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Abstract

Let Cy be a cycle of order k, where k > 3. Let ex(n,n,n,{Cs,C4}) be the
maximum number of edges in a balanced 3-partite graph whose vertex set consists
of three parts, each has n vertices that has no subgraph isomorphic to C5 or Cjy.
We construct dense balanced 3-partite graphs without 3-cycles or 4-cycles and show

that ex(n,n,n, {Cs, C4}) > ((3‘5{% + o(1))n3/2.

Mathematics Subject Classifications: 05C15, 05C35, 05C38

1 Introduction

Let F be a family of graphs, we say that a graph G is F-free if it contains no member
of F as a subgraph. The Turdn number of F, denoted ex(n, F), is the maximum number
of edges in an F-free graph on n vertices. If 7 = {F}, we denote the Turdn number by
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ex(n, F). A long standing problem of Erdds [4, 5] is to determine the asymptotics for the
corresponding extremal function ex(n, {Cs, Cy}). Erdés [5] conjectured that

ex(n, {Cy, Ci}) = (% + 0(1)> nd2

The lower bound followed from the bipartite incidence graph of a projective plane with 7
points. However, Allen, Keevash, Sudakov and Verstraéte [1] made the opposite conjecture

to Erdos’: e
liminfeX(n’{ »Ci})

noo  eXyca(n, Cy)

> 1,

where ex, <2(n, Cy) is the maximum number of edges in a bipartite n-vertex Cy-free graph
and ex,<a(n,Cy) = (ﬁ + 0(1))n*? (See, e.g. [8]). Garnick, Kwong and Lazebnik [6]
determined the exact values of ex(n,{Cs,C4}) for all n < 24. More exact values of
ex(n, {Cs,Cy}) for 25 < n < 30 were determined by Garnick and Njeuwejaar [7]. The
best upper bound for this problem is the following: ex(n,{Cs, C4}) < ”\/Tnfl (See, e.g.
3, 6)).

For a family F of graphs, we use ex(n,n,n,F) to denote the maximum number of
edges in balanced 3-partite graphs on partition classes of size n, which are F-free. If F
consists of just one graph F, we denote ex(n,n,n,{F'}) by ex(n,n,n, F). Recently, the
authors [10] constructed a balanced 3-partite graph on partition classes of size n, which
is Cy-free and has (% + 0(1))n®/? edges. Combining the upper bound from [12], they
proved that

ex(n,n,n, Cy) = (% + 0(1)) n3/?,

In this paper, based on the construction in [10], we will construct a balanced 3-partite

graph on partition classes of size n with ( (\5_2\/__% +0(1))n3/2 edges, which is {C5, Cy }-free.

Thus, for all sufficiently large n,

g s
(V2 1) ! V2

The upper bound follows from ex(n,n,n,{Cs,Cs}) < ex(n,n,n,Cy). It would be an
interesting problem to determine the asymptotic behavior of ex(n,n,n,{Cs, Cy4}).

1.82 <

+o(1) < 2.122.

2 Results

We first give the following lemma. We use it to count the number of triangles in the graph
we constructed.

Lemma 1. Let p > 5 be a prime number and m be an integer such that § <m < p—;l.

Let A,, = {1,2,...,m}. Then the number of solutions of the equation x +y+ z = p with
3 ;. (Bm—p+2)(3m—p+1)
(x,y,2) € A), is Presem
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Proof. We can enumerate all the solutions as follows. Suppose that (x,y,z) is such a
solution. It must be that p —2m < x,y, 2z < m. For a fixed x such that p —2m < x < m,
all the solutions (z,y, z) are

(x,m,p—m—2x),(z,m—1,p—m—x+1),...,(z,p—m—x,m).

That is, there are exactly 2m — p+ x + 1 solutions (z,y, z) for a fixed x. Hence, the total
number of solutions is

- 3Im—p+2)B3m—p+1
Z (2m—p+x+1):<m pt )2(m Pt ) O
r=p—2m

Now we have our main result.

Theorem 2. Let p > 5 be a prime number. Then we have

ex(n, n,n, {Cs,Cy}) > ((f}fiz)f/z + 0(1)> 2,

where n = | (V2 — 1)p| p.

Proof. Let a be a real number with 3 < a < 3. Let Ry), C F), be the set of multiplicative
inverses of the elements of {1,2,..., |ap|} C F,. We construct a balanced 3-partite graph
Go,p as follows. Let Vi, V5 and V3 be disjoint copies of R, , x IF,. Let G, , be the graph
whose vertex set is V; U Vo U V3, where for all (a,z) € Vi, (b,y) € V5 and (¢, 2) € Vs,

e (a,r) is adjacent to (b,y) iff ab=x —y,
e (b,y) is adjacent to (¢, 2) iff be =y — z,
e (c,z) is adjacent to (a,z) iff ca = z — x.

One may check that G, is 2|R,,|-regular. Let n = |V4| = V2| = |V5] = |ap|p. Then
we have |E(G)| = 3n|Ra,| = (302 + o(1))n%2. Notice that for any a,b € R, ,, we have
a '+ 07! # 0 and then a +b = (a=' + b"')ab # 0. The similar argument in [10] shows
that G, is Cy-free. For completeness we include the argument here.

Claim 1 G, is Cy-free.

Proof of Claim 1 We just need to show that for any two vertices in V;, say i = 1,
they have at most one common neighbor. Let (ay,z1), (as,x2) € Vi and N((ay,x1)) N
N((az,z5)) = U. We will show that |U| < 1.

Suppose |U| > 2. We first consider the case [U NV, > 2 or |[U N V3| > 2, say
\UNVa| > 2. Let (b1,11), (b2, y2) € UNVa. Then a;b; = x; —y; for i = 1,2 and j =1, 2.
Then we have (a1 —as)b; = x1 — x2 and (by — be)a; = yo —yy for j = 1,2. If a; = ao, then
x1 = X9, a contradiction. If a; # ag, then by = by. Since (by — by)a; = yo —yy for j = 1,2,
we have y; = y», a contradiction.
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Now we consider that case |[U N V,| = 1 and |U N V3| = 1. Assume (b,y) € U NV,
and (c,z) € UN V3. Then we have a;b = z; — y and a;c = z — x; for ¢ = 1,2. Thus
a1(b+c) =z —y and ay(b+c) = z —y. By the definition of R, ,, we have b+ ¢ # 0, thus
a1 = ap and then z; = x4, a contradiction. O

Recall that our goal is to construct a {C3, Cy}-free balanced 3-partite graph. We will
delete some edges from G, , to make it Cs-free. Now we compute the number of triangles of
Gop. Suppose that ujususu, is a triangle of Gy, 5, where u; = (a,x) € Vi, ug = (b,y) € V2
and uz = (¢,z) € V3. By the construction of G, we have ab = z — y, bc = y — z and
ca = z —x. Thus, we have ab+ bc+ ca = 0. Hence, abc(a™ + b1 +c¢71) = 0, and we have
a™' +b7'+ ¢! = 0. This means that given a triple (a,b,c) with a™* +b7! 4+ ¢! =0 and
a,b,c € R, ,, there exist exactly p triangles ujusuguy with uy = (a,x) € Vi, ug = (b, y) €
Vy and ug = (¢, 2) € V5 for some z,y,z € F,. By Lemma 1, the number of solutions of
the equation a™' 4+ b~" + ¢! = 0 with (a,b,c) € R}, is (SLO‘pJ_pH)z(?’LO‘pJ_pH). Thus the
number of triangles in G, is

(3lap] —p+ 2>2(3LapJ —ptl) ((3;%&;/21) N 0(1)) W2

Now we obtain a {C3, C4}-free subgraph G7, , of G, by deleting one edge from each
triangle of Go,. Also, we have |E(G, )| = (3a!/? — Ga—b)® o(1))n*2. Let f(a) =

203/2

3al/2 = Boz? e 1 <a< % By direct calculation, we have

2a03/2 3
6v2 —8
(VI- 12

By the definition of ex(n,n,n,{C3, C4}), the result holds. O

fmaxzf(\/ﬁ_l):

A result of Baker, Harman and Pintz [2] implies that for every large integer m, there
exists a prime p satisfying (1 — o(1))m < p < m. By Theorem 2 and a standard density
of primes argument, we have

ex(n, n,n, {Cs,Cy}) > ((f}fiz)f/z + 0(1)> s

Remark The graph G, is a union of three Cj-free bipartite graphs that has appeared
in the literatures (See, e.g. [9, 13]). Also, one can use a trick of the proof of Theorem
5 case (ii) in [11] to extend the construction to prime powers ¢ = p”, where p > 5 is a
prime number and r is a positive integer. Let u be a primitive element of F,. The key to
the argument is that each element a € I, can be written in a unique form a = Z:;g a;pt,
where a; € F,. Let R,, C [, be the set of multiplicative inverses of the elements of
{a €F,:a,_1 € {1,2,...,|ap|}}. Then the same construction with partite sets R, , x F,
satisfies our conclusion.
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