q) =
∞∑
n=0

∞∑
r=0

M ′(r, 3, n, 4, N)zrqn =
N∑
j=0

(
qj + qj+1 + · · ·+ qN

)
zjqj

[
j + 2

2

]
. (38)

Summing in a way that yields four rational functions, each with four factors in the de-
nominator, we have

f(z, q) =
−qN+1

(
1− (zq)N+1

)
(1− zq) (1− q)2 (1− q2)

+

(
1 + qN+2 + qN+3

) (
1− (zq2)

N+1
)

(1− zq2) (1− q)2 (1− q2)

−
q
(
1 + q + qN+3

) (
1− (zq3)

N+1
)

(1− zq3) (1− q)2 (1− q2)
+

q3
(

1− (zq4)
N+1
)

(1− zq4) (1− q)2 (1− q2)
. (39)

Let Ei(z, q) = (1− z36/iq36)/(1− zqi) for i ∈ {1, 2, 3, 4}. Then,

f(z, q)

=
E1(z, q)

E1(z, q)
×
−qN+1

(
1− (zq)N+1

)
(1− zq) (1− q)2 (1− q2)

+
E2(z, q)

E2(z, q)
×

(
1 + qN+2 + qN+3

) (
1− (zq2)

N+1
)

(1− zq2) (1− q)2 (1− q2)

+
E3(z, q)

E3(z, q)
×
−q
(
1 + q + qN+3

) (
1− (zq3)

N+1
)

(1− zq3) (1− q)2 (1− q2)
+
E4(z, q)

E4(z, q)
×

q3
(

1− (zq4)
N+1
)

(1− zq4) (1− q)2 (1− q2)

=
A(z, q)

(1− z36q36) (1− q36)3
+

B(z, q)

(1− z18q36) (1− q36)3

+
C(z, q)

(1− z12q36) (1− q36)3
+

D(z, q)

(1− z9q36) (1− q36)3
. (40)

So that we may analyze M ′(r, 3, n, 4, N), the rth crank classes modulo 3, we now
dissect A(z, q), B(z, q), C(z, q), and D(z, q) as sums of three polynomials organized by
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their powers of z taken modulo 3:

A(z, q) = A0(z
3, q) + zA1(z

3, q) + z2A2(z
3, q),

B(z, q) = B0(z
3, q) + zB1(z

3, q) + z2B2(z
3, q),

C(z, q) = C0(z
3, q) + zC1(z

3, q) + z2C2(z
3, q), and

D(z, q) = D0(z
3, q) + zD1(z

3, q) + z2D2(z
3, q).

Using this dissection and replacing z by ζ = e2πi/3, we have

f(ζ, q) =
∞∑
n=0

∞∑
r=0

M ′(r, 3, n, 4, N)ζrqn

=
A0(1, q) + ζA1(1, q) + ζ2A2(1, q)

(1− q36)4
+
B0(1, q) + ζB1(1, q) + ζ2B2(1, q)

(1− q36)4

+
C0(1, q) + ζC1(1, q) + ζ2C2(1, q)

(1− q36)4
+
D0(1, q) + ζD1(1, q) + ζ2D2(1, q)

(1− q36)4
. (41)

We now dissect the right side of (41) into three products:

(A0(q) +B0(q) + C0(q) +D0(q))×
∑
k>0

(
k + 3

3

)
q36k,

ζ (A1(q) +B1(q) + C1(q) +D1(q))×
∑
k>0

(
k + 3

3

)
q36k, and

ζ2 (A2(q) +B2(q) + C2(q) +D2(q))×
∑
k>0

(
k + 3

3

)
q36k.

Similarly to the analytic proof for the case m = 3, we produce three quasipolynomials.
The constituents corresponding to each of the 16 ordered pairs (s, t) are compiled in
Appendix A.

We note that our quasipolynomials are in terms of N = 36j− s and N = 36j+ 18− s
giving us 32 expressions in Appendix A. Taken in pairs they prove the result in (19). For
example, the pair of constituents M ′(r, 3, 36k−7, 4, 36j−3

)
and M ′(r, 3, 36k−7, 4, 36j+

15
)

in lines (64) and (65), show M ′(r, 3, 36k − 7, 4, 18j − 3
)

= p
(
36k − 7, 4, 18j − 3

)
/3.

For a given k, taking j large enough establishes (20), and finally, taking differences of
the constituents for different values of j we obtain (18). Thus, Theorem 7 is proved for
n 6 2N .

For n > 2N , where the crank is the third part, we apply Proposition 16, and the other
half of Theorem 7 follows.
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Example 17. Consider the Gaussian polynomial
[
232+4

4

]
. It can be shown that

p
(
36k − 5, 4, 36j + 16

)
= 11

(
3k + 5

3

)
+ 50

(
3k + 4

3

)
+ 11

(
3k + 3

3

)
−4

(
3k + 4− 3j

3

)
− 131

(
3k + 3− 3j

3

)
− 146

(
3k + 2− 3j

3

)
− 7

(
3k + 1− 3j

3

)
+55

(
3k + 2− 6j

3

)
+ 286

(
3k + 1− 6j

3

)
+ 91

(
3k − 6j

3

)
−2

(
3k + 1− 9j

3

)
− 115

(
3k − 9j

3

)
− 160

(
3k − 1− 9j

3

)
− 11

(
3k − 2− 9j

3

)
+6

(
3k − 1− 12j

3

)
+ 48

(
3k − 2− 12j

3

)
+ 18

(
3k − 3− 12j

3

)
. (42)

We note that N = 232 = 36(6) + 16. With (42), we can compute the values p
(
36k −

5, 4, 232
)

for 0 6 k 6 24. For example, we set k = 7 and j = 6 and compute

p
(
283, 4, 232

)
= 161616.

Setting k = 20 and j = 6, one may further compute

p
(
751, 4, 232

)
= 41085.

Now, from Appendix A we examine (55) and compute the values of M ′(r, 3, 36k −
5, 4, 36j + 16

)
for 0 6 k 6 24.

M ′(r, 3, 36k − 5, 4, 36j + 16
)

=



107
(
k+2
3

)
+ 434

(
k+1
3

)
+ 107

(
k
3

)
− 49

(
k+2−j

3

)
for 36k − 5 6 72j + 32

−1220
(
k+1−j

3

)
− 1265

(
k−j
3

)
− 58

(
k−1−j

3

)
(the crank is the second part)

126
(
4j−k+4

3

)
+ 432

(
4j−k+3

3

)
+ 90

(
4j−k+2

3

)
for 36k − 5 > 72j + 32

−68
(
3j−k+4

3

)
− 1309

(
3j−k+3

3

)
− 1174

(
3j−k+2

3

)
(the crank is the third part)

−41
(
3j−k+1

3

)
(55)

Setting k = 7 and j = 6 in (55), we have

M ′(r, 3, 283, 4, 232
)

= 53872 =
161616

3
=
p
(
283, 4, 232

)
3

.

In this case, since n = 283 6 464 = 2N , the crank is the second part.
Setting k = 20 and j = 6, we compute

M ′(r, 3, 751, 4, 232
)

= 13695 =
41085

3
=
p
(
751, 4, 232

)
3

.

In this case, however, since n = 751 > 464 = 2N , the crank is the third part.
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4 Future Work

Numerical evidence suggests that the second part is a crank witnessing the congruences
of Theorem 4 and Corollary 5 for larger values of m and ` than what Theorem 7 implies.
For example, in Theorem 4 let ` = 7,m = 4, k = j = 5 with s = 1 and t = 6, or let
` = 5,m = 4, k = j = 7 with s = 1 and t = 6. In either case, we are considering partitions
of 414 into at most m = 4 parts, each part no bigger than 209. Hence, Theorem 4 is
doubly satisfied, both modulo 5 and modulo 7:

p
(
414, 4, 209

)
= 262,675 = 7× 37,525 = 5× 52,535 ≡ 0 (mod 35). (43)

Furthermore, we find that

M ′(r, 7, 414, 4, 209
)

= 37,525 =
p
(
414, 4, 209

)
7

(44)

M ′(r, 5, 414, 4, 209
)

= 52,535 =
p
(
414, 4, 209

)
5

(45)

for all r. Thus the second part witnesses congruences from Theorem 4 in some cases where
` > 3. This and other numerical evidence leads us to a conjecture.

Conjecture 18. Let ` be any odd prime. For m ∈ {2, 3}, the second part is a crank
witnessing the congruences of Theorem 4 and Corollary 5 for all n. For m > 3, the second
part is a crank witnessing the congruences of Theorem 4 and Corollary 5 for n 6 mN/2.
For n > mN/2, the (m − 1)st part is a crank witnessing the congruences of Theorem 4
and Corollary 5.

In contrast to Conjecture 18 about a single crank, in a forthcoming paper [6], it will
be shown that for all odd primes `, there are two fundamentally different cranks; the now
familiar second part, and also first part minus (` + 1)st part, both of which witness the
congruences for partitions into at most m parts of Theorem 2. The crank first part minus
(` + 1)st part does not witness the congruences of Theorem 4 and Corollary 5 presented
here.
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A Appendix: Constituents for M ′(r, 3, 36k − t, 4, 18j − s
)

There are 32 relevant constituents required to prove Theorem 7 for the case m = 4. For
n 6 2N , the crank is the second part, and for n > 2N , the crank is the third part.

A.1 s = 1, 1 6 t 6 3

M ′(r, 3, 36k − 3, 4, 36j − 1
)

=



126
(
k+2
3

)
+ 432

(
k+1
3

)
+ 90

(
k
3

)
for 36k − 3 6 72j − 2

−449
(
k+2−j

3

)
− 1730

(
k+1−j

3

)
− 413

(
k−j
3

)
147
(
4j−k+2

3

)
+ 426

(
4j−k+1

3

)
+ 75

(
4j−k
3

)
for 36k − 3 > 72j − 2

−527
(
3j−k+2

3

)
− 1718

(
3j−k+1

3

)
− 347

(
3j−k
3

)
(46)

M ′(r, 3, 36k − 3, 4, 36j + 17
)

=



126
(
k+2
3

)
+ 432

(
k+1
3

)
+ 90

(
k
3

)
− 58

(
k+2−j

3

)
for 36k − 3 6 72j + 34

−1265
(
k+1−j

3

)
− 1220

(
k−j
3

)
− 49

(
k−1−j

3

)
147
(
4j−k+4

3

)
+ 426

(
4j−k+3

3

)
+ 75

(
4j−k+2

3

)
for 36k − 3 > 72j + 34

−79
(
3j−k+4

3

)
− 1352

(
3j−k+3

3

)
− 1127

(
3j−k+2

3

)
−34

(
3j−k+1

3

)
(47)

M ′(r, 3, 36k−2, 4, 36j−1
)

=

{
137
(
k+2
3

)
+ 432

(
k+1
3

)
+ 83

(
k
3

)
for all k

−487
(
k+2−j

3

)
− 1726

(
k+1−j

3

)
− 379

(
k−j
3

) (48)

M ′(r, 3, 36k − 2, 4, 36j + 17
)

=

{
137
(
k+2
3

)
+ 432

(
k+1
3

)
+ 83

(
k
3

)
− 68

(
k+2−j

3

)
for all k

−1309
(
k+1−j

3

)
− 1174

(
k−j
3

)
− 41

(
k−1−j

3

) (49)

M ′(r, 3, 36k − 1, 4, 36j − 1
)

=



147
(
k+2
3

)
+ 426

(
k+1
3

)
+ 75

(
k
3

)
for 36k − 1 6 72j − 2

−527
(
k+2−j

3

)
− 1718

(
k+1−j

3

)
− 347

(
k−j
3

)
126
(
4j−k+2

3

)
+ 432

(
4j−k+1

3

)
+ 90

(
4j−k
3

)
for 36k − 1 > 72j − 2

−449
(
3j−k+2

3

)
− 1730

(
3j−k+1

3

)
− 413

(
3j−k
3

)
(50)
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M ′(r, 3, 36k − 1, 4, 36j + 17
)

=



147
(
k+2
3

)
+ 426

(
k+1
3

)
+ 75

(
k
3

)
− 79

(
k+2−j

3

)
for 36k − 1 6 72j + 34

−1352
(
k+1−j

3

)
− 1127

(
k−j
3

)
− 34

(
k−1−j

3

)
126
(
4j−k+4

3

)
+ 432

(
4j−k+3

3

)
+ 90

(
4j−k+2

3

)
for 36k − 1 > 72j + 34

−58
(
3j−k+4

3

)
− 1265

(
3j−k+3

3

)
− 1220

(
3j−k+2

3

)
−49

(
3j−k+1

3

)
(51)

A.2 s = 2, 2 6 t 6 6

M ′(r, 3, 36k − 6, 4, 36j − 2
)

=



99
(
k+2
3

)
+ 432

(
k+1
3

)
+ 117

(
k
3

)
for 36k − 6 6 72j − 4

−379
(
k+2−j

3

)
− 1726

(
k+1−j

3

)
− 487

(
k−j
3

)
137
(
4j−k+2

3

)
+ 428

(
4j−k+1

3

)
+ 83

(
4j−k
3

)
for 36k − 6 > 72j − 4

−527
(
3j−k+2

3

)
− 1718

(
3j−k+1

3

)
− 347

(
3j−k
3

)
(52)

M ′(r, 3, 36k − 6, 4, 36j + 16
)

=



99
(
k+2
3

)
+ 432

(
k+1
3

)
+ 117

(
k
3

)
− 41

(
k+2−j

3

)
for 36k − 6 6 72j + 32

−1174
(
k+1−j

3

)
− 1309

(
k−j
3

)
− 68

(
k−1−j

3

)
137
(
4j−k+4

3

)
+ 428

(
4j−k+3

3

)
+ 83

(
4j−k+2

3

)
for 36k − 6 > 72j + 32

−79
(
3j−k+4

3

)
− 1352

(
3j−k+3

3

)
− 1127

(
3j−k+2

3

)
−34

(
3j−k+1

3

)
(53)

M ′(r, 3, 36k − 5, 4, 36j − 2
)

=



107
(
k+2
3

)
+ 434

(
k+1
3

)
+ 107

(
k
3

)
for 36k − 5 6 72j − 4

−413
(
k+2−j

3

)
− 1730

(
k+1−j

3

)
− 449

(
k−j
3

)
126
(
4j−k+2

3

)
+ 432

(
4j−k+1

3

)
+ 90

(
4j−k
3

)
for 36k − 5 > 72j − 4

−487
(
3j−k+2

3

)
− 1726

(
3j−k+1

3

)
− 379

(
3j−k
3

)
(54)
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M ′(r, 3, 36k − 5, 4, 36j + 16
)

=



107
(
k+2
3

)
+ 434

(
k+1
3

)
+ 107

(
k
3

)
− 49

(
k+2−j

3

)
for 36k − 5 6 72j + 32

−1220
(
k+1−j

3

)
− 1265

(
k−j
3

)
− 58

(
k−1−j

3

)
126
(
4j−k+4

3

)
+ 432

(
4j−k+3

3

)
+ 90

(
4j−k+2

3

)
for 36k − 5 > 72j + 32

−68
(
3j−k+4

3

)
− 1309

(
3j−k+3

3

)
− 1174

(
3j−k+2

3

)
−41

(
3j−k+1

3

)
(55)

M ′(r, 3, 36k−4, 4, 36j−2
)

=

{
117
(
k+2
3

)
+ 432

(
k+1
3

)
+ 99

(
k
3

)
for all k

−449
(
k+2−j

3

)
− 1730

(
k+1−j

3

)
− 413

(
k−j
3

) (56)

M ′(r, 3, 36k − 4, 4, 36j + 16
)

=

{
117
(
k+2
3

)
+ 432

(
k+1
3

)
+ 99

(
k
3

)
− 58

(
k+2−j

3

)
for all k

−1256
(
k+1−j

3

)
− 1220

(
k−j
3

)
− 49

(
k−1−j

3

) (57)

M ′(r, 3, 36k − 3, 4, 36j − 2
)

=



126
(
k+2
3

)
+ 432

(
k+1
3

)
+ 90

(
k
3

)
for 36k − 3 6 72j − 4

−487
(
k+2−j

3

)
− 1726

(
k+1−j

3

)
− 379

(
k−j
3

)
107
(
4j−k+2

3

)
+ 434

(
4j−k+1

3

)
+ 107

(
4j−k
3

)
for 36k − 3 > 72j − 4

−413
(
3j−k+2

3

)
− 1730

(
3j−k+1

3

)
− 449

(
3j−k
3

)
(58)

M ′(r, 3, 36k − 3, 4, 36j + 16
)

=



126
(
k+2
3

)
+ 432

(
k+1
3

)
+ 90

(
k
3

)
− 68

(
k+2−j

3

)
for 36k − 3 6 72j + 32

−1309
(
k+1−j

3

)
− 1174

(
k−j
3

)
− 41

(
k−1−j

3

)
107
(
4j−k+4

3

)
+ 434

(
4j−k+3

3

)
+ 107

(
4j−k+2

3

)
for 36k − 3 > 72j + 32

−49
(
3j−k+4

3

)
− 1220

(
3j−k+3

3

)
− 1265

(
3j−k+2

3

)
−58

(
3j−k+1

3

)
(59)
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M ′(r, 3, 36k − 2, 4, 36j − 2
)

=



137
(
k+2
3

)
+ 428

(
k+1
3

)
+ 83

(
k
3

)
for 36k − 2 6 72j − 4

−527
(
k+2−j

3

)
− 1718

(
k+1−j

3

)
− 347

(
k−j
3

)
99
(
4j−k+2

3

)
+ 432

(
4j−k+1

3

)
+ 117

(
4j−k
3

)
for 36k − 2 > 72j − 4

−379
(
3j−k+2

3

)
− 1726

(
3j−k+1

3

)
− 487

(
3j−k
3

)
(60)

M ′(r, 3, 36k − 2, 4, 36j + 16
)

=



137
(
k+2
3

)
+ 428

(
k+1
3

)
+ 83

(
k
3

)
− 79

(
k+2−j

3

)
for 36k − 2 6 72j + 32

−1352
(
k+1−j

3

)
− 1127

(
k−j
3

)
− 34

(
k−1−j

3

)
99
(
4j−k+4

3

)
+ 432

(
4j−k+3

3

)
+ 117

(
4j−k+2

3

)
for 36k − 2 > 72j + 32

−41
(
3j−k+4

3

)
− 1174

(
3j−k+3

3

)
− 1309

(
3j−k+2

3

)
−68

(
3j−k+1

3

)
(61)

A.3 s = 3, 4 6 t 6 8

M ′(r, 3, 36k − 8, 4, 36j − 3
)

=



83
(
k+2
3

)
+ 428

(
k+1
3

)
+ 137

(
k
3

)
for 36k − 8 6 72j − 6

−347
(
k+2−j

3

)
− 1718

(
k+1−j

3

)
− 527

(
k−j
3

)
117
(
4j−k+2

3

)
+ 432

(
4j−k+1

3

)
+ 99

(
4j−k
3

)
for 36k − 8 > 72j − 6

−487
(
3j−k+2

3

)
− 1726

(
3j−k+1

3

)
− 379

(
3j−k
3

)
(62)

M ′(r, 3, 36k − 8, 4, 36j + 15
)

=



83
(
k+2
3

)
+ 428

(
k+1
3

)
+ 137

(
k
3

)
− 34

(
k+2−j

3

)
for 36k − 8 6 72j + 30

−1127
(
k+1−j

3

)
− 1352

(
k−j
3

)
− 79

(
k−1−j

3

)
117
(
4j−k+4

3

)
+ 432

(
4j−k+3

3

)
+ 99

(
4j−k+2

3

)
for 36k − 8 > 72j + 30

−68
(
3j−k+4

3

)
− 1309

(
3j−k+3

3

)
− 1174

(
3j−k+2

3

)
−41

(
3j−k+1

3

)
(63)
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M ′(r, 3, 36k − 7, 4, 36j − 3
)

=



90
(
k+2
3

)
+ 432

(
k+1
3

)
+ 126

(
k
3

)
for 36k − 7 6 72j − 6

−379
(
k+2−j

3

)
− 1726

(
k+1−j

3

)
− 487

(
k−j
3

)
107
(
4j−k+2

3

)
+ 434

(
4j−k+1

3

)
+ 107

(
4j−k
3

)
for 36k − 7 > 72j − 6

−449
(
3j−k+2

3

)
− 1730

(
3j−k+1

3

)
− 413

(
3j−k
3

)
(64)

M ′(r, 3, 36k − 7, 4, 36j + 15
)

=



90
(
k+2
3

)
+ 432

(
k+1
3

)
+ 126

(
k
3

)
− 41

(
k+2−j

3

)
for 36k − 7 6 72j + 30

−1174
(
k+1−j

3

)
− 1309

(
k−j
3

)
− 68

(
k−1−j

3

)
107
(
4j−k+4

3

)
+ 434

(
4j−k+3

3

)
+ 107

(
4j−k+2

3

)
for 36k − 7 > 72j + 30

−58
(
3j−k+4

3

)
− 1265

(
3j−k+3

3

)
− 1220

(
3j−k+2

3

)
−49

(
3j−k+1

3

)
(65)

M ′(r, 3, 36k− 6, 4, 36j− 3
)

=

{
99
(
k+2
3

)
+ 432

(
k+1
3

)
+ 117

(
k
3

)
for all k

−413
(
k+2−j

3

)
− 1730

(
k+1−j

3

)
− 449

(
k−j
3

) (66)

M ′(r, 3, 36k − 6, 4, 36j + 15
)

=

{
99
(
k+2
3

)
+ 432

(
k+1
3

)
+ 117

(
k
3

)
− 49

(
k+2−j

3

)
for all k

−1220
(
k+1−j

3

)
− 1265

(
k−j
3

)
− 58

(
k−1−j

3

) (67)

M ′(r, 3, 36k − 5, 4, 36j − 3
)

=



107
(
k+2
3

)
+ 434

(
k+1
3

)
+ 107

(
k
3

)
for 36k − 5 6 72j − 6

−449
(
k+2−j

3

)
− 1730

(
k+1−j

3

)
− 413

(
k−j
3

)
90
(
4j−k+2

3

)
+ 432

(
4j−k+1

3

)
+ 126

(
4j−k
3

)
for 36k − 5 > 72j − 6

−379
(
3j−k+2

3

)
− 1726

(
3j−k+1

3

)
− 487

(
3j−k
3

)
(68)
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M ′(r, 3, 36k − 5, 4, 36j + 15
)

=



107
(
k+2
3

)
+ 434

(
k+1
3

)
+ 107

(
k
3

)
− 58

(
k+2−j

3

)
for 36k − 5 6 72j + 30

−1265
(
k+1−j

3

)
− 1220

(
k−j
3

)
− 49

(
k−1−j

3

)
90
(
4j−k+4

3

)
+ 432

(
4j−k+3

3

)
+ 126

(
4j−k+2

3

)
for 36k − 5 > 72j + 30

−41
(
3j−k+4

3

)
− 1174

(
3j−k+3

3

)
− 1309

(
3j−k+2

3

)
−68

(
3j−k+1

3

)
(69)

M ′(r, 3, 36k − 4, 4, 36j − 3
)

=



117
(
k+2
3

)
+ 432

(
k+1
3

)
+ 99

(
k
3

)
for 36k − 4 6 72j − 6

−487
(
k+2−j

3

)
− 1726

(
k+1−j

3

)
− 379

(
k−j
3

)
83
(
4j−k+2

3

)
+ 428

(
4j−k+1

3

)
+ 137

(
4j−k
3

)
for 36k − 4 > 72j − 6

−347
(
3j−k+2

3

)
− 1718

(
3j−k+1

3

)
− 527

(
3j−k
3

)
(70)

M ′(r, 3, 36k − 4, 4, 36j + 15
)

=



117
(
k+2
3

)
+ 432

(
k+1
3

)
+ 99

(
k
3

)
− 68

(
k+2−j

3

)
for 36k − 4 6 72j + 30

−1309
(
k+1−j

3

)
− 1174

(
k−j
3

)
− 41

(
k−1−j

3

)
83
(
4j−k+4

3

)
+ 428

(
4j−k+3

3

)
+ 137

(
4j−k+2

3

)
for 36k − 4 > 72j + 30

−34
(
3j−k+4

3

)
− 1127

(
3j−k+3

3

)
− 1352

(
3j−k+2

3

)
−79

(
3j−k+1

3

)
(71)

A.4 s = 4, 7 6 t 6 9

M ′(r, 3, 36k − 9, 4, 36j − 4
)

=



75
(
k+2
3

)
+ 426

(
k+1
3

)
+ 147

(
k
3

)
for 36k − 9 6 72j − 8

−347
(
k+2−j

3

)
− 1718

(
k+1−j

3

)
− 527

(
k−j
3

)
90
(
4j−k+2

3

)
+ 432

(
4j−k+1

3

)
+ 126

(
4j−k
3

)
for 36k − 9 > 72j − 8

−413
(
3j−k+2

3

)
− 1730

(
3j−k+1

3

)
− 449

(
3j−k
3

)
(72)
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M ′(r, 3, 36k − 9, 4, 36j + 14
)

=



75
(
k+2
3

)
+ 426

(
k+1
3

)
+ 147

(
k
3

)
− 34

(
k+2−j

3

)
for 36k − 9 6 72j + 28

−1127
(
k+1−j

3

)
− 1352

(
k−j
3

)
− 79

(
k−1−j

3

)
90
(
4j−k+4

3

)
+ 432

(
4j−k+3

3

)
+ 126

(
4j−k+2

3

)
for 36k − 9 > 72j + 28

−49
(
3j−k+4

3

)
− 1220

(
3j−k+3

3

)
− 1265

(
3j−k+2

3

)
−58

(
3j−k+1

3

)
(73)

M ′(r, 3, 36k−8, 4, 36j−4
)

=

{
83
(
k+2
3

)
+ 428

(
k+1
3

)
+ 137

(
k
3

)
for all k

−379
(
k+2−j

3

)
− 1726

(
k+1−j

3

)
− 487

(
k−j
3

) (74)

M ′(r, 3, 36k − 8, 4, 36j + 14
)

=

{
83
(
k+2
3

)
+ 428

(
k+1
3

)
+ 137

(
k
3

)
− 41

(
k+2−j

3

)
for all k

−1174
(
k+1−j

3

)
− 1309

(
k−j
3

)
− 68

(
k−1−j

3

) (75)

M ′(r, 3, 36k − 7, 4, 36j − 4
)

=



90
(
k+2
3

)
+ 432

(
k+1
3

)
+ 126

(
k
3

)
for 36k − 7 6 72j − 8

−413
(
k+2−j

3

)
− 1730

(
k+1−j

3

)
− 449

(
k−j
3

)
75
(
4j−k+2

3

)
+ 426

(
4j−k+1

3

)
+ 147

(
4j−k
3

)
for 36k − 7 > 72j − 8

−347
(
3j−k+2

3

)
− 1718

(
3j−k+1

3

)
− 527

(
3j−k
3

)
(76)

M ′(r, 3, 36k − 7, 4, 36j + 14
)

=



90
(
k+2
3

)
+ 432

(
k+1
3

)
+ 126

(
k
3

)
− 49

(
k+2−j

3

)
for 36k − 7 6 72j + 28

−1220
(
k+1−j

3

)
− 1265

(
k−j
3

)
− 58

(
k−1−j

3

)
75
(
4j−k+4

3

)
+ 426

(
4j−k+3

3

)
+ 147

(
4j−k+2

3

)
for 36k − 9 > 72j + 28

−34
(
3j−k+4

3

)
− 1127

(
3j−k+3

3

)
− 1352

(
3j−k+2

3

)
−79

(
3j−k+1

3

)
(77)
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