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Abstract

An r-uniform hypergraph is linear if every two edges intersect in at most one
vertex. Given a family of r-uniform hypergraphs F , the linear Turán number
exlinr (n,F) is the maximum number of edges of a linear r-uniform hypergraph on n
vertices that does not contain any member of F as a subgraph.

Let Kl be a complete graph with l vertices and r ! 2. The r-expansion of Kl is
the r-graph K+

l obtained from Kl by enlarging each edge of Kl with a vertex set of
size r−2 disjoint from V (Kl) such that distinct edges of Kl are enlarged by disjoint
sets. Let T2(n, l) be the Turán graph, i.e., almost balanced complete l-partite graph
with n vertices. When l ! r ! 3 and n is sufficiently large, we prove the following
extension of Turán’s Theorem

exlinr
!
n,K+

l+1

"
" |T2(n, l)|!

r
2

" ,

with equality holds if and only if there exist almost balanced l-partite r-graphs such
that each pair of vertices from distinct parts are contained in one hyperedge exactly.
Moreover, some results on linear Turán number of general configurations are also
presented.
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1 Introduction

The r-uniform hypergraph (or r-graph) H = (V (H), E(H)) consists of a set V (H) of
vertices and a set E(H) of edges, where each edge is an r-element subset of V (H). A
graph is a 2-uniform hypergraph, and the 3-uniform hypergraphs are called triple systems.
Given a hypergraph H and a family of hypergraphs F , we say H is F -free if H does not
contain any member of F as a subgraph. The Turán number, denoted by exr(n,F), is
the maximum number of edges of an F -free r-graph on n vertices. The F -free r-graphs
with n vertices and exr(n,F) edges is called extremal hypergraphs of F .

To obtain the r-graph Tr(n, l), l ! r, partition n vertices into l almost equal parts
(that is, of sizes

!
n
l

"
or

#
n
l

$
) and take all those edges which intersect every part in at

most one vertex. Let tr(n, l) be the number of edges of the Tr(n, l). Denote by Kl the
complete graph with l vertices. The classical Turán’s Theorem is

Theorem 1. ([25]) Fix l ! 2. Then

ex2 (n,Kl+1) = t2(n, l).

Moreover, equality is achieved only by the Turán graph T2(n, l).

A dozen years ago, Mubayi [19] and Pikhurko [21] gave a hypergraph extension of
Turán’s theorem. Given a graph F and positive integer r ! 3, the r-expansion of F is
the r-graph F+ obtained from F by enlarging each edge of F with a vertex set of size r−2
disjoint from V (F ) such that distinct edges of F are enlarged by disjoint sets. Mubayi
[19] proved that if l ! r is fixed, then exr

%
n,K+

l+1

&
= tr(n, l) + o (nr) and Pikhurko [21]

improved this to an exact result for n sufficiently large.

Theorem 2. ([19, 21]) Fix l ! r ! 2 and let n be sufficiently large. Then

exr
%
n,K+

l+1

&
= tr(n, l).

Moreover, equality is achieved only by the r-graph Tr(n, l).

There is a vast amount of literature on the Turán problem in graphs and hypergraphs.
We refer the reader to the surveys of recent results [10, 17, 20].

In this paper, we focus on the Turán problem in linear hypergraphs. An r-graph is
linear if every two edges have at most one common vertex. Similar to the Turán number,
given a family of r-graphs F , the linear Turán number is the maximum number of edges
of an F -free linear r-graph on n vertices. We denote it by exlinr (n,F) and simply write
exlinr (n, F ) instead of exlinr (n, {F}) when F = {F}.

Interestingly, the linear Turán problem is closely related to the function fr(n, v, e),
where fr(n, v, e) is the maximum number of edges in an n-vertex r-uniform hypergraph
not carrying e edges on v vertices, where r ! 3. The study of fr(n, v, e) was initiated
by Brown, Erdős, and Sós [1] in 1970’s. In one of the classical results in extremal com-
binatorics, Ruzsa and Szemerédi[22] showed that n2−o(1) " f3(n, 6, 3) = o(n2). This
result was extended by Erdős, Frankl and Rödl [5] to n2−o(1) " fr(n, 3r − 3, 3) = o(n2).
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Let Ck be a cycle of length k and C+
k be the r-expansion of Ck. It is easy to see that

fr(n, 3r−3, 3) = exlinr (n,C+
3 ) for sufficiently large n. Thus n2−o(1) " exlinr (n,C+

3 ) = o(n2).
Lazebnik and Verstraëte [18] prove that exlin3 (n, {C+

3 , C
+
4 }) = 1

6
n3/2 + o(n3/2) and it im-

plies that f3(n, 8, 4) =
1
6
n3/2 + o(n3/2). In recent decades, the linear Turán problem has

attracted considerable attention and there are many interesting new results: see, e.g.,
[9, 11, 12, 13, 14, 15, 18, 24].

Define TDr(n, l) be the linear r-graph with n vertices partitioning into l almost equal
parts, and edges intersecting every part in at most one vertex such that each pair of
vertices from distinct parts are contained in one edge exactly. One should note that the
linear r-graph TDr(n, l) is equivalent to the so-called group divisible design in the design
theory. Given a triple (r, n, l), determining the existence of TDr(n, l) is still a very open
problem in design theory. It can be found in [2] that the TDr(n, r) exists for sufficiently
large n and r divides n. For l|n, Hanani [16] proved that TD3(n, l) exists if and only if:

(1) l ! 3, (2) (l−1)n
l

≡ 0 (mod 2), (3) (l−1)n2

l
≡ 0 (mod 6). We refer the reader to [2, 26]

for more knowledge about the group divisible design.
Usually, the linear r-graph TDr(n, l) is not unique when it exists. In addition, it is

easy to see that |TDr(n, l)| = t2(n, l)/
%
r
2

&
. The following theorem is a linear hypergraph

extension of the Turán’s theorem.

Theorem 3. Fix l ! r ! 3 and let n be sufficiently large. Then

exlinr
%
n,K+

l+1

&
" t2(n, l)%

r
2

& .

Moreover, if TDr(n, l) exists, then equality holds and the extremal hypergraph is TDr(n, l).

Gao, Chang and Hou [13] gave a spectral version of Theorem 3 when l = r. They prove
that if an n-vertex linear r-graph H is K+

r+1-free, then the spectral radius of the adjacency
tensor of H is no more than n/r. Clearly, Theorem 3 implies that exlinr

%
n,K+

l+1

&
"

ex2(n,Kl+1)/
%
r
2

&
for l ! r ! 3 and sufficiently large n. However, given an arbitrary

graph F , the inequality exlinr (n, F+) " ex2(n, F )/
%
r
2

&
does not generally hold. We give an

example in the following theorem.
Let Kl (s1, . . . , sl) be the complete l-partite graph with class sizes s1, . . . , sl and write

Kl(1, 2) = Kl(1, 2, . . . , 2) for short. Simonovits [23] shows that for l ! 2 and sufficiently
large n,

ex2(n,Kl+1(1, 2)) = t2(n, l) +
n

2
−

'
1
2
(n− l · ⌊n

l
⌋) if ⌊n

l
⌋ is even,

1
2
(l · ⌊n

l
⌋+ l − n) if ⌊n

l
⌋ is odd.

The following result implies that exlin3 (n,K+
l+1(1, 2)) >

1
3
ex2(n,Kl+1(1, 2)) for sufficiently

large n.

Theorem 4. Fix l ! 3. Let n be sufficiently large and 6l|n. Then

exlin3 (n,K+
l+1(1, 2)) =

1

3
t2(n, l) +

n

3
.
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Given a graph F , let χ(F ) be the chromatic number of F . Although exlinr (n, F+) "
ex2(n, F )/

%
r
2

&
does not generally hold, we prove that it holds asymptotically when r = 3

and χ(F ) ! 4.

Theorem 5. Let F be a graph with χ(F ) ! 4. Then

exlin3 (n, F+) =
1

3
ex2(n, F ) + o(n2).

Note that Theorem 5 holds for graphs with chromatic number at least 4. However,
for graphs with small chromatic number, we have

Theorem 6. Let r ! 3 and F be a graph with χ(F ) " r. Then

exlinr (n, F+) = o(n2).

Note that exlinr (n,C+
3 ) = o(n2) can be deduced from Theorem 6. Since fr(n, 3r−3, 3) =

exlinr (n,C+
3 ) for sufficiently large n, Theorem 6 can be regarded as an extension of Ruzsa,

Szemerédi’s result [22] and Erdős, Frankl, Rödl’s result [5]. Let Wk be the wheel graph
obtained from the joint of a vertex and a cycle of length k. Mubayi and Verstraëte [20]
raise a problem that whether ex3(n,W

+
2k) = O(n2) or not? It is still an open problem

even for W4. Since χ(W2k) = 3, by Theorem 6, we can immediately obtain the following
corollary.

Corollary 7. For integers k ! 2 and r ! 3, we have

exlinr (n,W+
2k) = o(n2).

The rest of this paper is organized as follows. In next Section, we give some prelim-
inaries. We present the proof of Theorem 3 in the Section 3. Theorem 4 is proven in
Section 4. Finally, we prove Theorem 5 and Theorem 6 in the Section 5.

2 Preliminaries

Before presenting our main results, we need to introduce some basic notations and known
results.

For a set V , let
%
V
r

&
be the set of r-element subsets of V . Let H be an r-graph. For

any vertex set S ⊂ V (H), the subgraph of H induced by S is the r-graph with vertex
set S and edge set {e ∈ E(H) : e ⊂ S}, denoted by H[S]. The degree of S in H is
dH(S) = |{e ∈ E(H) : S ⊂ e}|, and we write dH(v) if S = {v}. We use ∆(H) and δ(H)
to denote the maximal degree and minimal degree of a vertex of H, respectively. The
shadow graph ofH is the graph with vertex set V (H) and edge set

(
S ∈

%
V
2

&
: dH(S) ! 1

)
,

denoted by ∂H.
Given an r-graph F and a positive integer t, the t-blow-up F (t) is an r-graph obtained

by replacing each vertex of F by t copies of itself and each edge by corresponding complete
r-partite r-graph of these copies.
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For convenience, the pair {a, b} and the triple {a, b, c} are sometimes referred to as ab
and abc, respectively.

Next we will introduce some known results which will be used to prove our results.
An r-graph H is l-partite if V (H) can be partitioned into l parts such that every edge

in H intersects each part in at most one vertex. An l-partite r-graph is complete if we
take all those edges which intersect every part in at most one vertex.

Lemma 8. ([4]) Let r ! 2 and H be an r-partite r-graph. Then

exr(n,H) = o(nr).

Lemma 9. ([6, 8]) Let F be a graph with χ(F ) ! 2. Then

ex2(n, F ) = (1− 1

χ(F )− 1
+ o(1))

*
n

2

+
.

Let Kl+1(1, t1, t2, . . . , tl) be the complete (l+1)-partite graph with class sizes 1 " t1 "
t2 " . . . " tl. Fix l and t, let

g(n) =

,
-

.

0 if t is odd,
1
2
(l · ⌊n

l
⌋ − n) if t is even and ⌊n

l
⌋ is even,

1
2
(n− l · ⌊n

l
⌋ − l) if t is even and ⌊n

l
⌋ is odd.

Lemma 10. ([23, 7]) Fix positive integers l ! 2 and 1 " t1 " t2 " . . . " tl. For
sufficiently large n,

ex2(n,Kl+1(1, t1, . . . , tl)) = t2(n, l) +
(t1 − 1)n

2
+ g(n).

Moreover, if G is a Kl+1(1, t1, . . . , tl)-free graph with n vertices and t2(n, l)+
(t1−1)n

2
+g(n)

edges, then V (G) can partition into V1 ∪ V2 . . . ∪ Vl such that ∆(G[Vi]) " t1 − 1.

Lemma 11. ([5]) Let F be a graph with f vertices. For every ε > 0, there exists δ =
δ(f, ε) > 0 such that if one has to delete at least εn2 edges from a graph G to make it
F -free, then G has at least δnf copies of F .

3 Proof of Theorem 3

Let H be a linear r-graph. If the vertex pair ab ⊂ V (H) is contained in some edges of
H, then ab is exactly contained in one edge of H. We use hab to denote the edge of H
containing ab.

Lemma 12. Fix integers r ! 3, s ! 2 and t ! r2s3. Let H be a linear r-graph and F
be a graph with s vertices. If the shadow graph ∂(H) contains a copy of F (t), then H
contains a copy of F+.
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Proof. Let H be a linear r-graph and F (t) ⊂ ∂(H). Our goal is to find a copy of F+

in H. Let X be the set of vertices in F+ which correspond to the vertices in F and
Y = V (F+)\X. We will use the following steps to find the vertex sets X and Y in H.

We take a copy of F (t) in ∂(H). Let V (F ) = {v1, v2, . . . , vs} and V (F (t)) =
/

1!i!s

Vi,

where Vi is the t copies of the vertex vi, 1 " i " s. Let X1 = ∅ and Y1 = ∅. At the first
step, choose x1 ∈ V1 and x2 ∈ V2 and let X2 = X1∪{x1, x2}. If x1x2 is not an edge of F (t),
then we let Y2 = Y1. If x1x2 is an edge of F (t), then we let Y2 = Y1 ∪ (hx1x2\{x1, x2}).

At the second step, let V ′
3 = V3\(X2 ∪ Y2). Then |V ′

3 | ! t− r. Let

B
(1)
3 = {v ∈ V ′

3 : ∃y ∈ X2 ∪ Y2 and y ∕= x1 such that x1yv is contained in an edge of H},

B
(2)
3 = {v ∈ V ′

3 : ∃y ∈ X2 ∪ Y2 and y ∕= x2 such that x2yv is contained in an edge of H}.

Since H is a linear r-graph, we have |B(1)
3 | " (r−2)|X2∪Y2| and |B(2)

3 | " (r−2)|X2∪Y2|.
Let V ′′

3 = V ′
3\(B

(1)
3 ∪B

(2)
3 ). Then

|V ′′
3 | ! t− r − 2(r − 2)|X2 ∪ Y2|

! r2s3 − r − 2r(r − 2)

> 0.

Choose an x3 ∈ V ′′
3 and let X3 = X2 ∪ {x3}. If both x1x3 and x2x3 are not an edge of

F (t), then we let Y3 = Y2. If x1x3 is an edge and x2x3 is not an edge of F (t), then we let

Y3 = Y2∪(hx1x3\{x1, x3}). Since x3 ∕∈ B
(1)
3 , it is easy to see (hx1x3\{x1, x3})∩(X2∪Y2) = ∅.

If x2x3 is an edge and x1x3 is not an edge of F (t), then we let Y3 = Y2 ∪ (hx2x3\{x2, x3}).
Since x3 ∕∈ B

(2)
3 , it is easy to see (hx2x3\{x2, x3}) ∩ (X2 ∪ Y2) = ∅. If x1x3 and x2x3 are

two edges of F (t), then we let Y3 = Y2 ∪ (hx1x3\{x1, x3}) ∪ (hx2x3\{x2, x3}). Since H is
linear, we have (hx1x3\{x1, x3})∩ (hx2x3\{x2, x3}) = ∅. It is easy to see that |X3| = 3 and
|Y3| " 3(r − 2).

At the k-th step, where 3 " k " s − 1, we will use the following method to add
one vertex of Vk+1 into Xk to obtain Xk+1 and add at most (r − 2)k vertices into Yk to
obtain Yk+1. Hence, |Xk| = k and |Yk| " (r − 2)

%
k
2

&
. Let V ′

k+1 = Vk+1\(Xk ∪ Yk). Then
|V ′

k+1| ! t− |Xk ∪ Yk|. For x ∈ Xk, let

B
(x)
k+1 = {v ∈ V ′

k+1 : ∃y ∈ Xk ∪Yk and y ∕= x such that xyv is contained in an edge of H}.

Since H is a linear r-graph, we have |B(x)
k+1| " (r− 2)|Xk ∪Yk|. Let Bk+1 =

/
x∈Xk

B
(x)
k+1 and

V ′′
k+1 = V ′

k+1\Bk+1. Then

|V ′′
k+1| ! t− |Xk ∪ Yk|− k(r − 2)|Xk ∪ Yk|

! r2s3 − k − (r − 2)

*
k

2

+
− k(r − 2)k − k(r − 2)2

*
k

2

+

> 0.
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The last inequality holds since r ! 3 and s ! k ! 3. Choose an xk+1 ∈ V ′′
k+1 and let

Xk+1 = Xk ∪ {xk+1}. For each x ∈ Xk, if xxk+1 is an edge of F (t), then we add those
vertices of hxxk+1

\{x, xk+1} into Yk. We denote the obtained vertex set by Yk+1.
Finally, at the (s− 1)-th step, we obtain vertex sets Xs and Ys. One can easily check

that F+ ⊆ H[Xs ∪ Ys], as desired.

We write Kl (s1, . . . , sr) for the complete l-partite graph with class sizes s1, . . . , sr and
set for short Kl(1, 1, t) = Kl(1, 1, t, . . . , t). Note that we only need |V1| = |V2| = 1 in the
proof of Lemma 12. Thus we have the following corollary.

Corollary 13. Given positive integers l ! r ! 3 and t ! r2(l + 1)3. Let H be a linear
r-graph. If ∂(H) contains a copy of Kl+1(1, 1, t), then H contains a copy of K+

l+1.

Combining Corollary 13 and Lemma 10, we can easily prove Theorem 3.

Proof of Theorem 3. Let us choose a constant integer t ! r2(l + 1)3. Let n be suffi-
ciently large and H be a K+

l+1-free linear r-graph with n vertices. Suppose that |E(H)| >
t2(n, l)/

%
r
2

&
. Then |E(∂(H))| > t2(n, l). By Lemma 10, we have Kl+1(1, 1, t) ⊂ ∂(H).

Then by Corollary 13, we have that H contains a copy of K+
l+1, which is a contradiction.

Thus we have |E(H)| " t2(n, l)/
%
r
2

&
.

Now suppose that |E(H)| = t2(n, l)/
%
r
2

&
and H is not a TDr(n, l). It implies that

∂(H) ≇ T2(n, l). By Lemma 10, we can deduce that T2(n, l) is the unique extremal graph
for Kl+1(1, 1, t). Since |E(∂(H))| = |E(H)|×

%
r
2

&
= t2(n, l) and ∂(H) ≇ T2(n, l), we have

that Kl+1(1, 1, t) ⊂ ∂(H). Again by Corollary 13, we can deduce that H contains a copy
of K+

l+1, which is a contradiction. Thus, the equality holds if and only if H is a TDr(n, l).
The proof is completed.

4 Proof of Theorem 4

Let Kl+1(1, 3, t) be the complete (l+1)-partite graph with first part one vertex, the second
part three vertices and the other parts t vertices. Let H be a linear 3-graph. For the
vertex pair ab ⊂ V (H), we still use hab to denote the edge of H containing ab.

Lemma 14. Fix integers l ! 3 and t ! 4(l + 1)3. Let H be a linear 3-graph. If the
shadow graph ∂(H) contains a copy of Kl+1(1, 3, t), then H contains a copy of K+

l+1(1, 2).

Proof. Let H be a linear 3-graph and Kl+1(1, 3, t) ⊂ ∂(H). Our goal is to find a copy
of K+

l+1(1, 2) in H. Let X be the set of vertices in K+
l+1(1, 2) which correspond to the

vertices in Kl+1(1, 2), and Y = V (K+
l+1(1, 2))\X. We will use the following steps to find

the vertex sets X and Y in H.
We take a copy of Kl+1(1, 3, t) in ∂(H). For 3 " i " l + 1, let V1, V2 and Vi’s be the

(l + 1) parts of Kl+1(1, 3, t), where V1 = {v11}, V2 = {v21, v22, v23} and |Vi| = t.
At the first step, let x11 = v11, x21 = v21. And then we let X1 = {x11, x21} and

Y1 = hx11x21\{x11, x21}. It is easy to see that |Y1| = 1.
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At the second step, let V ′
2 = V2\({v21} ∪ Y1). Since |V2| = 3, we have that V ′

2 is not
empty. Choose an x22 ∈ V ′

2 and let X2 = X1 ∪ {x22}, Y2 = Y1 ∪ hx11x22\{x11, x22}. Then
|X2| = 3 and |Y2| = 2.

At the k-th step, where 3 " k " l + 1, we will use the following method to add two
vertices of Vk into Xk−1 to obtain Xk and add 4k − 6 vertices into Yk−1 to obtain Yk.
Hence, we have |Xk−1| = 2k− 3 and |Yk−1| = 2(k− 2)2. For 1 " i " k− 1 and 1 " j " 2,
{i, j} ∕= {1, 2}, let xij ∈ Xk−1 ∩ Vi. That is, Xk−1 = {x11, x21, x22, . . . , x(k−1)1, x(k−1)2}.
For x ∈ Xk−1, let

B
(x)
k1 = {v ∈ Vk : ∃y ∈ Xk−1 ∪ Yk−1 and y ∕= x such that xyv is an edge of H}.

Since H is a linear 3-graph, we have |B(x)
k1 | " |Xk−1 ∪ Yk−1|. Let

Bk1 =
0

x∈Xk−1

B
(x)
k1 and V ′

k = Vk\Bk1.

Since t ! 4(l + 1)3 and k " l + 1, we have

|V ′
k| ! |Vk|− |Bk1|

! t− (2k − 3) · (2k − 3 + 2(k − 2)2)

> 4(l + 1)3 − 4l3

> 0.

Hence, V ′
k is not empty. Choose an xk1 ∈ V ′

k and let X ′
k−1 = Xk−1 ∪ {xk1} and

Y ′
k−1 =

1

2
0

x∈Xk−1

hxxk1
\{x, xk1}

3

4 ∪ Yk−1.

Then |X ′
k−1| = 2k − 2 and |Y ′

k−1| = 2(k − 2)2 + 2k − 3. And then for x ∈ Xk−1, we let

B
(x)
k2 = {v ∈ Vk : ∃y ∈ X ′

k−1 ∪ Y ′
k−1 and y ∕= x such that xyv is an edge of H}.

Since H is a linear 3-graph, we have |B(x)
k2 | " |X ′

k−1 ∪ Y ′
k−1|. Let

Bk2 =
0

x∈Xk−1

B
(x)
k2 and V ′′

k = Vk\Bk2.

Since t ! 4(l + 1)3 and k " l + 1, we have

|V ′′
k | ! |Vk|− |Bk2|

! t− (2k − 3) · (2k − 2 + 2(k − 2)2 + 2k − 3)

> 4(l + 1)3 − 4(l + 1)3

= 0.
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Thus we have that V ′′
k is not empty. Choose an xk2 ∈ V ′′

k and let Xk = X ′
k−1 ∪ {xk2} and

Yk =

1

2
0

x∈Xk−1

hxxk2
\{x, xk2}

3

4 ∪ Y ′
k−1.

Finally, at the (l + 1)-th step, we obtain vertex sets Xl+1 and Yl+1. One can easily
check that K+

l+1(1, 2) is a subhypergraph of H[Xl+1 ∪ Yl+1], as desired.

Combining Lemma 10 and Lemma 14, we can easily prove Theorem 4.

Proof of Theorem 4. Let us choose a constant integer t ! 4(l + 1)3. Let n be suffi-
ciently large and H be a K+

l+1(1, 2)-free linear 3-graph with n vertices. Suppose |E(H)| >
1
3
t2(n, l) +

n
3
. Then |E(∂(H))| > t2(n, l) + n. By Lemma 10, we have that Kl+1(1, 3, t) ⊂

∂(H). Hence, by Lemma 14, we deduce that H contains a copy of K+
l+1(1, 2), which is

a contradiction. Thus we have |E(H)| " 1
3
t2(n, l) +

n
3
. That is, exlin3 (n,K+

l+1(1, 2)) "
1
3
t2(n, l) +

n
3
.

For 6l|n, we know from [2] that there exists a TD3(n, l). Clearly, TD3(n, l) is an
l-partite 3-graph. For 1 " i " l, let the vertex set Vi be the i-th part of TD3(n, l). It
is easy to see |Vi| = n

l
. Since 6l|n, we can add n

3l
vertex-disjoint hyperedges to each Vi.

We denote the obtained 3-graph by HE. Then HE has n vertices and 1
3
t2(n, l) +

n
3
edges.

Next we will prove that HE is K+
l+1(1, 2)-free.

Suppose thatHE contains a copy ofK+
l+1(1, 2). LetX be the set of vertices inK+

l+1(1, 2)
which correspond to the vertices in Kl+1(1, 2). Then |X| = 2l + 1. Thus there are three
vertices v1, v2, v3 ∈ X such that these vertices are contained in a Vi. Since v1, v2, v3 ∈ X,
at least two of v1v2, v1v3, v2v3 are edges of the Kl+1(1, 2). Moreover, by the construction
of K+

l+1(1, 2), these two edges of the Kl+1(1, 2) are contained in two different edges of the
K+

l+1(1, 2). But this contradicts to the construction of HE. Hence, HE is K+
l+1(1, 2)-free.

Hence, for 6l|n, we have exlin3 (n,K+
l+1(1, 2)) =

1
3
t2(n, l) +

n
3
. The proof is completed.

5 Proof of Theorem 5 and Theorem 6

Proof of Theorem 5. Let F be a graph with χ(F ) = l + 1 ! 4. For 6l|n, we know
from [16] that there exists a TD3(n, l). Since ∂(TD3(n, l)) is an l-partite graph and
χ(F ) = l + 1, we have that ∂(TD3(n, l)) is F -free. Hence, TD3(n, l) is F+-free. Since
|TD3(n, l)| = 1

3
t2(n, l), we have that

exlin3 (n, F+) ! 1

3
t2(n, l) + o(n2).

By Lemma 9, we deduce that

exlin3 (n, F+) ! 1

3
ex2(n, F ) + o(n2).
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Let H be an F+-free linear 3-graph with n vertices. By Lemma 12, we have that ∂(H)
is F (t)-free, where t ! 9(|V (F )|)3. Then by Lemma 9, we deduce that

|E(H)| = 1

3
|E(∂(H))| " 1

3
ex2(n, F (t)) =

1

3
ex2(n, F ) + o(n2).

That is,

exlin3 (n, F+) " 1

3
ex2(n, F ) + o(n2).

Hence,

exlin3 (n, F+) =
1

3
ex2(n, F ) + o(n2).

The proof is completed.

Proof of Theorem 6. Let F be a graph with χ(F ) " r and H be an F+-free linear r-graph
with n vertices.

Suppose that H has cn2 edges, where c is a positive constant number. Since H is
linear, we have that ∂(H) contains at least cn2 copies of edge-disjoint Kr’s. Hence, ∂(H)
has to delete at least cn2 edges to make it Kr-free. By Lemma 11, there is a constant
δ > 0 such that ∂(H) has at least δnr copies of Kr’s.

Now we construct an auxiliary r-graph H ′ as follows: The vertex set of H ′ is V (H).
If there is a Kr ⊆ ∂(H), we let these r vertices of Kr be an edge of H ′. Thus the number
of edges of H ′ is at least δnr. By Lemma 8, we deduce that H ′ contains a complete
r-partite r-graph with each class of size r2(|V (F )|)4. It implies ∂(H) contains a complete
r-partite subgraph with each class of size r2(|V (F )|)4. Since χ(F ) " r, we have that ∂(H)
contains a copy of F (t), where t = r2(|V (F )|)3. By Lemma 12, H contains a copy of F+,
a contradiction. Hence, we have |E(H)| = o(n2). This completes the proof.
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