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Abstract

Let Ck be a cycle of order k, where k ! 3. Let ex(n, n, n, {C3, C4}) be the
maximum number of edges in a balanced 3-partite graph whose vertex set consists
of three parts, each has n vertices that has no subgraph isomorphic to C3 or C4.
We construct dense balanced 3-partite graphs without 3-cycles or 4-cycles and show

that ex(n, n, n, {C3, C4}) ! ( 6
√
2−8

(
√
2−1)3/2

+ o(1))n3/2.

Mathematics Subject Classifications: 05C15, 05C35, 05C38

1 Introduction

Let F be a family of graphs, we say that a graph G is F -free if it contains no member
of F as a subgraph. The Turán number of F , denoted ex(n,F), is the maximum number
of edges in an F -free graph on n vertices. If F = {F}, we denote the Turán number by
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ex(n, F ). A long standing problem of Erdős [4, 5] is to determine the asymptotics for the
corresponding extremal function ex(n, {C3, C4}). Erdős [5] conjectured that

ex(n, {C3, C4}) =
!

1

2
√
2
+ o(1)

"
n3/2.

The lower bound followed from the bipartite incidence graph of a projective plane with n
2

points. However, Allen, Keevash, Sudakov and Verstraëte [1] made the opposite conjecture
to Erdős’:

lim inf
n→∞

ex(n, {C3, C4})
exχ!2(n,C4)

> 1,

where exχ!2(n,C4) is the maximum number of edges in a bipartite n-vertex C4-free graph
and exχ!2(n,C4) =

#
1

2
√
2
+ o(1)

$
n3/2 (See, e.g. [8]). Garnick, Kwong and Lazebnik [6]

determined the exact values of ex(n, {C3, C4}) for all n ! 24. More exact values of
ex(n, {C3, C4}) for 25 ! n ! 30 were determined by Garnick and Njeuwejaar [7]. The

best upper bound for this problem is the following: ex(n, {C3, C4}) ! n
√
n−1
2

(See, e.g.
[3, 6]).

For a family F of graphs, we use ex(n, n, n,F) to denote the maximum number of
edges in balanced 3-partite graphs on partition classes of size n, which are F -free. If F
consists of just one graph F , we denote ex(n, n, n, {F}) by ex(n, n, n, F ). Recently, the
authors [10] constructed a balanced 3-partite graph on partition classes of size n, which
is C4-free and has

#
3√
2
+ o(1)

$
n3/2 edges. Combining the upper bound from [12], they

proved that

ex(n, n, n, C4) =

!
3√
2
+ o(1)

"
n3/2.

In this paper, based on the construction in [10], we will construct a balanced 3-partite

graph on partition classes of size n with
#

6
√
2−8

(
√
2−1)3/2

+o(1)
$
n3/2 edges, which is {C3, C4}-free.

Thus, for all sufficiently large n,

1.82 <
6
√
2− 8

(
√
2− 1)3/2

+ o(1) ! ex(n, n, n, {C3, C4})
n3/2

! 3√
2
+ o(1) < 2.122.

The upper bound follows from ex(n, n, n, {C3, C4}) ! ex(n, n, n, C4). It would be an
interesting problem to determine the asymptotic behavior of ex(n, n, n, {C3, C4}).

2 Results

We first give the following lemma. We use it to count the number of triangles in the graph
we constructed.

Lemma 1. Let p " 5 be a prime number and m be an integer such that p
3
! m ! p−1

2
.

Let Am = {1, 2, . . . ,m}. Then the number of solutions of the equation x+ y + z = p with

(x, y, z) ∈ A3
m is (3m−p+2)(3m−p+1)

2
.
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Proof. We can enumerate all the solutions as follows. Suppose that (x, y, z) is such a
solution. It must be that p− 2m ! x, y, z ! m. For a fixed x such that p− 2m ! x ! m,
all the solutions (x, y, z) are

(x,m, p−m− x), (x,m− 1, p−m− x+ 1), . . . , (x, p−m− x,m).

That is, there are exactly 2m− p+ x+1 solutions (x, y, z) for a fixed x. Hence, the total
number of solutions is

m%

x=p−2m

(2m− p+ x+ 1) =
(3m− p+ 2)(3m− p+ 1)

2
.

Now we have our main result.

Theorem 2. Let p " 5 be a prime number. Then we have

ex(n, n, n, {C3, C4}) "
&

6
√
2− 8

(
√
2− 1)3/2

+ o(1)

'
n3/2,

where n =
(
(
√
2− 1)p

)
p.

Proof. Let α be a real number with 1
3
! α ! 1

2
. Let Rα,p ⊂ Fp be the set of multiplicative

inverses of the elements of {1, 2, . . . , ⌊αp⌋} ⊂ Fp. We construct a balanced 3-partite graph
Gα,p as follows. Let V1, V2 and V3 be disjoint copies of Rα,p × Fp. Let Gα,p be the graph
whose vertex set is V1 ∪ V2 ∪ V3, where for all (a, x) ∈ V1, (b, y) ∈ V2 and (c, z) ∈ V3,

• (a, x) is adjacent to (b, y) iff ab = x− y,

• (b, y) is adjacent to (c, z) iff bc = y − z,

• (c, z) is adjacent to (a, x) iff ca = z − x.

One may check that Gα,p is 2|Rα,p|-regular. Let n = |V1| = |V2| = |V3| = ⌊αp⌋p. Then
we have |E(G)| = 3n|Rα,p| = (3α1/2 + o(1))n3/2. Notice that for any a, b ∈ Rα,p, we have
a−1 + b−1 ∕= 0 and then a + b = (a−1 + b−1)ab ∕= 0. The similar argument in [10] shows
that Gα,p is C4-free. For completeness we include the argument here.

Claim 1 Gα,p is C4-free.
Proof of Claim 1 We just need to show that for any two vertices in Vi, say i = 1,

they have at most one common neighbor. Let (a1, x1), (a2, x2) ∈ V1 and N((a1, x1)) ∩
N((a2, x2)) = U . We will show that |U | ! 1.

Suppose |U | " 2. We first consider the case |U ∩ V2| " 2 or |U ∩ V3| " 2, say
|U ∩ V2| " 2. Let (b1, y1), (b2, y2) ∈ U ∩ V2. Then aibj = xi − yj for i = 1, 2 and j = 1, 2.
Then we have (a1 − a2)bj = x1 − x2 and (b1 − b2)aj = y2 − y1 for j = 1, 2. If a1 = a2, then
x1 = x2, a contradiction. If a1 ∕= a2, then b1 = b2. Since (b1 − b2)aj = y2 − y1 for j = 1, 2,
we have y1 = y2, a contradiction.
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Now we consider that case |U ∩ V2| = 1 and |U ∩ V3| = 1. Assume (b, y) ∈ U ∩ V2

and (c, z) ∈ U ∩ V3. Then we have aib = xi − y and aic = z − xi for i = 1, 2. Thus
a1(b+ c) = z− y and a2(b+ c) = z− y. By the definition of Rα,p, we have b+ c ∕= 0, thus
a1 = a2 and then x1 = x2, a contradiction.

Recall that our goal is to construct a {C3, C4}-free balanced 3-partite graph. We will
delete some edges fromGα,p to make it C3-free. Now we compute the number of triangles of
Gα,p. Suppose that u1u2u3u1 is a triangle of Gα,p, where u1 = (a, x) ∈ V1, u2 = (b, y) ∈ V2

and u3 = (c, z) ∈ V3. By the construction of G, we have ab = x − y, bc = y − z and
ca = z−x. Thus, we have ab+ bc+ ca = 0. Hence, abc(a−1+ b−1+ c−1) = 0, and we have
a−1 + b−1 + c−1 = 0. This means that given a triple (a, b, c) with a−1 + b−1 + c−1 = 0 and
a, b, c ∈ Rα,p, there exist exactly p triangles u1u2u3u1 with u1 = (a, x) ∈ V1, u2 = (b, y) ∈
V2 and u3 = (c, z) ∈ V3 for some x, y, z ∈ Fp. By Lemma 1, the number of solutions of

the equation a−1 + b−1 + c−1 = 0 with (a, b, c) ∈ R3
α,p is (3⌊αp⌋−p+2)(3⌊αp⌋−p+1)

2
. Thus the

number of triangles in Gα,p is

(3⌊αp⌋ − p+ 2)(3⌊αp⌋ − p+ 1)

2
× p =

!
(3α− 1)2

2α3/2
+ o(1)

"
n3/2.

Now we obtain a {C3, C4}-free subgraph G′
α,p of Gα,p by deleting one edge from each

triangle of Gα,p. Also, we have |E(G′
α,p)| =

#
3α1/2 − (3α−1)2

2α3/2 + o(1)
$
n3/2. Let f(α) =

3α1/2 − (3α−1)2

2α3/2 , where 1
3
! α ! 1

2
. By direct calculation, we have

fmax = f(
√
2− 1) =

6
√
2− 8

(
√
2− 1)3/2

.

By the definition of ex(n, n, n, {C3, C4}), the result holds.

A result of Baker, Harman and Pintz [2] implies that for every large integer m, there
exists a prime p satisfying (1 − o(1))m ! p ! m. By Theorem 2 and a standard density
of primes argument, we have

ex(n, n, n, {C3, C4}) "
&

6
√
2− 8

(
√
2− 1)3/2

+ o(1)

'
n3/2.

Remark The graph Gα,p is a union of three C4-free bipartite graphs that has appeared
in the literatures (See, e.g. [9, 13]). Also, one can use a trick of the proof of Theorem
5 case (ii) in [11] to extend the construction to prime powers q = pr, where p " 5 is a
prime number and r is a positive integer. Let µ be a primitive element of Fq. The key to
the argument is that each element a ∈ Fq can be written in a unique form a =

*r−1
i=0 aiµ

i,
where ai ∈ Fp. Let Rα,q ⊂ Fq be the set of multiplicative inverses of the elements of
{a ∈ Fq : ar−1 ∈ {1, 2, . . . , ⌊αp⌋}}. Then the same construction with partite sets Rα,q×Fq

satisfies our conclusion.
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