# Weighted Modulo Orientations of Graphs and Signed Graphs

Jianbing Liu

Department of Mathematics University of Hartford West Hartford, CT 06117, U.S.A.

jianliu@hartford.edu

Miaomiao Han\*

College of Mathematical Science Tianjin Normal University Tianjin 300387, P.R.C.

mmhan2018@hotmail.com

## Hong-Jian Lai

Department of Mathematics West Virginia University Morgantown, WV 26506, U.S.A.

hjlai@math.wvu.edu

Submitted: Sep 20, 2021; Accepted: Nov 29, 2022; Published: Dec 16, 2022 © The authors. Released under the CC BY-ND license (International 4.0).

#### Abstract

Given a graph G and an odd prime p, for a mapping  $f: E(G) \to \mathbb{Z}_p \setminus \{0\}$  and a  $\mathbb{Z}_p$ -boundary b of G, an orientation D is called an (f, b; p)-orientation if the net out f-flow is the same as b(v) in  $\mathbb{Z}_p$  at each vertex  $v \in V(G)$  under orientation D. This concept was introduced by Esperet et al. (2018), generalizing mod p-orientations and closely related to Tutte's nowhere zero 3-flow conjecture. They proved that  $(6p^2 - 14p + 8)$ -edge-connected graphs have all possible (f, b; p)-orientations. In this paper, the framework of such orientations is extended to signed graph through additive bases. We also study the (f, b; p)-orientation problem for some (signed) graphs families including complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families.

Mathematics Subject Classifications: 05C21, 05C22

### 1 Introduction

In this paper, our terms and notation follow [2], and graphs considered are loopless and finite with possible parallel edges. As in [2],  $\alpha'(G)$ ,  $\kappa(G)$  and  $\kappa'(G)$  denote the matching

<sup>\*</sup>Corresponding Author. Miaomiao Han is supported by National Natural Science Foundation of China (No. 11901434).

number, the connectivity and the edge-connectivity of a graph G, respectively. For  $v \in V(G)$ , let  $N_G(v)$  be the vertices adjacent to v in G. For vertex subsets  $S, T \subseteq V(G)$ , define  $[S,T]_G = \{st \in E(G) | s \in S, t \in T\}$ , and we also use  $\partial_G(S) = [S,V(G)-S]_G$  for convenience. We often omit subscript whenever no confusion occurs. As in [2], (s,t) in a digraph D is an arc directed from s to t, and we denote

$$E_D^-(s) = \{(t, s) \in A(D) : t \in V(D)\}\$$
and  $E_D^+(s) = \{(s, t) \in A(D) : t \in V(D)\}.$ 

Let  $\mathbb{Z}_k$  denote the (additive) cyclic group of order k > 1 with additive identity 0, and let  $\mathbb{Z}_k^* = \mathbb{Z}_k \setminus \{0\}$ . A  $\mathbb{Z}_k$ -boundary of a graph G is a mapping  $b : V(G) \to \mathbb{Z}_k$  satisfying  $\sum_{s \in V(G)} b(s) \equiv 0 \pmod{k}$ . The collection of all  $\mathbb{Z}_k$ -boundaries of G is denoted by  $Z(G, \mathbb{Z}_k)$ . For  $A \subseteq \mathbb{Z}_k$ , we define  $F(G, A) = \{f : E(G) \to A\}$ . Fix an orientation  $\tau = \tau(G)$  for a graph G. For any  $f \in F(G, \mathbb{Z}_k)$ , define  $\partial_{\tau}(f) : V(G) \to \mathbb{Z}_k$  as, for any vertex  $s \in V(G)$ ,

$$\partial_{\tau}(f)(s) = \sum_{e \in E_{\tau}^{+}(s)} f(e) - \sum_{e \in E_{\tau}^{-}(s)} f(e).$$

For convenience, we sometimes omit the subscript  $\tau$  in the notation above and write  $\partial f$  for  $\partial_{\tau}(f)$ . A mapping  $f \in F(G, \mathbb{Z}_k)$  if a  $\mathbb{Z}_k$ -flow if  $\partial f = 0$ . It is known that  $\partial f$  is always a  $\mathbb{Z}_k$ -boundary for any  $f \in F(G, \mathbb{Z}_k)$ . Jaeger et al. [9] defined group connectivity as follows. A graph G is  $\mathbb{Z}_k$ -connected if for any  $b \in Z(G, \mathbb{Z}_k)$ , there exist a mapping  $f \in F(G, \mathbb{Z}_k^*)$  and an orientation  $\tau(G)$  such that  $\partial_{\tau} f = b$  in  $\mathbb{Z}_k$ . The following conjecture is proposed in [9] and remains unsolved as of today.

Conjecture 1. (i) If a graph G satisfies  $\kappa'(G) \geqslant 3$ , then G is  $\mathbb{Z}_5$ -connected. (ii) If a graph G satisfies  $\kappa'(G) \geqslant 5$ , then G is  $\mathbb{Z}_3$ -connected.

Given a  $\mathbb{Z}_k$ -boundary b of a graph G, an orientation  $\tau = \tau(G)$  is a **b-orientation** of G if for the constant mapping f = 1, we have  $\partial f \equiv b \pmod{k}$ . In particular, when b = 0, any b-orientation is a **mod** k-**orientation** of G. The studies of group connectivity and modulo orientation of graphs are motivated by the most fascinating nowhere zero flow conjectures of Tutte, as shown in the surveys [8, 15], among others. Some of the recent breakthroughs are the following.

**Theorem 2.** (Lovász et al. [20]) Every 6k-edge-connected graph G admits a b-orientation for any  $\mathbb{Z}_{2k+1}$ -boundary b of G.

**Theorem 3.** (Han et al. [7] and Li [16])

- (i) If  $k \ge 3$ , then there exist 4k-edge-connected graphs admitting no mod (2k + 1)orientation.
- (i) If  $k \ge 5$ , then there exist (4k+1)-edge-connected graphs admitting no mod (2k+1)orientation.

In particular, Theorem 3 disproved the Circular Flow Conjecture, in which Jaeger [8] conjectured that all 4k-edge-connected graphs admit mod (2k + 1)-orientations. Further expository of the problem can be found in the informative monograph by Zhang [21].

Aiming at extending Theorem 2, Esperet et al. in [5] defined a mod k f-weighted borientation of a graph G, for given  $b \in Z(G, \mathbb{Z}_k)$  and mapping  $f \in F(G, \mathbb{Z}_k)$ , to be an
orientation  $\tau = \tau(G)$  satisfying  $\partial_{\tau}(f) \equiv b \pmod{k}$ . Throughout the rest of this paper, we
shall abbreviate a mod k f-weighted b-orientation as an (f, b; k)-orientation. Esperet
et al indicated in [5] that to investigate (f, b; k)-orientation of graphs, it is necessary to
assume that k is an odd prime number, and they proved the following.

**Theorem 4.** (Esperet, De Verclos, Le and Thomassé, [5]) Given an odd prime p, if G is a  $(6p^2 - 14p + 8)$ -edge-connected graph, then for any  $b \in Z(G, \mathbb{Z}_p)$  and any mapping  $f \in F(G, \mathbb{Z}_p^*)$ , G admits an (f, b; p)-orientation.

The current study is motivated by Theorems 2, 3 and 4. We are to investigate the relationship between the edge-connectivity of graphs in certain graph families and the (f, b; p)-orientability of these graphs over the finite field  $\mathbb{Z}_p$ . In Section 2, we prepare some of the tools for our arguments in the proofs. We then will show improved edge-connectivity bounds in certain graph families in Sections 3-4. In Section 5, we generalize the framework to the study of signed graph, in which we introduce the (f, b; p)-orientation of signed graphs and show that every  $(12p^2 - 28p + 15)$ -edge-connected signed graph admits an (f, b; p)-orientation. Further discussions and conjectures are presented in the last section.

## 2 Preliminaries

Let  $\mathbb{F}$  denote a finite field and let  $p \geq 3$  be a prime number throughout the rest of this paper. It has been noted that the concept of modulo orientation is closely related to additive bases over finite fields. Given a subset  $S \subseteq \mathbb{F}$ , an **S-additive basis** of  $\mathbb{F}^n$  is a multiset  $\{x_1, x_2, \dots, x_m\}$  of the *n*-dimensional vectors such that for every  $x \in \mathbb{F}^n$ , there are scalars  $c_i \in S$  such that  $x = \sum_{i=1}^m c_i x_i$ , which is called an S-linear-combination of x. An **additive basis** of  $\mathbb{F}^n$  is a  $\{0,1\}$ -additive basis.

Let  $B_1, \ldots, B_t$  be a collection of bases of  $\mathbb{F}^n$ . Define  $\bigoplus_{i=1}^t B_i$  to be the (multiset) union with possible repetitions of  $B_1, \ldots, B_t$ . Let  $c(n, \mathbb{F})$  be the smallest positive integer m such that for any m bases  $B_1, \ldots, B_m$  of  $\mathbb{F}^n$ , the multiset  $\bigoplus_{i=1}^m B_i$  forms an additive basis of  $\mathbb{F}^n$ . Define  $c(n, p) = c(n, \mathbb{Z}_p)$ . Alon, Linial and Meshulam [1] obtained a theorem below, indicating the existence of c(n, p), where the logarithm function is of base 2.

**Theorem 5.** (Alon et al. [1])  $c(n, p) \leq (p - 1) \log n + p - 2$ .

**Lemma 6.** (Lemma 9 of Esperet et al.[5]) Let  $k \ge 1$  be an integer and p = 2k + 1 be a prime. Let  $\tau(G) = D = (V, A)$  be a digraph obtained from the orientation  $\tau$  of a graph G. A 2-list L is to assign two distinct elements of  $\mathbb{Z}_{2k+1}$  to L(e) for each arc  $e \in A(D)$ . The following are equivalent.

- (i) For any  $\mathbb{Z}_{2k+1}$ -boundary b and any mapping  $f: E \to \mathbb{Z}_{2k+1} \{0\}$ , the undirected graph G has an (f, b; p)-orientation.
- (ii) For any 2-list L and any  $\mathbb{Z}_{2k+1}$ -boundary b, D has a  $\mathbb{Z}_{2k+1}$ -flow g satisfying  $\partial g = b$  and  $g(e) \in L(e)$ , for any  $e \in A(D)$ .

Let mG denote the graph formed by replacing every edge of G with m parallel edges. For an odd prime p, let  $\mathcal{O}_p$  be the family of graphs such that a graph  $G \in \mathcal{O}_p$  if and only if it admits an (f, b; p)-orientation for any  $f \in F(G, \mathbb{Z}_p^*)$  and any  $\mathbb{Z}_p$ -boundary b. The lemma below summarizes some basic properties of the graphs admitting (f, b; p)-orientations. The proofs are slight modifications of those in [12, 14] justifying the corresponding results for modulo orientations and strong group connectivity of graphs.

**Lemma 7.** ([18, 19]) The following properties of  $\mathcal{O}_p$  hold:

- (i)  $K_1 \in \mathcal{O}_p$ .
- (ii) If  $G \in \mathcal{O}_p$ , then  $G/e \in \mathcal{O}_p$  for any  $e \in E(G)$ .
- (iii) For  $H \subseteq G$ , if  $G/H \in \mathcal{O}_p$  and  $H \in \mathcal{O}_p$ , then  $G \in \mathcal{O}_p$ .
- (iv)  $G \in \mathcal{O}_p$  if and only if every block of G is in  $\mathcal{O}_p$ .
- (v) Every graph in  $\mathcal{O}_p$  contains (p-1) edge-disjoint spanning trees.
- (vi)  $mK_2 \in \mathcal{O}_p$  if and only if  $m \ge p-1$ .

Assume that D is an (f, b; p)-orientation of a graph G for some given  $f \in F(G, \mathbb{Z}_p^*)$  and  $b \in Z(G, \mathbb{Z}_p)$ . Let  $e_0 = st \in E(G)$  such that  $(s, t) \in A(D)$ , and  $f' \in F(G, \mathbb{Z}_p^*)$  be a mapping satisfying  $f'(e_0) = -f(e_0)$  and f'(e) = f(e) in  $\mathbb{Z}_p$  whenever  $e \neq e_0$ . Define D' to be the orientation of G by reversing the orientation of  $e_0$  from (s, t) to (t, s). Then by definition, D' is an (f', b; p)-orientation of G. This leads to the following observation.

Observation 8. If for any  $b \in Z(G, \mathbb{Z}_p)$  and any  $f : E(G) \to \{1, 2, \dots, \frac{p-1}{2}\}$ , G always admits an (f, b; p)-orientation, then  $G \in \mathcal{O}_p$ .

**Definition 9.** For  $H \subseteq G$ , the  $\mathcal{O}_p$ -closure of H in G, denoted by  $cl_G(H)$ , is the maximal subgraph of G that contains H such that  $V(cl_G(H)) - V(H)$  can be ordered as a sequence  $\{v_1, v_2, \dots, v_t\}$  such that there are at least p-1 edges joining  $v_1$  and vertices in H, and for each i with  $1 \leq i \leq t-1$ , there are at least p-1 edges joining  $v_{i+1}$  and  $V(H) \cup \{v_1, v_2, \dots, v_i\}$ .

As a corollary of Lemma 7(iii) and (vi), we have the following.

If 
$$H \in \mathcal{O}_p$$
, then  $cl_G(H) \in \mathcal{O}_p$ . (1)

**Lemma 10.** Let T be a connected spanning subgraph of G. If for each edge  $e \in E(T)$ , G has a subgraph  $H_e \in \mathcal{O}_p$  with  $e \in E(H_e)$ , then  $G \in \mathcal{O}_p$ .

**Proof.** We prove by induction on |V(G)|. Since  $K_1 \in \mathcal{O}_p$ , the lemma is true when |V(G)| = 1. Assume |V(G)| > 1 and pick an arbitrary edge  $e_1 \in E(T)$ . Then G has a subgraph  $H_1 \in \mathcal{O}_p$  such that  $e_1 \in E(H_1)$ . Denote  $G_1 = G/H_1$  and define  $T_1 = T/(E(H_1) \cap E(T))$ . Clearly,  $T_1$  is a connected spanning subgraph of  $G_1$  as it is obtained by contracting a connected graph T. Moreover, every edge e in  $E(T_1)$  is also an edge in E(T). From the assumption, G contains a subgraph  $H_e \in \mathcal{O}_p$  with  $e \in E(H_e)$ . It follows by Lemma 7(ii) that  $\Gamma_e = H_e/(E(H_e) \cap E(H_1)) \in \mathcal{O}_p$  and  $e \in \Gamma_e \subseteq G_1$ . Therefore by induction  $G_1 \in \mathcal{O}_p$ . As  $H_1 \in \mathcal{O}_p$  and  $G_1 = G/H_1 \in \mathcal{O}_p$ , it follows by Lemma 7(iii) that  $G \in \mathcal{O}_p$  as well.

## 3 Weighted Modulo Orientations of Certain Graphs

In this section, we first investigate the edge connectivity of complete graphs in  $\mathcal{O}_p$  and then apply it to study chordal graphs. We also determine, in Section 3.3, a sharp edge connectivity bound for series-parallel graphs to be in  $\mathcal{O}_p$ .

### 3.1 Complete Graphs

The main result of this subsection is the following theorem.

**Theorem 11.** If  $n \ge 2(p-1)(5+3\log(p-1))-1$ , then the complete graph  $K_n$  belongs to  $\mathcal{O}_p$ .

To justify Theorem 11, we start with a lemma.

**Lemma 12.** Let G be a graph of order n with c(n-1,p) edge-disjoint spanning trees. Then  $G \in \mathcal{O}_p$ .

**Proof.** Let  $T_1, \ldots, T_{c(n-1,p)}$  be edge-disjoint spanning trees of G, and  $H = G[\cup_{i=1}^{c(n-1,p)} E(T_i)]$  be the subgraph induced by the edge subset  $\cup_{i=1}^{c(n-1,p)} E(T_i)$ . As  $T_i$ 's are spanning trees of G, H is a spanning subgraph of G. We shall first show that  $H \in \mathcal{O}_p$  using Lemma 6, that is, for any 2-list L and any  $\mathbb{Z}_p$ -boundary b, we shall show that H has a  $\mathbb{Z}_p$ -flow g satisfying  $\partial g = b$  and  $g(e) \in L(e)$  for each  $e \in E(H)$ .

For any  $\mathbb{Z}_p$ -boundary b,  $b(v_n) = -(b(v_1) + \cdots + b(v_{n-1}))$  and so one can view b as a vector  $(b(v_1), \ldots, b(v_{n-1}))$  in  $\mathbb{Z}_p^{n-1}$ . Choose  $T \in \{T_1, T_2, \ldots, T_{c(n-1,p)}\}$  and assign to H an arbitrary orientation D = D(H). Thus every subgraph of H is a subdigraph of D under this given orientation, and each  $e \in E(H)$  is now an arc in A(D). Since |V(H)| = n, we denote  $A(T) = \{e_1, \ldots, e_{n-1}\}$ . For each  $e \in A(T)$ , set  $L(e) = \{a_e, b_e\}$  for two distinct elements  $a_e, b_e \in \mathbb{Z}_p$ .

Define a mapping  $f_0: E(H) \to \mathbb{Z}_p$  by  $f_0(e) = a_e$  for any  $e \in E(T)$ , and  $f_0(e') = 0$  if  $e' \notin E(T)$ . Let  $b_0(v) = \partial f_0(v)$  and  $b'(v) = b(v) - b_0(v)$ , for any  $v \in V(G)$ . As b and  $b_0$  are  $\mathbb{Z}_p$ -boundaries, b' is also a  $\mathbb{Z}_p$ -boundary of G. For any  $e = (v_i, v_j) \in A(T)$ , set  $L'(e) = \{0, b_e - a_e\}$  and define  $x_e = (x_1^e, x_2^e, \dots, x_n^e)$  with

$$x_t^e = \begin{cases} b_e - a_e & \text{if } t = i, \\ a_e - b_e & \text{if } t = j, \\ 0 & \text{otherwise.} \end{cases}$$

By the definition of  $x_e$ , one can see that  $x_e$  is a  $\mathbb{Z}_p$ -boundary and so  $x_e$  can be viewed as a vector in  $\mathbb{Z}_p^{n-1}$ . As T is a spanning tree and |E(T)| = n - 1,  $B(T) = \{x_e : e \in A(T)\}$  is a base of  $\mathbb{Z}_p^{n-1}$ . For each i with  $1 \le i \le n$ , let  $B_i = B(T_i)$ . Then by the definition of c(n-1,p), the union  $B_1 \cup \cdots \cup B_{c(n-1,p)}$  forms an additive basis of  $\mathbb{Z}_p^{n-1}$ . Hence there exist scalars  $\lambda_e \in \{0,1\}$ , where  $e \in E(T_1 \cup \cdots \cup T_{c(n-1,p)})$ , such that  $\sum \lambda_e x_e = b - b_0$ . Define  $g_0 : E(H) \to \mathbb{Z}_p$  by

$$g_0(e) = \begin{cases} 0 & \text{if } \lambda_e = 0, \\ b_e - a_e & \text{if } \lambda_e = 1. \end{cases}$$

Next we show that  $\partial g_0 = \sum \lambda_e x_e$ . For any  $v_i \in V(G)$ ,

$$\partial g_0(v_i) = \sum_{e \in E^+(v_i)} g_0(e) - \sum_{e \in E^-(v_i)} g_0(e)$$

$$= \sum_{e \in E^+(v_i)} \lambda_e(b_e - a_e) - \sum_{e \in E^-(v_i)} \lambda_e(b_e - a_e)$$

$$= \sum_{e \in E^+(v_i)} \lambda_e(b_e - a_e) + \sum_{e \in E^-(v_i)} \lambda_e(a_e - b_e).$$

This shows that  $\partial g_0(v_i)$  is the *i*-th entry of  $\sum \lambda_e x_e$ . By the arbitrary of  $v_i$ , one has  $\partial g_0 = \sum \lambda_e x_e = b - b_0$ . Define  $g(e) = g_0(e) + f_0(e)$ , for any  $e \in E(H)$ . So  $\partial g = \partial g_0 + \partial f_0 = b - b_0 + b_0 = b$ . Since  $g(e) = g_0(e) + f_0(e) = g_0(e) + a_e \in \{a_e, b_e\}$  for each  $e \in E(T_1 \cup \cdots \cup T_{c(n-1,p)})$ , by Lemma 6 (ii), H has an (f,b;p)-orientation. As f and b are arbitrarily given,  $H \in \mathcal{O}_p$ . Since H is spanning in G, it follows by Lemma 7 (i) and (iii) that  $G \in \mathcal{O}_p$ .

**Proof of Theorem 11.** When p = 3, a graph  $G \in \mathcal{O}_p$  which is equivalent to G is  $\mathbb{Z}_3$ -connected. It is known that  $K_n$  is  $\mathbb{Z}_3$ -connected if  $n \geq 5$  (see Proposition 3.6 of [11]), and so theorem holds for p = 3. In the following we assume  $p \geq 5$ .

Let  $\phi(p) = 2 + 2\log(p-1) - \sqrt{2\log(2p-2)}$ . Then as  $\phi(2) = 2 - \sqrt{2} > 0$  and when  $p \ge 5$ , the derivative of  $\phi$  at p is greater than 0, that is  $\phi'(p) > 0$ , it follows that  $2 + 2\log(p-1) \ge \sqrt{2\log(2p-2)}$ , and so algebraic manipulation leads to  $5 + 3\log(p-1) \ge \log(p-1) + \sqrt{2\log(2(p-1))} + 3 = \log(2(p-1)) + \sqrt{2\log(2(p-1))} + 2$ . Consequently,

$$n-1 \ge 2(p-1)(5+3\log(p-1))$$
  
 
$$\ge 2(p-1)(\log(2(p-1)) + \sqrt{2\log(2(p-1))} + 1) + 2(p-1).$$
 (2)

Set

$$x = \frac{(n-1) - 2(p-1)}{2(p-1)}$$
, and  $y = x - \log(2(p-1))$ .

By (2),

$$x = \frac{(n-1) - 2(p-1)}{2(p-1)} \ge \log(2(p-1)) + \sqrt{2\log(2(p-1))} + 1, \text{ and}$$

$$y \ge \sqrt{2\log(2(p-1))} + 1.$$
(3)

By (3),  $(y-1)^2 \ge 2\log(2(p-1))$ , and so  $1+y+\frac{1}{2}(y-1)^2 \ge \log(2(p-1))+y+1$ . Let  $\psi(y)=2^y-\left(1+y+\frac{1}{2}(y-1)^2\right)$ . When  $y\ge 3$ , we have  $\psi(3)=2>0$  and  $\psi'(y)=2^y\ln(2)-y>0$ . It follows that as long as  $y\ge 3$ ,  $2^y\ge 1+y+\frac{1}{2}(y-1)^2$ . Since  $p\ge 5$ , it follows by (3) that  $y\ge \sqrt{2\log(2(p-1))}+1\ge \sqrt{6}+1>3$ , and so we substitute y-1 by  $\sqrt{2\log(2(p-1))}$  in the inequality  $2^y\ge 1+y+\frac{1}{2}(y-1)^2$  to

obtain  $2^{y} \ge \log(2(p-1)) + y + 1$ . Hence  $y \ge \log(\log(2(p-1)) + y + 1)$ , and so, as  $x = \log(2(p-1)) + y$ ,  $y \ge \log(\log(2(p-1)) + y + 1) = \log(1+x)$ . This implies that  $x = \log(2(p-1)) + y \ge \log(2(p-1)) + \log(1+x) = \log(2(p-1)(1+x)) = \log(2(p-1)) + 2(p-1)x$ . Since (n-1) - 2(p-1) = 2(p-1)x, one has  $x \ge \log(n-1)$ . So  $n-1 = 2(p-1)x + 2(p-1) \ge 2(p-1)\log(n-1) + 2(p-1) \ge 2(p-1)\log(n-1) + 2(p-2)$ . By Theorem 5,  $\frac{n-1}{2} \ge (p-1)\log(n-1) + (p-2) \ge c(n-1,p)$ . As  $K_n$  has  $\frac{n}{2}$  edge-disjoint spanning trees, by Lemma 10, we conclude that if  $n-1 \ge 2(p-1)(5+3\log(p-1))$ , then  $K_n \in \mathcal{O}_p$ .

## 3.2 Chordal Graphs

A simple graph G is **chordal** if every cycle of length greater than 3 possesses a chord. Equivalently speaking, a simple graph G is chordal if every induced cycle of G has length 3. We need the following structure property of chordal graphs.

**Lemma 13.** (Lemma 2.1.2 of [10]) A simple graph G is chordal if and only if every minimal vertex-cut induces a clique of G.

The rest of this subsection is to show the following theorem.

**Theorem 14.** Every simple chordal graph G with  $\kappa(G) \ge 2(p-1)(5+3\log(p-1))-1$  is in  $\mathcal{O}_p$ .

**Proof.** Let G be a chordal graph with  $\kappa(G) \ge 2(p-1)(5+3\log(p-1))-1$ . If G is a complete graph, say  $G \cong K_n$ , then  $n \ge \kappa(G)+1 \ge 2(p-1)(5+3\log(p-1))$  and  $G \in \mathcal{O}_p$  by Theorem 11. Thus we assume G is not a clique.

Let  $e = xy \in E(G)$  be an arbitrary edge. By Lemma 10, it suffices to prove that e lies in a subgraph  $H_e$  of G with  $H_e \in \mathcal{O}_p$ . We shall show that in any case, a subgraph  $H_e \in \mathcal{O}_p$  with  $e \in E(H_e)$  can always be found.

In the first case, we assume that either  $N_G(x) \neq V(G) \setminus \{x\}$  or  $N_G(y) \neq V(G) \setminus \{y\}$ . Then by symmetry, we assume  $N_G(x) \neq V(G) \setminus \{x\}$ . So there exists a vertex  $z \in V(G) - (N_G(x) \cup \{x\})$ . Since  $\kappa(G) \geqslant k \geqslant 2$  and G is not a clique,  $N_G(x)$  contains a minimal vertex-cut X of G separating x and z. By Lemma 13, G[X] is a clique, and so  $G[X \cup \{x\}] \cong K_{m_x}$  with  $m_x = |X| + 1 \geqslant \kappa(G) + 1 \geqslant 2(p-1)(5+3\log(p-1))$ . By Lemma 11,  $G[X \cup \{x\}] \in \mathcal{O}_p$ . If  $y \in X$ , then as  $G[X \cup \{x\}] \in \mathcal{O}_p$ , we are done with  $H_e = G[X \cup \{x\}]$ . Hence we assume that

for any minimal vertex cut 
$$X \subseteq N_G(x)$$
 separating  $x$  from  $V(G) \setminus \{N_G(x) \cup \{x\}\}, y \notin X$ . (4)

If there exists  $t \in N_G(y) \cap (V(G) \setminus (N_G(x) \cup \{x\}))$ , then there is a minimal vertex cut of  $N_G(x)$  containing y which separates x and t, contrary to (4). It follows that  $N_G(y) \subseteq N_G(x) \cup \{x\}$ . Since  $z \in V(G) \setminus (N_G(x) \cup \{x\})$ , we have  $yz \notin E(G)$ , and so  $N_G(y)$  contains a minimal vertex cut separating y and z.

Let Y be an arbitrarily chosen minimal vertex cut in  $N_G(y)$  separating y and z. By Lemma 13 and as  $\kappa(G) \ge 2(p-1)(5+3\log(p-1))-1$ ,  $G[Y \cup y] \cong K_{m_y}$  with

 $m_y = |Y| + 1 \ge \kappa(G) + 1 \ge 2(p-1)(5+3\log(p-1))$ . By Lemma 11,  $G[Y \cup \{y\}] \in \mathcal{O}_p$ . We may further assume that  $x \notin Y$ , as otherwise we are done with  $H_e = G[Y \cup \{y\}] \in \mathcal{O}_p$ . Thus  $xy \in E(G-Y)$  and so x and y are in the same component of G-Y. It follows that  $H_e = G[Y \cup \{x,y\}]$  is a complete graph with order  $|Y| + 2 \ge \kappa(G) + 2 \ge 2(p-1)(5+3\log(p-1)) + 1$ . By Lemma 11,  $H_e \in \mathcal{O}_p$ , and so this justifies the first case.

Otherwise, we may assume that both  $N_G(x) = V(G) \setminus \{x\}$  and  $N_G(y) = V(G) \setminus \{y\}$ . Since G itself is not a complete graph, G contains vertices  $v, v' \in V(G) - \{x, y\}$  such that  $vv' \notin E(G)$ . Therefore, N(v) contains a minimal vertex cut X' separating v and v' in G. By Lemma 13 and as  $\kappa(G) \geq 2(p-1)(5+3\log(p-1))-1$ ,  $G[X' \cup \{v\}]$  is a complete graph of order at least  $2(p-1)(5+3\log(p-1))$ , and so by Lemma 11, it is in  $\mathcal{O}_p$ . Let  $H_e = G[X' \cup \{v\}]$ . Since  $N_G(x) = V(G) \setminus \{x\}$  and  $N_G(y) = V(G) \setminus \{y\}$ , both x and y must be in X', and so  $e = xy \in E(H_e)$ . This completes the proof of the lemma.  $\square$ 

### 3.3 Series-parallel graphs

For a graph G, if  $K_4$  can not be obtained from G by contraction, then G is called  $K_4$ -minor free. In this section, we will present a sharp lower bound of edge-connectivity for a  $K_4$ -minor free graph to be in  $\mathcal{O}_p$ . The following is a theorem of Dirac [4].

**Theorem 15.** (Dirac [4]) If G is a simple  $K_4$ -minor free graph, then  $\delta(G) \leq 2$ .

Corollary 16. Let G be a  $K_4$ -minor free graph. If  $\kappa'(G) \ge 2p-3$ , then  $G \in \mathcal{O}_p$ .

**Proof.** Let G be a (2p-3)-edge-connected  $K_4$ -minor free graph, and let  $G_0$  be the underlying simple graph of G (see p. 47 of [2]). By Lemma 7(i),  $K_1 \in \mathcal{O}_p$ . Hence we assume that |V(G)| > 1 and let G be a minimal counterexample with |V(G)| minimized.

Since G is  $K_4$ -minor free, we have  $G_0$  is also  $K_4$ -minor free. By Theorem 15, there is a vertex  $w \in V(G_0)$  with degree 1 or 2. If  $d_{G_0}(w) = 1$ , since  $\kappa'(G) \geq 2p - 3$ , we have a subgraph  $H \subseteq G$  such that  $H \cong (2p - 3)K_2$ . If  $d_{G_0}(w) = 2$ , let  $e_1$  and  $e_2$  be two edges incident with w in  $G_0$ . By  $\kappa'(G) \geq 2p - 3$ , at least one of  $e_1$  and  $e_2$  must be contained in a subgraph  $H \subseteq G$  with  $H \cong (p - 1)K_2$ . In either case, by Lemma 7(vi),  $H \in \mathcal{O}_p$ . Since G is  $K_4$ -minor free, we have G/H is also  $K_4$ -minor free. By the property of contractions, we have  $\kappa'(G/H) \geq \kappa'(G)$ . By the minimality of G, we obtain  $G/H \in \mathcal{O}_p$ . Since  $H \in \mathcal{O}_p$  and by Lemma F(G) and so the corollary is complete.

# 4 Complete Bipartite Graphs and Graphs with Small Matching Number

In this section we will determine sufficient conditions for a complete bipartite graph to be in  $\mathcal{O}_p$ . From definition, a graph G is  $\mathbb{Z}_3$ -connected if and only if it is in  $\mathcal{O}_3$ . As Theorem 4.6 of [3] characterizes all complete bipartite graphs in  $\mathcal{O}_3$ , we shall, throughout this section, assume that  $p \geq 5$  is an odd prime. Using the arguments similar to those justifying Theorem 3.2 of [13], the following lifting lemma can be routinely verified from the definition of graphs in  $\mathcal{O}_p$ .

**Lemma 17** (Lifting). Let G be a graph and p > 0 be an odd prime. For every function  $f \in F(G, \mathbb{Z}_p^*)$  and any  $\mathbb{Z}_p$ -boundary b of G, let  $v_1v_2, v_1v_3$  be two edges of G with  $f(v_1v_2) = f(v_1v_3)$ . Let  $G_{[v_1,v_2v_3]}$  be the graph obtained from G by deleting  $v_1v_2, v_1v_3$  and adding a new edge  $e = v_2v_3$ , and  $f' \in F(G_{[v_1,v_2v_3]}, \mathbb{Z}_p^*)$  be formed from the restriction of f to  $E - \{v_1v_2, v_1v_3\}$  by defining  $f'(v_2v_3) = f(v_1v_2)$ . If  $G_{[v_1,v_2v_3]}$  has an (f', b; p)-orientation, then G has an (f, b; p)-orientation.



Figure 1:  $G_{[v_1,v_2v_3]}$  is the graph by lifting two edges  $v_1v_2, v_1v_3$ .

**Proof.** Let  $(v_2, v_3)$  be an arc in D and let  $(v_2, v_1)$  and  $(v_1, v_3)$  be two arcs in D. By assumption,  $G_{[v_1, v_2 v_3]}$  has an (f', b; p)-orientation, say D'. Without loss of any generality, assume that the direction of  $v_2 v_3$  is  $(v_2, v_3)$  as in Figure 1. Then define an orientation D of the graph G as follows: D is the same as D' restricted on  $E(G) - \{v_1 v_2, v_1 v_3\}$  and the directions of  $\{v_1 v_2, v_1 v_3\}$  are  $(v_2, v_1)$  and  $(v_1, v_3)$ , see Figure 1. Since  $f'(v_2 v_3) = f(v_1 v_2) = f(v_1 v_3)$ , one can verify that D is an (f, b; p)-orientation of G.

**Definition 18.** Let G be a graph,  $f \in F(G, \mathbb{Z}_p^*)$  and b be any given  $\mathbb{Z}_p$ -boundary of G. Fix two vertices  $u_1, u_2 \in V(G)$  such that  $N_G(u_1) \cap N_G(u_2)$  contains a subset  $W = \{v_1, \ldots, v_{p-1}\} \subseteq N_G(u_1) \cap N_G(u_2)$  satisfying that  $f(u_1v_i) = f(u_2v_i)$  for each  $i \in \{1, \ldots, p-1\}$ . We obtain a new graph  $G^L_{u_1,u_2,W}$  from G by lifting each edge pair in  $\{u_1v_1, u_2v_1\}, \ldots, \{u_1v_{p-1}, u_2v_{p-1}\}$ . For notational convenience, when  $u_1, u_2$  and W are understood from the context, we simply use  $G^L$  for  $G^L_{u_1,u_2,W}$ , and we say that  $G^L$  is obtained by performing the **L-operation** on G at  $\{u_1, u_2\}$ . By definition,  $G^L$  contains a subgraph  $L_{u_1,u_2}$  with vertex set  $\{u_1, u_2\}$  and with at least (p-1) multiple edges between  $u_1, u_2$ .

By Lemmas 7(vi),  $L_{u_1,u_2} \in \mathcal{O}_p$  and so by Lemma 17,

if 
$$G^L/L_{u_1,u_2} \in \mathcal{O}_p$$
, then  $G \in \mathcal{O}_p$ . (5)

If p = 3, then an (f, b; p)-orientation is equivalent to  $\mathbb{Z}_3$ -connectivity and  $K_{m,n} \in \mathcal{O}_p$  if and only if  $m \ge n \ge 4$  from [3]. In the rest of this section, let  $p \ge 5$  be a prime and we define

$$n_1 = \frac{1}{2}(p-1)(p-2) + 1,$$
 (6)

$$n_2 = \frac{1}{2}n_1(n_1-1)(p-1).$$

**Lemma 19.** Let p > 0 be an odd prime,  $G = K_{n_1,n}$  be a complete bipartite graph with vertex bipartition (U, V), where

$$U = \{u_1, \dots, u_{n_1}\} \text{ and } V = \{v_1, \dots, v_n\}.$$
 (7)

Let  $b \in Z(G, \mathbb{Z}_p)$  and  $f \in F(G, \mathbb{Z}_p^*)$  be given such that (by Observation 8),

for any 
$$e \in E(G)$$
,  $f(e) \in \{1, \dots, \frac{p-1}{2}\}.$  (8)

Let  $K_{n_1}$  be the complete graph with  $V(K_{n_1}) = U$  and  $E(K_{n_1}) = \{e_1, \ldots, e_m\}$ , where  $m := m(|U|) = \frac{|U|(|U|-1)}{2}$ . Define a new bipartite graph B = B(G) with a vertex partition  $(W_1, W_2)$ , where  $W_1 = V$  and  $W_2 = E(K_{n_1})$ , such that  $v_j$  is adjacent to  $e_i = u_{i_1}u_{i_2}$  if and only if  $f(v_ju_{i_1}) = f(v_ju_{i_2})$ . (Thus an element  $e_i \in W_2$  represents both an edge in the complete graph  $K_{n_1}$  as well as a vertex in  $V \subset V(B)$ .) If  $|U| = n_1 > \frac{p-1}{2}$  and  $|V| = n \geqslant m(p-2) + 2$ , then each of the following holds.

- (i) For any  $v_i \in V$ ,  $d_B(v_i) \geqslant 1$ .
- (ii) There exists an  $e_i \in W_2$  with  $d_B(e_i) \ge p-1$ .

**Proof.** For any  $v_j \in V$ , by (8) and as  $|U| = n_1 > \frac{p-1}{2}$ , there exist distinct  $u_{i_1}, u_{i_2} \in U$  such that  $f(v_j u_{i_1}) = f(v_j u_{i_2})$ . Hence every vertex  $v_j$  is incident with at least one edge  $e \in E(G)$ , and so  $d_B(v_j) \ge 1$ . Counting the number of edges in B, we have

$$\sum_{v \in W_1} d_B(v) = |E(B)| = \sum_{e \in W_2} d_B(e). \tag{9}$$

As n > m(p-2) + 1 and by (9), we conclude that there must be an  $e_i \in W_2$  with  $d_B(e_i) \ge p-1$ . This justifies Lemma 19.

The bipartite graph B = B(G) defined in Lemma 19 will be referred as to the associate bipartite graph of G.

**Theorem 20.** Suppose  $n_1, n_2$  are integers satisfying (6). Let  $G = K_{n_1, n_2}$  and  $p \ge 5$  be a prime integer. For every function  $f \in F(G, \mathbb{Z}_p^*)$  and every  $\mathbb{Z}_p$ -boundary p of p, p has an p orientation. Consequently, p for every p is p.

**Proof.** Let (U, V) denote the bipartition of G using the notation in (7), and let  $b \in Z(G, \mathbb{Z}_p)$  and  $f \in F(G, \mathbb{Z}_p^*)$  be given. We shall show that  $K_{n_1, n_2}$  has an (f, b; p)-orientation. By Observation 8, we may assume that (8) holds. In the arguments below, we let  $K_{n_1}$  be the complete graph with  $V(K_{n_1}) = U$  and  $E(K_{n_1}) = \{e_1, \ldots, e_m\}$ , where  $m = \frac{n_1(n_1-1)}{2}$ , and let B be the associate bipartite graph of G as defined in Lemma 19.

By (6),  $|U| = n_1 > \frac{p-1}{2}$ ,  $|V| = n_2 \ge m(p-2) + 2$ , and so Lemma 19 is applicable.

Assume that  $e_i = u_{i_1}u_{i_2}$  is the edge assured in Lemma 19(ii), and  $N_B(e_i)$  contains  $Q_1 = \{v_{j_1}, \dots, v_{j_{p-1}}\} \subseteq W_1$ . By the definition of B,

for any 
$$\ell \in \{1, \dots, p-1\}$$
,  $f(u_{i_1}v_{j_\ell}) = f(u_{i_2}v_{j_\ell})$ . (10)

Let  $G^L = G^L_{u_{i_1}, u_{i_2}, Q_1}$  and  $L_{u_{i_1}, u_{i_2}}$  be the graphs arising in the process of performing L-operations to G, as defined in Definition 18. Define  $G_1 = G^L/L_{u_{i_1},u_{i_2}}$  and  $v_{L_1}$  be the vertex in  $G_1$  onto which  $L_{u_{i_1},u_{i_2}}$  is contracted, and  $G'_1 = G_1 - Q_1$ . Then  $G'_1$  is again a complete bipartite graph with bipartition  $(U_1, V_1)$  where  $U_1 = (U - \{u_{i_1}, u_{i_2}\}) \cup \{v_{L_1}\}$  and  $V_1 = V - Q_1$ . Thus we have

$$|U_1| = n_1 - 1$$
 and  $|V_1| = (m-1)(p-1) \ge m_1(p-1) \ge m_1(p-2) + 2$ ,

where  $m_1 := \frac{|U_1|(|U_1|-1)}{2}$ . Assume that for some j with  $1 \leq j \leq \frac{1}{2}(p-1)(p-3)$ , the complete bipartite graph  $G'_{i} = (U_{i}, V_{j})$  is defined such that

$$|U_j| = n_1 - j$$
 and  $|V_j| = (m - j)(p - 1) \ge m_j(p - 1) \ge m_j(p - 2) + 2,$  (11)

where  $m_j := \frac{|U_j|(|U_j|-1)}{2}$ . Define the associate bipartite graph  $B(G'_j)$  as defined in Lemma 19. By (6) and  $j \leq \frac{1}{2}(p-1)(p-3)$ , we have  $|U_j| = n_1 - j = \frac{1}{2}(p-1)(p-2) + 1 - j > \frac{1}{2}(p-1)$ . Hence by replacing G with  $G'_j$ , there exists a vertex  $e_j = u_{j_1}u_{j_2} \in E(K_{|V_j|})$  of degree at least p-1 in  $B(G'_j)$ , then a subset  $Q_{j+1} \subseteq N_{B(G'_j)}(e_j) \subseteq V_j$  is identified with  $|Q_{j+1}| = p-1$ . Let  $G_j^L = (G_j')_{u_{j_1}, u_{j_2}, Q_{j+1}}^L$  with  $L_{j+1} = L_{u_{j_1}, u_{j_2}}$  be the graphs arising in the process of performing L-operations to  $G'_{j}$ . Let  $G_{j+1} = (G'_{j})^{L}/L_{j+1}$ , and  $G'_{j+1} = G_{j+1} - Q_{j+1}$ . With the same arguments,  $G'_{j+1}$  is also a complete bipartite graph with the bipartition  $(U_{j+1}, V_{j+1})$ . As G is finite, this process must end at  $j = \ell$  for some integer  $\ell > 0$ , and so no further L-operations can be performed in the way above on the bipartite graph  $G'_{\ell}$ . Let  $(U_{\ell}, V_{\ell})$  be the bipartition of  $G'_{\ell}$ . It follows  $|U_{\ell}| \leqslant \frac{p-1}{2}$ .

By Definition 18, there exists a sequence of ordered pairs

$$(L_1,Q_1),(L_2,Q_2),\ldots,(L_{\ell},Q_{\ell})$$

arising in the process of the L-operations to obtain  $G_{\ell}$ , and satisfying both (S1) and (S2) below.

(S1) Let  $U_0 = U$ . For  $i = 1, 2, ..., \ell$ , each  $L_i$  is spanned by a  $(p-1)K_2$ , with  $V(L_i)$ consisting of two vertices in  $U_{i-1}$ , formed by, for i > 1, identifying the two vertices in  $V(L_{i-1})$  in  $U_{i-2}$ .

(S2) Let  $Q_0 = \emptyset$ . For  $i = 1, 2, \dots, \ell$ ,  $|Q_i| = p - 1$ ,  $Q_i \subseteq V - (\bigcup_{j < i} Q_j)$ , and no edges joining vertices in  $Q_i$  to the contraction image of  $L_i$ .

Let G' be the graph obtained from G by recursively applying the L-operation at the two vertices of each  $L_i$ , and then contract the edges in  $E(L_i)$ , recursively for each  $i=1,2,\ldots,\ell$ . As all the contractions are taken with vertices in U,G' is a graph whose vertex set is a disjoint union of V and  $U_{\ell}$ . Since  $|U| = \frac{1}{2}(p^2 - 3p + 4) = \frac{1}{2}(p - 1)(p - 2) + 1$ , by (S1) and  $|U_{\ell}| \leq \frac{p-1}{2}$ , there must be a vertex  $u' \in U_{\ell}$  which is obtained by identifying at least p-1 vertices in U.

Let  $J = cl_{G'}(\{u'\})$ , the  $\mathcal{O}_p$ -closure of the single vertex u' in G' and let V' = V - $(\bigcup_{i=1}^{\ell} Q_i)$ . By (S2) and (6), and as  $\ell \leq p-2 < m$ , we have  $n' = |V'| \geq n_2 - \ell(p-1) \geq p-1$ . It follows that for every  $v' \in V'$ , there are at least (p-1) parallel edges joining u' and v' in G'. Hence we may write  $V' = \{v'_1, v'_2, \ldots, v'_n\}$  such that for any i with  $1 \le i \le n' - 1$ , there are at least p-1 edges in G' joining  $v_{i+1}$  to  $\{u', v'_1, \ldots, v'_i\}$ . It follows by Definition 9,  $V' \subseteq V(J)$ . By (S2), any vertex in V' is adjacent to every vertex in  $U_\ell$ . Since  $|V'| \ge p-1$ , it follows by Definition 9, that  $U_\ell \subseteq V(J)$ . By (S2) again, every  $v \in V$  is in at most one  $Q_j$ 's, and so by  $p \ge 5$ ,  $d_{G'}(v') \ge d_G(v) - 2 = n_1 - 2 \ge p - 1$ . Therefore we must have G' = J and so by  $(1), G' \in \mathcal{O}_p$ .

Let G'' be the graph obtained from G by recursively performing the L-operation at the two vertices of each  $L_i$ , recursively for each  $i=1,2,\ldots,\ell$ . Then by Definition 18, G'' is a bipartite graph with bipartition (U,V) as G with  $E(G'') - \bigcup_{j=1}^{\ell} E(L_j) \subset E(G)$ . Fix j with  $1 \leq j \leq \ell$ , for each edge  $e_j \in E(L_j)$ , by (10), there exists a pair of edges  $e'_j, e''_j \in E_G(v)$  for some  $v \in V$  with  $f(e'_j) = f(e''_j)$  such that in the lifting process,  $e'_j$  and  $e''_j$  become  $e_j$  in G''. Define

$$f''(e_j) = f(e'_j)$$
, for each edge  $e_j \in E(L_j)$ , where  $1 \le j \le \ell$ . (12)

Recall that  $b \in Z(G, \mathbb{Z}_p)$  and  $f \in F(G, \mathbb{Z}_p^*)$  are given with f satisfying (8). Define  $b' = b \in Z(G, \mathbb{Z}_p)$ , and  $f' : E(G'') \to \mathbb{Z}_p^*$  by utilizing (12) as follows:

$$f'(e) = \begin{cases} f(e) & \text{if } e \in E(G) - \bigcup_{j=1}^{\ell} E(L_j), \\ f''(e) & \text{if } e \in \bigcup_{j=1}^{\ell} E(L_j). \end{cases}$$

By Lemma 7(iii) and (vi), and since  $G' \in \mathcal{O}_p$ , we conclude that  $G'' \in \mathcal{O}_p$ . Hence G'' has an (f', b; p)-orientation D'. By repeated application of Lemma 17, we conclude that G has an (f, b; p)-orientation, as desired.

By applying contraction of  $K_{n_1,n_2}$  from  $K_{n_1,n}$  with  $n \ge n_2$  and Lemma 7 (i), one concludes that  $K_{n_1,n} \in \mathcal{O}_p$ .

For positive integers m and n, let  $K_{m,n}$  be the complete bipartite graph with bipartition  $U = \{u_1, \ldots, u_m\}$  and  $V = \{v_1, \ldots, v_n\}$ . For any subset  $\{t_1, t_2, \ldots, t_\ell\}$  of  $\mathbb{Z}_m$ , where  $t_1 \leq t_2 \ldots \leq t_\ell$ , let  $K(t_1, t_2, \ldots, t_\ell)$  be the graph obtained from  $K_{m,n}$  by identifying  $u_1, \ldots, u_{t_1}$ , identifying  $u_{t_i+1}, \ldots, u_{t_{i+1}}$  for each  $1 \leq i \leq \ell-1$  and identifying  $u_{t_\ell+1}, \ldots, u_m$ , respectively. Define

$$\mathcal{K}^*(m,n) = \{K(t_1, t_2, \dots, t_\ell) : \{t_1, t_2, \dots, t_\ell\} \subseteq \mathbb{Z}_m\}.$$

Since identifying two nonadjacent vertices u, v in a graph G amounts to the operation (G+uv)/uv. By Lemma 7(iii) and (ii),  $G \in \mathcal{O}_p$  implies that  $(G+uv)/uv \in \mathcal{O}_p$ . Combining Theorem 20, leads to the following seemingly more general corollary.

Corollary 21. Let  $G \in \mathcal{K}^*(n_1, n_2)$  be a graph and p > 0 be an odd prime. Then  $G \in \mathcal{O}_p$ .

As an application of corollary above, we present that if a family of graphs has a bounded matching number, then after certain reduction operations, there are only finitely many  $\frac{1}{2}(p^2-3p+4)$ -edge-connected graphs not in  $\mathcal{O}_p$ . To state our theorem formally, we shall first introduce the concept of  $\mathcal{O}_p$ -reduction below.

As  $K_1 \in \mathcal{O}_p$  by definition, for every graph G, any vertex is contained in a maximal subgraph in  $\mathcal{O}_p$ . Let  $H_1, H_2, \dots, H_c$  be the family of all maximal subgraphs of G which all in  $\mathcal{O}_p$ . Define  $G' = G/(\bigcup_{i=1}^c E(H_i))$  to be the  $\mathcal{O}_p$ -reduction of G, or G is  $\mathcal{O}_p$ -reduced to G'. A graph G is called **trivially**  $\mathcal{O}_p$ -reduced if G has no non-trivial subgraph in  $\mathcal{O}_p$ . Our main result can be stated below.

**Theorem 22.** Let G be a graph, p > 0 be an odd prime and s > 0 be an integer. Then for every function  $f \in F(G, \mathbb{Z}_p^*)$  and every  $\mathbb{Z}_p$ -boundary b of G, there is a finite graph family  $\mathcal{G}(p,s)$  such that every graph G with  $\kappa'(G) \geqslant \frac{1}{2}(p^2 - 3p + 4)$  and  $\alpha'(G) \leqslant s$  has an (f,b;p)-orientation if and only if the  $\mathcal{O}_p$ -reduction of G is not in  $\mathcal{G}(p,s)$ .

To obtain this theorem, we also need the following elementary counting lemma, see [6, II.5\*].

**Lemma 23.** ([6]) Let  $\ell, n > 0$  be integers. Then there are  $\binom{n+\ell-1}{\ell-1}$  non-negative integral solutions  $(x_1, x_2, \ldots, x_\ell)$  for the equation  $x_1 + x_2 + \cdots + x_\ell = n$ .

Denote  $N(p,s) = n_2 \cdot {2s+n_1-1 \choose 2s-1} + 2s$ , where  $n_1 = \frac{1}{2}(p^2-3p+4), n_2 = \frac{1}{2}n_1(n_1-1)(p-1)$ . Let  $\mathcal{F}(p,s)$  be the family of all  $n_1$ -edge-connected  $\mathcal{O}_p$ -reduced graphs of order between 2 and N(p,s) with matching number at most s. Then each graph in  $\mathcal{F}(p,s)$  has edge multiplicity at most p-2 by Lemma 7(vi). So there are finitely many graphs in  $\mathcal{F}(p,s)$ . We will show the following stronger theorem, which implies Theorem 22 by Lemma 7(i), (iii) and Corollary 21.

**Theorem 24.** Let G be a  $\frac{1}{2}(p^2 - 3p + 4)$ -edge-connected graph with  $\alpha'(G) \leq s$ . Then  $G \in \mathcal{O}_p$  if and only if G cannot be  $\mathcal{O}_p$ -reduced to a member in  $\mathcal{F}(p,s)$ .

**Proof.** If  $G \in \mathcal{O}_p$ , then G is  $\mathcal{O}_p$ -reduced to  $K_1 \notin \mathcal{F}(p,s)$  by Lemma 7(vi). We shall show the converse that if G cannot be  $\mathcal{O}_p$ -reduced to a member in  $\mathcal{F}(p,s)$ , then  $G \in \mathcal{O}_p$ . Let G be a counterexample and let G' be the  $\mathcal{O}_p$ -reduction of G. Then  $G' \notin \mathcal{F}(p,s)$ 

and it leads to

$$|V(G')| > N(p,s) = n_2 \cdot {2s + n_1 - 1 \choose 2s - 1} + 2s.$$
 (13)

By the definition of G', we achieve  $\alpha'(G') \leq \alpha'(G) \leq s$ . Let  $M = \{w_1w_2, w_3w_4, \ldots, w_{2d-1}w_{2d}\}$  be a maximum matching of G', where  $d \leq s$ . Denote  $W = \{w_1, \ldots, w_{2d}\}$ . Then Z = V(G') - W is an independent vertex set of G'. Since G' is  $n_1$ -edge-connected, we have  $|[z, W]_{G'}| \geq n_1$  for any  $z \in Z$ . Pick arbitrary  $n_1$  edges from  $[z, W]_{G'}$ , denoted by H(z), for each  $z \in Z$ . Let  $G'_1 = \bigcup_{z \in Z} H(z)$  be the graph induced by the edge set  $\bigcup_{z \in Z} H(z)$  in G'.

We claim that there exists a member of  $\mathcal{K}^*(n_1, n_2)$  in  $G'_1$ , therefore in G'. This will lead to a contradiction to the fact that G' is a  $\mathcal{O}_p$ -reduced graph by Theorem 21.

For any  $w \in W$  and  $z \in Z$ , denote  $x(w, z) = |[w, z]_{G'_1}|$  to be the number of edges between w and z in H(z). Note that x(w, z) = 0 if w is not in the graph H(z). Since H(z) consists of  $n_1$  edges, we have, for each  $z \in Z$ ,

$$x(w_1, z) + x(w_2, z) + \dots + x(w_{2d}, z) = n_1.$$

By (13) and  $d \leq s$ ,  $|Z| = |V(G')| - 2d > N(p,s) - 2s \geqslant n_2\binom{2s+n_1-1}{2s-1}$ . By Lemma 23 and the Pigeon-Hole Principle, there exists a subset  $Z_1 \subset Z$  of size  $n_2$  such that, for any  $z, z' \in Z_1$ ,

$$(x(w_1, z), x(w_2, z), \dots, x(w_{2d}, z)) = (x(w_1, z'), x(w_2, z'), \dots, x(w_{2d}, z')).$$

Denote  $x_1, \ldots, x_{\ell+1}$  to be all the nonzero coordinates in  $(x(w_1, z), x(w_2, z), \ldots, x(w_{2d}, z))$ . Then the graph  $[Z_1, Y]_{G'_1} \cong K(t_1, t_2, \ldots, t_\ell)$  is a member of  $\mathcal{K}^*(n_1, n_2)$ , where  $t_1 = x_1$ ,  $t_{\ell+1} = (n_1) - t_\ell$  and  $t_i - t_{i-1} = x_i$  for  $2 \leqslant i \leqslant \ell$ . This proves the claim as well as the theorem.

# 5 Signed graphs

A signed graph is an ordered pair  $(G, \sigma)$  consisting of a graph G with a mapping  $\sigma: E(G) \to \{1, -1\}$ . An edge  $e \in E(G)$  is positive if  $\sigma(e) = 1$  and negative if  $\sigma(e) = -1$ . The mapping  $\sigma$ , called the signature of G, is sometimes implicit in the notation of a signed graph and will be specified when needed. Both negative and positive loops are allowed in signed graphs. Define  $E^+_{\sigma}(G) = \sigma^{-1}(1)$  and  $E^-_{\sigma}(G) = \sigma^{-1}(-1)$ . If no confusion occurs, we simply use  $E^+$  for  $E^+_{\sigma}(G)$  and  $E^-$  for  $E^-_{\sigma}(G)$ . An orientation  $\tau$  assigns each edge of  $(G, \sigma)$  as follows: if  $e = xy \in E^+(G)$ , then e is either oriented from x and to y or bi-direction; if  $e = xy \in E^-(G)$ , then e is oriented either away from both x and y or towards both x and y. We call e = xy a sink edge (a source edge, respectively) if it is oriented away from (towards, respectively) both x and y.

Let  $\tau$  be an orientation of  $(G, \sigma)$ . For each vertex  $v \in V(G)$ , let  $H_G(v)$  be the set of half edges incident with v. Define  $\tau(h) = 1$  if the half edge  $h \in H_G(v)$  is oriented away from v, and  $\tau(h) = -1$  if the half edge  $h \in H_G(v)$  is oriented towards v. Denote  $d_{\tau}^+(v) = |H_{G,\tau}^+(v)|$   $(d_{\tau}^-(v) = |H_{G,\tau}^-(v)|$ , respectively) to be the outdegree (indegree, respectively) of  $(G,\sigma)$  under orientation  $\tau$ , where  $E_{\tau}^+(v)$   $(E_{\tau}^-(v)$ , respectively) denotes the set of outgoing (ingoing, respectively) half edges incident with v.

An edge cut of  $(G, \sigma)$  is just an edge cut of G. The **switch operation**  $\zeta = \zeta_S$  on an edge-cut S is a mapping  $\zeta : E(G) \to \{-1, 1\}$  such that  $\zeta(e) = -1$  if  $e \in S$  and  $\zeta(e) = 1$  otherwise. Two signatures  $\sigma$  and  $\sigma'$  are **equivalent** if there exists an edge-cut S such that  $\sigma(e) = \sigma'(e)\zeta(e)$  for every edge  $e \in E(G)$ , where  $\zeta$  is the switch operation on some edge-cut S of G. For a signed graph  $(G, \sigma)$ , let  $\chi$  denote the collection of all signatures equivalent to  $\sigma$ . The **negativeness** of  $(G, \sigma)$  is denoted by  $\epsilon_N(G, \sigma) = \min\{|E_{\sigma'}^-(G)| : \forall \sigma' \in \chi\}$ . We use  $\epsilon_N$  for short if the signed graph  $(G, \sigma)$  is understood from the context. A signed graph is called k-unbalanced if  $\epsilon_N \geqslant k$ , and a 1-unbalanced signed graph is also known as an unbalanced signed graph.

We follow [17], to define signed graph **contractions**. For an edge  $e \in E(G)$ , the contraction G/e is the signed graph obtained from G by identifying the two ends of e, and then deleting the resulting positive loop if  $e \in E^+$ , but keeping the resulting negative loop if  $e \in E^-$ . For  $X \subseteq E(G)$ , the contraction G/X is the signed graph obtained from G by contracting each edge in X. If H is a subgraph of G, then we use G/H for G/E(H). By definition, for any edge subset X of G,  $e_N(G/X) \leq e_N(G)$ .

Let A be an abelian (additive) group. Define  $2A = \{2\alpha : \forall \alpha \in A\}$ , and  $A^* = A - \{0\}$ . For a signed graph  $(G, \sigma)$ , we still denote  $F(G, A) = \{f | f : E(G) \to A\}$ . Let  $\tau$  be an orientation of  $(G, \sigma)$ . For each  $f \in F(G, A^*)$ , the **boundary** of f is the function  $\partial f : V(G) \to A$  defined by

$$\partial f = \sum_{h \in H_G(v)} \tau(h) f(e_h),$$

where  $e_h$  is the edge of G containing h and the summation is taken in A. If  $\partial f = 0$ , then  $(\tau, f)$  is an A-flow of G. In addition,  $(\tau, f)$  is a nowhere-zero A-flow if both  $f \in F(G, A^*)$  and  $\partial f = 0$ . For any  $f \in F(G, A^*)$ , each positive edge contributes 0, each sink edge e contributes 2f(e), and each source edge e contributes -2f(e) to  $\sum_{v \in V(G)} \partial f(v)$ . Thus one has

$$\sum_{v \in V(G)} \partial f(v) = \sum_{e \text{ is a sink edge}} 2f(e) - \sum_{e \text{ is a source edge}} 2f(e) \in 2A.$$

In [17], the authors introduced the definition of group connectivity of signed graphs. We extend this notation to a mod k f-weighted b-orientation (an (f, b; k)-orientation) of signed graphs.

Let  $(G, \sigma)$  be a 2-unbalanced signed graph. A mapping  $b: V(G) \to \mathbb{Z}_k$  is called an  $\mathbb{Z}_k$ -boundary of  $(G, \sigma)$  if

$$\sum_{v \in V(G)} b(v) = 2\alpha \text{ for some } \alpha \in \mathbb{Z}_k.$$

Let  $Z(G, \mathbb{Z}_k)$  be the collection of all  $\mathbb{Z}_k$ -boundaries. Given a signed graph  $(G, \sigma)$ , for every  $b \in Z(G, \mathbb{Z}_k)$  and every  $f \in F(G, \mathbb{Z}_k^*)$ , an orientation  $\tau$  of  $(G, \sigma)$  is an (f, b; k)orientation if for every vertex  $v \in V(G)$ ,

$$\partial f(v) = \sum_{h \in H_G(v)} \tau(v) f(e_h) = b(v).$$

As graphs are signed graphs with negativeness zero, it is again necessary to assume k to be a prime when studying (f, b; k)-orientations of signed graphs. Let p > 1 be a prime. For notational simplification, we continue using  $\mathcal{O}_p$  to denote the signed graph family  $\mathcal{O}_p$  such that  $(G, \sigma) \in \mathcal{O}_p$  if and only if  $(G, \sigma)$  admits an (f, b; p)-orientation for any  $f \in F(G, \mathbb{Z}_p^*)$  and any  $b \in Z(G, \mathbb{Z}_p)$ . To avoid triviality, throughout the rest of this section, we always assume signed graphs under discussion with negativeness at least one.

**Lemma 25.** Weighted modulo orientability is invariant under the switch operation.

**Proof.** Let  $(G, \sigma)$  be a 2-unbalanced signed graph such that  $(G, \sigma) \in \mathcal{O}_p$ . As every switching operation can be composed from the switching operations on trivial edge-cut, it suffices to verify this lemma for the switch operation  $\zeta_u$  on the trivial edge-cut  $S = E_G(u)$  for any given vertex u. We fix a vertex u and let  $\zeta = \zeta_u$  in the discussion below. Then

 $\sigma' = \sigma \zeta$  is an signature equivalent to  $\sigma$ . We are to show that for any  $f' \in F(G, \mathbb{Z}_p^*)$  and any  $b' \in Z(G, \mathbb{Z}_p)$ , the signed graph  $(G, \sigma')$  also admits an (f', b'; p)-orientation.

Let f = f' and define  $b : V(G) \to \mathbb{Z}_p$  by setting b(u) = -b'(u) and b(v) = b'(v) for any  $v \in V(G) \setminus \{u\}$ . As  $b' \in Z(G, \mathbb{Z}_p)$ , we also have

$$\sum_{v \in V(G)} b(v) = -b'(u) + \sum_{v \in V(G) \setminus \{u\}} b'(v) = \sum_{v \in V(G)} b'(v) - 2b'(u) \in 2\mathbb{Z}_p.$$

Thus  $b \in Z(G, \mathbb{Z}_p)$  is also an  $\mathbb{Z}_p$ -boundary of  $(G, \sigma)$ . Since  $(G, \sigma)$  admits an (f, b; p)orientation, there exists an orientation  $\tau$  such that, for every vertex  $v \in V(G)$ ,

$$\partial f(v) = \sum_{h \in H_G(v)} \tau(h) f(e_h) = b(v).$$

Let  $\tau'$  be the orientation of  $(G, \sigma')$  such that  $\tau'(h) = -\tau(h)$  if  $h \in H_G(u)$  and  $\tau'(h) = \tau(h)$  otherwise. Hence, we have  $\partial f'(v) = \partial f(v) = \sum_{h \in H_G(v)} \tau'(h) f(e_h) = b(v) = b'(v)$  for any vertex  $v \in V(G) \setminus \{u\}$ . In addition,

$$\partial f'(u) = -\partial f(u) = \sum_{h \in H_G(u)} \tau'(h) f(e_h) = \sum_{h \in H_G(u)} -\tau(h) f(e_h) = -b(u) = b'(u).$$

Therefore,  $\partial f' = b'$  in the signed graph  $(G, \sigma')$  with orientation  $\tau'$ .

**Lemma 26.** Let  $K_1^{-t}$  be the graph obtained from  $K_1$  by attaching t negative loops to it. Then  $K_1^{-t} \in \mathcal{O}_p$  if and only if  $t \ge p-1$ .

**Proof.** Let  $V(K_1^{-t}) = \{v\}$ ,  $H = tK_2$  be the signed graph with  $V(H) = \{v, v'\}$  such that there are t positive edges joining v and v'. Note that  $E(H) = E(K_1^{-t})$ .

Assume first that  $t \geq p-1$ . Let  $f \in F(K_1^{-t}, \mathbb{Z}_p^*)$  be an arbitrary mapping and  $b(v) \in 2\mathbb{Z}_p$  by an arbitrary  $\mathbb{Z}_p$ -boundary of  $K_1^{-t}$ . Since  $b(v) \in 2\mathbb{Z}_p$ , there exists an element  $\beta \in \mathbb{Z}_p$  such that  $b(v) = 2\beta$ . Define  $b_H \in Z(H, \mathbb{Z}_p)$  by setting  $b_H(v) = \beta$  and  $b_H(v') = -\beta$ . As  $t \geq p-1$ , by Lemma 7(vi), there exists an orientation  $\tau$  of H such that  $\sum_{h \in H_G(v)} \tau(h) f(e_h) = \beta$  and  $\sum_{h \in H_G(v')} \tau(h) f(e_h) = -\beta$ . Since  $K_1^{-t}$  can be obtained from H by identifying v and v', the orientation of  $K_1^{-t}$  is obtained from  $\tau$  of H by taking the oppositive direction of every half edge in  $H_G(v')$ . Thus  $K_1^{-t} \in \mathcal{O}_p$ . Conversely, we argue by contradiction and assume  $K_1^{-t} \in \mathcal{O}_p$  but t < p-1. By

Conversely, we argue by contradiction and assume  $K_1^{-t} \in \mathcal{O}_p$  but  $t . By Lemma 7(iv), there exists an element <math>\beta \in \mathbb{Z}_p$ , a mapping  $b' \in Z(H, \mathbb{Z}_p)$  with  $b'(v) = \beta$  and  $b'(v') = -\beta$ , and a mapping  $f \in F(H, \mathbb{Z}_p^*)$  such that H admits no (f, b'; p)-orientations. Let  $b \in Z(K_1^{-t}, \mathbb{Z}_p)$  be the mapping with  $b(v) = 2\beta$ . As  $f \in F(K_1^{-t}, \mathbb{Z}_p^*)$  also, if  $K_1^{-t}$  has an (f, b; p)-orientation  $\tau'$ , then  $\tau'$  also gives rise to an (f, b'; p)-orientation of H, contrary to the fact that H admits no (f, b'; p)-orientations. This contradiction indicates that we must have  $t \geqslant p - 1$ .

Thus we have the following observation immediately.

Observation 27. If  $(G, \sigma) \in \mathcal{O}_k$  is an unbalanced signed graph, then  $\epsilon_N \geqslant k-1$ .

**Lemma 28.** Let k be a positive integer and let  $(H, \sigma)$  be a signed graph. Assume that either  $E_{\sigma}^{-}(H) = \emptyset$  and  $H \in \mathcal{O}_k$  is as an ordinary graph or  $(H, \sigma) \in \mathcal{O}_k$  is as a (k-1)-unbalanced signed graph. If  $(G, \sigma')$  is a (k-1)-unbalanced signed graph containing  $(H, \sigma)$  as a subgraph, then  $(G, \sigma') \in \mathcal{O}_k$  if and only if  $(G/H, \sigma'') \in \mathcal{O}_k$ .

**Proof.** For the unsigned graphs, the necessity can be proved following Lemma 7 (ii). One can prove the necessity of signed graphs analogously. It remains to prove the sufficiency.

In the sequel, for simplicity, we will use G/H to denote the signed graph  $(G/H, \sigma'')$ . Let  $f \in F(G, \mathbb{Z}_k^*)$  and  $b \in Z(G, \mathbb{Z}_k)$  be given, and let  $v_H$  be the vertex in G/H onto which H is contracted. For notational convenience, let  $E_{\sigma}^-(H)$  denote the set of all negative edges of  $(H, \sigma)$ , as well as the set of negative loops incident with  $v_H$  in G/H obtained by contracting H. Let  $f_1 \in F(G/H, \mathbb{Z}_k^*)$  be the restriction of f on E(G/H), and define  $b_1(v_H) = \sum_{v \in V(H)} b(v)$  and  $b_1(v) = b(v)$  if  $v \in V(G/H) - \{v_H\}$ . Direct verification shows that  $b_1 \in Z(G/H, \mathbb{Z}_k)$ . Since  $G/H \in \mathcal{O}_k$ , there exists an  $(f_1, b_1; p)$ -orientation  $\tau_1$  of G/H, and so  $\partial f_1 = b_1$ .

For each vertex  $v \in V(H)$ , let  $X_1(v)$  be the set of half edges incident with v in E(G) - E(H), and  $X_2(v)$  be the set of half edges incident with v in  $E_{\sigma}^-(H)$ . Define  $b_2: V(H) \to \mathbb{Z}_k$  by

$$b_2(v) = b(v) - \sum_{h \in X_1(v)} \tau(h) f_1(e_h).$$
(14)

Since  $\partial f_1 = b_1$  in G/H, we have

$$\sum_{v \in V(H)} \sum_{h \in X_1(v) \cup X_2(v)} \tau(h) f_1(e_h) = \partial f_1(v_H) = b_1(v_H) = \sum_{v \in V(H)} b(v).$$

By (14),

$$\sum_{v \in V(H)} b_2(v) = \sum_{v \in V(H)} b(v) - \sum_{v \in V(H)} \sum_{h \in X_1(v)} \tau(h) f_1(e_h)$$

$$= \sum_{v \in V(H)} \sum_{h \in X_2(v)} \tau(h) f_1(e_h) = \sum_{e \in E_{\sigma}^-(H)} \pm 2f_1(e) \in 2\mathbb{Z}_k.$$

In the case when  $E_{\sigma}^{-}(H) = \emptyset$ ,  $b_2$  is a zero sum function, and so we always have  $b_2 \in Z(H, \mathbb{Z}_k)$ . Let  $f_2 \in F(H, \mathbb{Z}_k^*)$  be the restriction of f in E(H). Since  $H \in \mathcal{O}_k$ , there exists an orientation  $\tau_2$  of H such that  $\partial f_2 = b_2$ . Let  $\tau = \tau_1 \cup \tau_2$  be the orientation of G formed by combing the orientation  $\tau_2$  of H and the orientation  $\tau_1$  of G/H. Then, for each vertex  $v \in V(H)$ , it follows from (14) that

$$\begin{split} \partial f(v) &= \partial f_1(v) + \partial f_2(v) \\ &= \sum_{h \in X_1(v)} \tau(h) f_1(e_h) + b_2(v) \\ &= \sum_{h \in X_1(v)} \tau(h) f_1(e_h) + [b(v) - \sum_{h \in X_1(v)} \tau(h) f_1(e_h)] = b(v). \end{split}$$

Therefore,  $\tau$  is an (f, b; k)-orientation of  $(G, \sigma')$ . By definition,  $(G, \sigma') \in \mathcal{O}_k$ .

Lemma 28 leads to a reduction method for verifying weighted modulo orientability of unbalanced signed graphs, which is an extension of Lemma 7(iii) for unsigned graphs. The following lemma follows Lemma 26 and Lemma 28.

**Lemma 29.** An unbalanced signed graph  $(G, \sigma) \in \mathcal{O}_p$  if and only if it can be contracted to  $K_1^{-t}$  for some integer  $t \ge p-1$  by contracting its subgraphs in  $\mathcal{O}_p$  recursively.

Lemma 30 below is a consequence by combining Lemma 28 and Lemma 29.

**Lemma 30.** Let  $(G, \sigma)$  be a (p-1)-unbalanced signed graph. If  $G[E^+]$  is spanning and  $G[E^+] \in \mathcal{O}_p$  is as an ordinary graph, then  $(G, \sigma) \in \mathcal{O}_p$ .

The following theorems are our main results of this section.

**Theorem 31.** Let p be an odd prime and let  $(G, \sigma)$  be a (p-1)-unbalanced signed graph with  $\kappa'(G) \ge 12p^2 - 28p + 15$ . Then  $(G, \sigma) \in \mathcal{O}_p$ .

**Proof.** Pick any  $f \in F(G, \mathbb{Z}_p^*)$  and any  $\mathbb{Z}_p$ -boundary b. Since p is prime, we have  $2\mathbb{Z}_p = \mathbb{Z}_p$  and  $\sum_{v \in V(G)} b(v)$  can be any element in  $\mathbb{Z}_p$ . By Lemma 25, we may assume that  $|E_{\sigma}^-(G)| = \epsilon_N$ . Since  $(G, \sigma)$  is a  $(12p^2 - 28p + 15)$ -edge-connected signed graph with minimal number of negative edges in the switch equivalent class,  $|S \cap E_{\sigma}^-(G)| \leq \frac{1}{2}|S|$  for each edge-cut S. Therefore  $G[E_{\sigma}^+(G)]$  is  $(6p^2 - 14p + 8)$ -edge-connected and hence  $G[E^+] \in \mathcal{O}_p$  by Theorem 4. By Lemma 30, one has  $(G, \sigma) \in \mathcal{O}_p$ .

**Theorem 32.** Let p be an odd prime and let  $(G, \sigma)$  be a (p-1)-unbalanced signed series-parallel graph with  $\kappa'(G) \geqslant 4p-7$ . Then  $(G, \sigma) \in \mathcal{O}_p$ .

**Proof.** We prove by induction on |V(G)|. The statement clearly holds for |V(G)| = 1 by Lemma 26. Assume  $|V(G)| \ge 2$ . The underlying simple graph H of G is  $K_4$ -minorfree, and so contains a vertex v of degree at most 2. Denote  $N_H(v) = \{x,y\}$  if v has two neighbors and  $N_H(v) = \{x\}$  if v has a unique neighbor. In the signed graph G, by the edge connectivity  $\kappa'(G) \ge 4p - 7$ , we have  $|[v,x]_G| + |[v,y]_G| \ge 4p - 7$ . Hence  $\max\{|[v,x]_G,|[v,y]_G|\} \ge 2p - 3$ . We may, with out loss of generality, assume  $|[v,x]_G| \ge 2p - 3$ . (In the case  $N_H(v) = \{x\}$ , we have  $|[v,x]_G| \ge 4p - 7 \ge 2p - 3$  as well.) By Lemma 25, by possible some switching operation at least half of edges in  $[v,x]_G$  are positive, and so there are at least p-1 parallel positive edges, denoted by M, in  $[v,x]_G$ . Thus by Lemma 7(iv), those parallel positive edges M in  $[v,x]_G$  is in  $\mathcal{O}_p$ . Moreover,  $G/M \in \mathcal{O}_p$  by induction, and so  $(G,\sigma) \in \mathcal{O}_p$  by Lemma 28.

## 6 Conclusion

In this paper, we reduce the edge-connectivity  $(6p^2-14p+8)$  in Theorem 4 for some graph families, and we extend the (f, b; p)-orientation framework to signed graph. Viewing the results in this paper and in literatures, we believe that it is possible that a linear function of p would suffice for the existence of such (f, b; p)-orientations. We conclude this paper with the following conjectures.

Conjecture 33. There exists a constant c independent of p such that every cp-edge-connected graph is in  $\mathcal{O}_p$ .

Conjecture 34. There exists a constant c independent of p such that every cp-edge-connected (p-1)-unbalanced signed graph is in  $\mathcal{O}_p$ .

In fact, by Lemma 30 those two conjecture are equivalent (regardless of the constant c).

# Acknowledgements

The authors would like to thank the referees for suggesting improvements on the presentation of this paper.

### References

- [1] N. Alon, N. Linial and R. Meshulam, Additive bases of vector spaces over prime fields. J. Combin. Theory Ser. A, 57:203–210, 1991.
- [2] J. A. Bondy and U. S. R. Murty, Graph theory, Springer, New York, 2008.
- [3] J. Chen, E. Eschen and H.-J. Lai, Group connectivity of certain graphs, Ars Combinatoria, 89:141–158, 2008.
- [4] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. Lond. Math. Soc., 27:85–92, 1952.
- [5] L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1):534–542, 2018.
- [6] W. Feller, An Introduction to Probability Theory and Its Applications Vol. 1 (3rd Edition), John Wiley & Sons, Inc., 1968.
- [7] M. Han, J. Li, Y. Wu and C.-Q. Zhang. Counterexamples to Jaeger's circular flow conjecture, *J. Combin. Theory, Ser. B*, 131:1–11, 2018.
- [8] F. Jaeger, Nowhere-zero Flow Problems. In Selected Topics in Graph Theory (L. Beineke and R. Wilson, Eds.), Vol. 3, pages 91–95. Academic Press, London/New York, 1988.
- [9] F. Jaeger, N. Linial, C. Payan and M. Tarsi, Group connectivity of graphs-A non-homogeneous analogue of nowhere-zero flow properties, *J. Combin. Theory, Ser. B*, 56:165–182, 1992.
- [10] T. Kloks, Treewidth, Computations and Approximations, Springer-Verlag, New York, 1994.
- [11] H.-J. Lai, Group connectivity of 3-edge-connectied chordal graphs, *Graphs and Combinatorics*, 16:165-176, 2000.
- [12] H.-J. Lai, Mod (2p+1)-orientations and  $K_{1,2p+1}$ -decompositions, SIAM J. of Discrete Math., 21:844-850, 2007.

- [13] H.-J. Lai, X. Li, Y. H. Shao and M. Zhan, Group Connectivity and Group Colorings of Graphs-A survey, *Acta Mathematica Sinica*, *English Series*, 27:405-434, 2011.
- [14] H.-J. Lai, Y. Liang, J. Liu, Z. Miao, J. Meng, Y. Shao and Z. Zhang, On Strongly  $Z_{2s+1}$ -connected Graphs, *Discrete Applied Math.*, 174:73-80, 2014.
- [15] H.-J. Lai, R. Luo and C. Q. Zhang, Integer flow and orientation. In *Topics in Chromatic Graph Theory (L. Beineke and R. Wilson, Eds.)*, Vol. 156, pages 181–198. Encyclopedia of Mathematics and Its Applications, 2015.
- [16] J. Li, Group Connectivity and Modulo Orientations of Graphs, PhD Dissertation, West Virginia University, 2018.
- [17] J. Li, R. Luo, H. Ma and C.-Q. Zhang, Flow-contractible configurations and group connectivity of signed graphs, *Discrete Math.*, 341:3227–3236, 2018.
- [18] J.-B. Liu, P. Li, J. Li and H.-J. Lai, On weighted modulo orientation of graphs, *European J. Combin.*, 89:103163, 2020.
- [19] J.-B Liu, Weighted modulo orientations of graphs, PhD Dissertation, West Virginia University, 2020.
- [20] L. M. Lovasz, C. Thomassen, Y. Wu and C. Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, *J. Combin. Theory, Ser. B*, 103:587–598, 2013.
- [21] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York, ISBN: 0-8247-9790-6, 1997.