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Abstract

The purpose of this note is to introduce a new family of quasi-symmetric functions
called LLT cumulants and discuss its properties. We define LLT cumulants using
the algebraic framework for conditional cumulants and we prove that the Macdonald
cumulant has an explicit positive expansion in terms of LLT cumulants of ribbon
shapes, generalizing the classical decomposition of Macdonald polynomials. We also
find a natural combinatorial interpretation of the LLT cumulant of a given directed
graph as a weighted generating function of colorings of its subgraphs.

We use this graph theoretical framework to prove various positivity results. This
includes monomial positivity, positivity in fundamental quasisymmetric functions
and related positivity of the coefficients of Schur polynomials indexed by hook
shapes. We also prove e-positivity for vertical-shape LLT cumulants, after the shift
of variable q → q+1, which refines a recent result of Alexandersson and Sulzgruber.
All these results give evidence towards Schur-positivity of LLT cumulants, which
we conjecture here. We prove that this conjecture implies Schur-positivity of Mac-
donald cumulants, and we give more evidence by proving the conjecture for LLT
cumulants of melting lollipops that refines a recent result of Huh, Nam and Yoo.
Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In 1988, Macdonald [Mac88] introduced his celebrated two-parameter symmetric functions
and conjectured that when expanded in the basis of Schur symmetric functions, their
coefficients have a remarkable property: they seem to be polynomials in two deformation
parameters q, t with nonnegative integer coefficients. Since then, a broad community
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working on the symmetric functions theory devoted themselves to prove Macdonald’s
conjecture, which resulted in a huge development of the field.

In 1995, Lapointe and Vinet [LV95] proved that the coefficients of Jack symmetric
functions expanded in the monomial basis are polynomials in the deformation parameter
α with integer coefficient. Two years later, Knop and Sahi [KS97] found an explicit positive
formula for this expansion. Since Jack symmetric functions are a limit case of Macdonald
symmetric functions, these results inspired further research and shortly afterwards, the
polynomiality of the coefficients of Macdonald polynomials was proved independently
and almost simultaneously (using different approaches) in five different papers [Sah96,
GT96, LV97, Kno97, KN98]. An affirmative answer to Macdonald’s original conjecture
was finally released in a beautiful and difficult paper of Haiman [Hai01], who was able to
relate Macdonald’s question to a question about the geometry of Hilbert schemes of points
in the complex plane, to which he gave an affirmative answer. Even though this result
built new bridges between various fields of mathematics, it did not provide an explicit
combinatorial formula explaining Schur-positivity. Regardless, it generated new research
directions related with the structure of Macdonald and related symmetric functions.

In 2005, Haglund, Haiman and Loehr [HHL05a] found an explicit combinatorial for-
mula for Macdonald polynomials, lifting Knop and Sahi’s formula to the two-parameter
world of Macdonald, and relating Macdonald polynomials with another family of sym-
metric functions introduced by Leclerc, Lascoux and Thibon in 1997 [LLT97], and later
conveniently named LLT polynomials. Haglund, Haiman and Loehr noticed [HHL05a]
that Macdonald polynomials can be naturally decomposed as a positive combination of
LLT polynomials, so proving Schur-positivity for LLT polynomials would give yet an-
other proof of the famous conjecture of Macdonald. This was done by Grojnowski and
Haiman [GH07], who related LLT polynomials with the Kazhdan-Lusztig theory in a
much more general setting than what was done before [LT00], and therefore proved the
Schur-positivity of LLT polynomials indexed by arbitrary skew-shapes (see section 2.1 for
the details and all the necessary definitions).

In 2017, the first author together with Féray [DF17] introduced Jack cumulants as a
tool to approach a fascinating open problem in the theory of symmetric functions known
as the b-conjecture (posed by Goulden and Jackson [GJ96]), which relates Jack symmet-
ric functions with a weighted generting function of graphs embedded into surfaces (and
which, despite some recent progress [CD22], is still wide open). The notion of Jack cumu-
lants naturally extends to Macdonald cumulants the same way as Jack polynomials can
be seen as the limit case of Macdonald polynomials. The first author with Féray observed
conjecturally that the coefficients of Macdonald cumulants seem to be polynomials, which
was later proved in [Doł17] and further improved in [Doł19], where an explicit positive
combinatorial formula for the Macdonald cumulants was proved. This rich combinatorial
structure of Macdonald cumulants naturally calls for investigating the expansion in the
Schur basis: extensive computer simulations performed by the first author [Doł17] have
led him to believe that a more general version of the original question of Macdonald is
true: the coefficients of the Schur expansion of Macdonald cumulants are polynomials in
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q, t with nonnegative integer coefficients. We were recently informed that the logarithm
of a partition function for Macdonald polynomials was considered by Hausel, Letellier
and Rodriguez Villegas [HLRV11], who conjectured its monomial positivity interpreted
as the mixed Hodge polynomials of character varieties. The notion of Macdonald cumu-
lants appears naturally in the decomposition of the logarithm of the partition function,
and the recent work [AMRV19] (following [HS02, CBVdB04]) exhibits that the Poincaré
polynomial of Nakajima quiver variaties (which can be seen as a special case of the afore-
mentioned conjecture) is given by the specialization of the Tutte polynomial TutteG(1, q),
which is the same phenomenon as in our combinatorial interpretation of Macdonald cu-
mulants [Doł19]. All this gives yet additional motivation for studying the combinatorial
structure of Macdonald cumulants.

The main purpose of this note is to take a step in this direction by introducing the
notion of LLT cumulants. There are two natural motivations for introducing them:

• by analogy with the decomposition of Macdonald polynomials into LLT polynomi-
als, we show that the same phenomenon occurs at the level of higher cumulants:
Macdonald cumulants can be naturally expressed as a positive linear combination
of LLT cumulants – see theorem 10;

• in contrast to the purely algebraic definition of Macdonald cumulants inspired by the
theory of conditional cumulants, we show that LLT cumulants (a priori defined using
the same abstract framework) can be equivalently defined purely combinatorially as
graph colorings – see theorem 21. In particular, it is natural to study a general class
of graph colorings which contains LLT polynomials and LLT cumulants, and that
allows to treat certain LLT-specific phenomena in a more general graph-theoretical
sense – see section 3.

There are several applications of the aforementioned results. We start by developing
the theory of q-partial cumulants, which generalize the G-inversion polynomials or, equiv-
alently, the generating series of G-parking functions, which is also equal to the evaluation
of the Tutte polynomial TutteG(1, q) (see section 2.2), and we prove a positivity result
for these cumulants (see theorem 5). This result is crucial for proving theorem 11 which
says that Schur positivity of the cospin LLT cumulant (that we state as conjecture 7)
implies Schur positivity of Macdonald cumulants conjectured in [Doł17]. In section 3, we
introduce certain digraphs that we call LLT graphs, and we show that every LLT poly-
nomial is a weighted generating function of LLT graph colorings. We describe the ring
generated by these LLT graphs and we prove that the LLT cumulant of an r-colored LLT
graph (G, f) has a natural interpretation as a weighted generating function of colorings
of all f -connected subgraphs of G (see definition 20 and the preceding paragraph for the
precise definition of f -connectedness and LLT cumulants of r-colored LLT graphs). We
obtain this interpretation by studying certain relations between colorings of various LLT
graphs.

It is worth mentioning that recently, various authors have already proven many inter-
esting results concerning positivity of LLT polynomials and they heavily relied on some
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relations between them [Lee21, HNY20, AN21, AS22, Tom21]. Our interpretation of LLT
polynomials and LLT cumulants proves that the graph-theoretical point of view is very
natural and a characterization of all possible relations might potentially be achieved push-
ing these studies further in the future (see remark 15). We use our framework to refine
some of the previous positivity results, which gives evidence towards conjecture 7:

• we prove that the coefficients of LLT cumulants of an r-colored LLT graph (G, f) in
the quasi-symmetric monomial basis are polynomials in q with nonnegative integer
coefficients and we provide their explicit combinatorial interpretation (see theo-
rem 23). This result is a refinement of the combinatorial formula for Macdonald
polynomials [Doł19];

• we deduce an analogous result for the fundamental quasisymmetric basis and using
standard procedures, we deduce positivity of the coefficients of Schur basis indexed
by hooks (see theorems 26 and 28);

• we prove that LLT polynomials considered after the shift q → q+1 naturally decom-
pose as a sum of products of LLT cumulants. In the special case of vertical-strips,
we deduce from the recent result of Alexandersson and Sulzgruber [AS22] a posi-
tive combinatorial formula for LLT cumulants in the basis of elementary functions
(see theorem 30);

• we prove Schur positivity of LLT cumulants of r-colored lollipop graphs, generalizing
previous result of Huh, Nam and Yoo [HNY20] (see section 4.1 for the definitions
and theorem 38 for the result).

Our paper is organized as follows: in section 2, we review the necessary background
on Macdonald and LLT polynomials and on cumulants. Then we introduce q-partial
cumulants, we state our main conjecture 7, and we prove that it implies Schur posi-
tivity of Macdonald cumulants. section 3 is devoted to the study of LLT graphs and
weighted generating functions of their colorings that we introduce. In section 3.1, we give
a combinatorial interpretation of LLT cumulants in the graph-theoretical framework and
in section 3.2, we prove various positivity results supporting conjecture 7. In section 4,
we conclude with comments and questions related with conjecture 7 and, in particular,
further partial results including Schur positivity for LLT cumulants of r-colored melting
lollipops.

2 Macdonald cumulants and expansion in LLT cumulants

We use French convention for drawing Young diagrams, i.e. the largest row is at the
bottom and the largest column is on the left hand side.

2.1 LLT and Macdonald polynomials

Let ν = (λ1/µ1, . . . , λ`/µ`) be an `-tuple of skew Young diagrams (and denote `(ν) := `).
For each box � = (x, y) ∈ λi/µi, we define its content c(�) = x − y and its shifted
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content as c̃(�) = `c(�) + i − 1. We say that a box � ∈ ν attacks a box �′ ∈ ν if
0 < c̃(�′) − c̃(�) < `. Let T be a filling of cells of the diagrams in ν. If for each
i ∈ [1..`] the entries in λi/µi are weakly increasing in rows (from left to right) and strictly
increasing in columns (from bottom to top), we say that T is a semistandard filling, and
we denote it by T ∈ SSYT(ν). Finally, we call a pair of boxes �,�′ ∈ ν an inversion of
T if T (�) > T (�′) and � attacks �′. We denote the set of inversions of T by Inv(T ) and
its cardinality by inv(T ).

LLT polynomial LLT(ν) is the weighted generating series of SSYT(ν):

LLT(ν) =
∑

T∈SSYT(ν)

qinv(T )xT , (1)

where xT :=
∏
�∈ν xT (�).

This definition was introduced in [HHL05a] and it is related to the original definition
of Lascoux, Leclerc and Thibon [LLT97, Equation (26)] by:

LLTcospin(ν) = q−minT∈SSYT(ν) inv(T )
∑

T∈SSYT(ν)

qinv(T )xT , (2)

where LLTcospin(ν) = G̃
(r)
ρ (X; q) using notation from [LLT97, Equation (26)].

Remark 1. The shape ρ is obtained from ν via the Stanton–White algorithm [SW85],
and since we do not use the original version of r-ribbon tableaux in this article, we treat
eq. (1) as the definition and refer to [SW85, LLT97] for those who are interested in the
equivalent framework of r-ribbon tableaux.

The statistic inv(T )−minT∈SSYT(ν) inv(T ) can be realized as the cardinality of a subset
Invcospin(T ) of Inv(T ) due to [SSW03] (in particular, minT∈SSYT(ν) inv(T ) = | Inv(T ) \
Invcospin(T )| for any T ∈ SSYT(ν)). For a box � ∈ ν, we denote by �←,�→,�↑,�↓ the
boxes which are lying directly to the left, right, up and down of the box �, respectively.
Define Invcospin(T ) as follows:

Invcospin(T ) = {(�,�′) ∈ Inv(T ) : (�′↑,�) ∈ Inv(T ) and the row coordinate
of � is weakly smaller than the row coordinate of �′}.

Here, the convention is that for �′↑ /∈ ν the pair (�′↑,�) is automatically an inversion.
Then

LLTcospin(ν) =
∑

T∈SSYT(ν)

q| Invcospin(T )|xT . (3)

In the special case when ν = (λ1/µ1, . . . , λ`/µ`) is a sequence of ribbon shapes,
i.e., connected skew shapes which do not contain a shape of size 2 × 2, we define a
normalization

LLTMac(ν) = q−a(ν)
∑

T∈SSYT(ν)

qinv(T )xT , (4)
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where
a(ν) =

∑
�∈Des(ν)

|{�′ : c(�′) = c(�), c̃(�′) > c̃(�)}|,

and an element of Des(ν) is a box in ν, which is lying directly above another box in ν.
This particular choice of normalization is motivated by the combinatorial formula of

Haglund, Haiman and Loehr, for Macdonald polynomials H̃(q,t)
λ . It expresses a Macdonald

polynomial H̃(q,t)
λ as a sum of LLT polynomials indexed by λ1-tuples of shapes of sizes λ′j,

1 6 j 6 λ1 where λ′ denotes the transpose of λ, i.e., the diagram with λ1 boxes in the
first column, λ2 boxes in the second column, etc. For our purposes, we treat the following
formula as the definition of Macdonald polynomials:

Theorem 2. [HHL05a] For any partition λ the following expansion holds true

H̃
(q,t)
λ =

∑
ν

tmaj(ν) LLTMac
ν , (5)

where we sum over all tuples of skew-partitions such that νj is a ribbon of length λ′j whose
bottom, far-right cell has content 0.

The statistic maj, which appears in (5), is defined as follows:

maj(ν) :=

`(ν)∑
i=1

maj(νi) =

`(ν)∑
i=1

∑
�∈Des(νi)

|{�′ ∈ νi : c(�′) < c(�)|. (6)

2.2 Cumulants

The notion of cumulants was originally studied by Leonov and Shiryaev [LS59] in the
context of probability theory. Cumulants appear now in a wide variety of contexts,
see [JLuR00, Chapter 6] for their role in studying random graphs and [NŚ11] for a concise
introduction to noncommutative probability theory and various types of cumulants. In
what follows, we will be interested in the q-deformation of partial cumulants that ap-
peared in [Doł17] and was inspired by the classical definition of conditional cumulants
(see definition 4).

Definition 3. Suppose that A is an algebra over the fraction field Q(q). Let u := (uI)I⊆V
be a family of elements in A, indexed by subsets of a finite set V . Then its q-partial
cumulants are defined as follows. For any non-empty subset I of V , set

κ
(q)
I (u) = (q − 1)1−|I|

∑
π∈P(I)

(−1)|π|−1(|π| − 1)!
∏
B∈π

uB. (7)

The sum runs over elements of the family P(I) of set-partitions of I: a set-partition
π ∈ P(I) is a set of disjoint subsets of I whose union is equal to I (so one can think that
an element π ∈ P(I) is grouping elements of I into disjoint subsets) and the number of
elements of π is denoted by |π|.
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Definition 4. Let A be a vector space with two different commutative multiplicative
structures · and ⊕, which define two (different) algebra structures on A. For any
X1, . . . , Xr ∈ A, we define the conditional cumulant κ(X1, . . . , Xr) ∈ A as the coeffi-
cient of t1 · · · tr in the following formal power series in t1, . . . , tr:

κ(X1, . . . , Xr) := [t1 · · · tr] log·
(
exp⊕(t1X1 + · · ·+ trXr)

)
, (8)

where log· and exp⊕ are defined in a standard way with respect to multiplication given
by · and ⊕, respectively.

With the above in mind, we get

log·(1 + A) =
∑
n>1

(−1)n−1A·n

n
, exp⊕(A) =

∑
n>0

A⊕n

n!
.

Then, one can show that setting
uB :=

⊕
b∈B

Xb,

the q-partial cumulant κ(q)[1..r](u) evaluated at q = 0 coincides with the conditional cumulant
κ(X1, . . . , Xr) up to a sign:

κ
(0)
[1..r](u) = (−1)r−1κ(X1, . . . , Xr).

Although the cumulants originate from the probability theory, the q-deformation in-
troduced here is also relevant in the context of certain graph invariants, called inversion
polynomials. Let G = (V,E) be a multigraph (i.e. a graph with multiple loops and mul-
tiple edges allowed) and for any subset of vertices I ⊂ V we denote by eI the number of
edges in G connecting vertices in I. It was shown in [Doł19] that for the family u defined
by

uI := qeI

the asociated q-partial cumulant κqV (u) is equal to the G-inversion polynomial IG(q)
(which is also equal to the evaluation of the Tutte polynomial TutteG(1, q) and to the
generating series of G-parking function; a fact that will not be used in this paper). In
particular, it is a polynomial in q with nonnegative integer coefficients and it was used to
prove positivity results for the q-partial cumulants of Macdonald polynomials; we post-
pone its precise definition to section 3.2.1, where we use it to provide certain explicit
combinatorial formulae. In the following, we show another positivity property of cumu-
lants constructed by using multigraphs. This positivity property will be crucial for our
first applications.

Suppose that u is a family as in definition 3, and let G be a multigraph with the
vertex set V . Define the family uG by setting

uGI := qeIuI

for any subset I ⊂ V . Finally, for any set-partition π ∈ P(I), define a family u(π) :=
(ũB)B⊂π by setting ũB := u∪B (note that for B ⊂ π ∈ P(I), one has

⋃
B ⊂ I so that

u(π) is well defined).
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Theorem 5. The q-partial cumulant κ(q)I (uG) is a q-positive combination of the q-partial
cumulants κ(q)π (u(π)), where π ∈ P(I).

Proof. We will prove the theorem by induction on |I|. For |I| = 1, the statement is
obvious so suppose that |I| > 1. Strictly from the definition of the q-partial cumulant (7),
κ
(q)
I (uG) can be expressed as κ(q)I (uG) = q

∑
i∈I e{i} · κ(q)I (uG

′
), where G′ is the graph G

restricted to the vertices from I and with all the loops removed. Indeed, for every set-
partition π ∈ P(I), the summand (−1)|π|−1(|π| − 1)!

∏
B∈π q

eBuB appearing in (7) can be
rewritten as q

∑
i∈I e{i}(−1)|π|−1(|π|−1)!

∏
B∈π q

eB(G′)uB, where eB(G′) denotes the number
of edges in G′ connecting vertices in B (which is the same as the number of edges in G
connecting distinct vertices in B). We further decompose κ(q)I (uG) as

κ
(q)
I (uG) = q

∑
i∈I ei

(
κ
(q)
I (u) +

(
κ
(q)
I (uG

′
)− κ(q)I (u)

))
,

which is relevant for using the inductive hypothesis. Indeed, the second term in this
decomposition can be expressed as:

κ
(q)
I (uG

′
)− κ(q)I (u) = (q − 1)1−|I|

∑
π∈P(I)

(−1)|π|−1(|π| − 1)!
(
q
∑
B∈π eB(G′) − 1

) ∏
B∈π

uB

= (q − 1)2−|I|
∑

π∈P(I),
|π|<|I|

(−1)|π|−1(|π| − 1)!

[∑
B∈π

eB(G
′)

]
q

∏
B∈π

uB,

where [n]q := qn−1
q−1 =

∑n−1
i=0 q

i is the standard numerical factor. Let e(G′) := eI(G
′)

denote the number of edges in G′. In the following, we are going to construct set-partitions
σ1, . . . , σe(G′) ∈ P(I) each consisting of precisely |I|−1 elements, and graphs G1, . . . , Ge(G′)

with |I| − 1 vertices such that

(q − 1)2−|I|
∑

π∈P(I),
|π|<|I|

(−1)|π|−1(|π| − 1)!

[∑
B∈π

eB(G
′)

]
q

∏
B∈π

uB =

e(G′)∑
k=1

κ(q)σk (u(σk)
Gk), (9)

which allows to conclude the proof using the inductive hypothesis.
We arbitrarily order edges of G′ and for any 1 6 i 6 e(G′) we denote by Ei(G′) the

set of the first i edges in G′. Let {m,n} be the set of endpoints of the i-th edge in G′.
Define the graph Gi as follows:

• its set of vertices is equal to the set partition σi := {{m,n}, {k} : k ∈ I \ {m,n}},
which is the unique set partition of I with |I| − 1 elements, whose element of size
two is equal to {m,n}. In other terms, there is precisely one vertex of Gi equal to
the set {m,n}, and every other vertex of Gi is equal to the singleton {k}, where
k ∈ I \ {m,n}. In particular, Gi has precisely |I| − 1 vertices.
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• For any elements k, l ∈ I \ {m,n}, the number of edges linking vertices {k} and {l}
in Gi is given by the number of edges in Ei(G′) with endpoints {k, l}.

• For each k ∈ I \ {m,n}, the number of edges linking vertices {k} and {m,n} in Gi

is given by the number of edges in Ei(G′) with endpoints {k,m} or {k, n}.

• Finally, the number of loops attached to vertex {m,n} is given by the number of
edges in Ei−1(G′) with endpoints {m,n}.

Let us prove by induction on e(G′) that the constructed graphs satisfy eq. (9). Clearly,
when G′ has no edges, both hand sides of eq. (9) are equal to 0. Suppose that e(G′) > 0
and let G′′ denote the graph obtained from G′ by removing its largest edge {m,n}. Then

(q − 1)2−|I|
∑

π∈P(I),
|π|<|I|

(−1)|π|−1(|π| − 1)!

[∑
B∈π

eB(G
′)

]
q

∏
B∈π

uB =

(q − 1)2−|I|
∑

π∈P(I),
|π|<|I|

(−1)|π|−1(|π| − 1)!

[∑
B∈π

eB(G
′′)

]
q

∏
B∈π

uB+

(q − 1)2−|I|
∑

π∈P(σe(G′))

(−1)|π|−1(|π| − 1)!
∏
B∈π

qe∪B(G′′)u∪B.

By the inductive hypothesis, we have that

(q − 1)2−|I|
∑

π∈P(I),
|π|<|I|

(−1)|π|−1(|π| − 1)!

[∑
B∈π

eB(G
′′)

]
q

∏
B∈π

uB =

e(G′′)∑
k=1

κ(q)σk (u(σk)
Gk).

Moreover, strictly from the construction of Ge(G′), we have that eB(Ge(G′)) = e∪B(G
′)−1 =

e∪B(G
′′) for any {{m,n}} ⊂ B ⊂ σe(G′) and eB(Ge(G′)) = e∪B(G

′) = e∪B(G
′′) for any

B ⊂ σe(G′) \ {{m,n}}. Therefore,

(q − 1)2−|I|
∑

π∈P(σe(G′))

(−1)|π|−1(|π| − 1)!
∏
B∈π

qe∪B(G′′)u∪B = κ(q)σe(G′)(u(σe(G′))
Ge(G′)),

which finishes the proof.

2.3 Macdonald and LLT cumulants

Let ν = (λ1/µ1, . . . , λ`/µ`) be an `-tuple of skew Young diagrams. For any surjective
function f : [1..`] → [1..r], we say that a pair (ν, f) is an r-colored tuple of skew Young
diagrams and we will think of it as an `-tuple colored by r colors, so that i-th element
λi/µi has color f(i). For an r-colored tuple of skew Young diagrams (ν, f) and for a
subset B ⊂ [1..r], we define a tuple of skew Young diagrams (ν, f)B as the sub-tuple
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of ν colored by colors from B. More formally, (ν, f)B := (λi1/µi1 , . . . , λik/µik), where
f−1(B) = {i1, . . . , ik} and i1 < · · · < ik.

For a given r-colored tuple of skew Young diagrams (ν, f), we define LLT cumulants
(with respect to different normalizations) by the following formulae:

κLLTcospin(ν, f) := κ
(q)
[1..r](u(LLT

cospin)), where u(LLTcospin)B := LLTcospin(ν, f)B, (10)

κLLTMac(ν, f) := κ
(q)
[1..r](u(LLT

Mac)), where u(LLTMac)B := LLTMac(ν, f)B, (11)

κLLT(ν, f) := κ
(q)
[1..r](u(LLT)), where u(LLT)B := LLT(ν, f)B. (12)

Note that for any `-tuple of skew Young diagrams ν there exists a unique 1-colored
tuple of skew Young diagrams (ν, π[1..`]

[1] ), where π[1..`]
[1] is the unique surjection of [1..`] onto

{1}. In this case, the cumulants κLLTcospin(ν, id[1..`]), κLLTMac(ν, id[1..`]), and κLLT(ν, id[1..`])
coincide with the associated LLT functions LLTcospin(ν),LLTMac(ν), and LLT(ν), respec-
tively. In general, LLT-cumulants can be interpreted as an r-colored generalization of
LLT polynomials.

The concept of r-colored tuples of skew shapes arose from the definition of cumulants of
the symmetric functions naturally indexed by partitions. This definition was introduced
in [DF17] (in the context of Jack and Macdonald symmetric functions) as follows: let
{fλ} be a class of symmetric functions indexed by partitions. For partitions λ1, . . . , λr,
we define the family (u) indexed by subsets of [1..r] as uB := fλB , where the partition
λB :=

⊕
i∈B λ

i is obtained from partitions λi : i ∈ B by summing their coordinates:
λBj :=

∑
i∈B λ

i
j. We observe that the data of partitions λ1, . . . , λr can be alternatively

encoded as an r-colored partition (λ = λ[1..r], f) as follows: let λ be a partition and let
f : [1..`(λ)]→ [1..r] be a surjective function (that we interpret as the coloring of columns
of the Young diagram λ by r colors) such that the Young diagram formed by columns
colored by i is equal to λi. Then, it is clear that for every B ⊂ [1..r], the Young diagram
formed by columns colored by colors in B is equal to λB. Of course, there are many
colorings f : [1..`(λ)]→ [1..r] which encode partitions λ1, . . . , λr as an r-colored partition
(λ, f), but among them there is a canonical choice, which we call the canonical coloring
(λ, fcc : [1..`(λ)] → [1..r]). It is uniquely determined by the following property: for any
i < j such that λ′i = λ′j (we recall that λ′ denotes the transpose of λ, i.e., the diagram with
λ1 boxes in the first column, λ2 boxes in the second column, etc.), one has fcc(i) 6 fcc(j).
This property simply means that the Young diagram λ[r] can be obtained by sorting the
columns of λ1, . . . , λr such that all the columns of the same height are ordered with respect
to the natural order 1 < · · · < r, see fig. 1.

When fλ = H̃
(q,t)
λ is the transformed version of the Macdonald polynomial indexed

by a partition λ, the corresponding q-partial cumulant κ(q)[1..r](u) is called the Macdonald
cumulant and denoted κ(λ1, . . . , λr)(x; q, t):

κ(λ1, . . . , λr)(x; q, t) := κ
(q)
[1..r](u). (13)

It was studied in [Doł17, Doł19], where its polynomiality and combinatorial interpreta-
tion was obtained, generalizing the celebrated HHL formula (5). Furthermore, it was
conjectured in [Doł17] that Macdonald cumulants are Schur-positive:
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λ3λ2λ1 r-colored Young diagram
associated with λ1, λ2, λ3

canonically colored Young diagram
associated with λ1, λ2, λ3

Figure 1: r-colored and canonically colored partitions.

Conjecture 6 ([Doł17]). Let λ1, . . . , λr be partitions. Then for any partition ν the coeffi-
cient [sν ]κ(λ1, . . . , λr) in the Schur expansion of the Macdonald cumulant is a polynomial
in q, t with nonnegative coefficients.

The first motivation for introducing LLT cumulants is to attack conjecture 6. Since
Macdonald polynomials can be naturally decomposed into LLT polynomials, it is natural
to ask whether a similar decomposition occurs for Macdonald cumulants. Moreover, it
was proved by Grojnowski and Haiman [GH07] that LLT polynomials are Schur-positive,
which gives an alternative proof of the Schur positivity of Macdonald polynomials. Ex-
tensive computer simulations performed by the authors using the SageMath computer
algebra system [The20] tend us to believe that the result of Grojnowski and Haiman
might be a special case of Schur-positivity that holds for the more general class of LLT
cumulants. Therefore, we propose the following conjecture:

Conjecture 7. For any r-colored tuple of skew shapes (ν, f) and for any partition λ the
coefficient [sλ]κLLTcospin(ν, f) in the Schur expansion of the LLT cumulant is a polynomial
in q with nonnegative integer coefficients.

Example 8. Let ν = ((2, 2)/(1), (2), (1, 1)) be a tuple of three skew shapes. Consider
two colorings f : [1..3] → [1..3] and f ′ : [1..3] → [1..2] defined by f(i) = i for 1 6 i 6 3
and f ′(1) = f ′(3) = 1, f ′(2) = 2. The corresponding cumulants κLLTcospin(ν, f) and
κLLTcospin(ν, f ′) are equal to

κLLTcospin(ν, f) = (q − 1)−2
(
LLTcospin((2, 2)/(1), (2), (1, 1))− LLTcospin((2, 2)/(1))·

· LLTcospin((2), (1, 1))− LLTcospin((2)) LLTcospin((2, 2)/(1), (1, 1))

− LLTcospin((1, 1)) LLTcospin((2, 2)/(1), (2))

+ 2LLTcospin((2, 2)/(1)) LLTcospin((2)) LLTcospin((1, 1))

)
,

κLLTcospin(ν, f ′) = (q − 1)−1
(
LLTcospin((2, 2)/(1), (2), (1, 1))

− LLTcospin((2)) LLTcospin((2, 2)/(1), (1, 1))

)
.
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Expanding them in the basis of Schur functions we have

κLLTcospin(ν, f) = (q2 + 2q + 2)s(2,2,1,1,1) + (q + 2)s(2,2,2,1)

+ (q2 + 2q + 2)s(3,1,1,1,1) + (2q + 4)s(3,2,1,1)

+ 2s(3,2,2) + s(3,3,1) + (q + 2)s(4,1,1,1) + s(4,2,1),

κLLTcospin(ν, f ′) = (q3 + q2)s(2,2,1,1,1) + (q2 + q)s(2,2,2,1)

+ (q3 + q2)s(3,1,1,1,1) + (2q2 + 2q)s(3,2,1,1) + (2q + 1)s(3,2,2)

+ (q + 1)s(3,3,1) + (q2 + q)s(4,1,1,1) + (q + 1)s(4,2,1).

In the following, we prove that conjecture 7 implies conjecture 6. In order to do
this, we express Macdonald cumulants as a positive linear combination of LLT cumu-
lants, generalizing the classical decomposition from theorem 2 to cumulants, and we show
that Schur-positivity of LLT cumulants can be put into the following hierarchy: Schur-
positivity of κLLTcospin(ν, f) implies Schur-positivity of κLLTMac(ν, f), which further implies
Schur-positivity of κLLT(ν, f).
Remark 9. In fact, the chain of implications mentioned above is valid only when we restrict
ν to be a sequence of ribbon shapes due to the definition of the normalization LLTMac(ν)
(see (4)). However, Schur-positivity of κLLTcospin(ν, f) for all r-colored tuples of skew-
shapes (ν, f) implies Schur-positivity of κLLT(ν, f) for all r-colored tuples of skew-shapes
(ν, f), which will be clear from the proof of theorem 11.

2.3.1 Decomposition of Macdonald cumulants

Theorem 10. Let λ1, . . . , λr be partitions. Then, the following identity holds true:

κ(λ1, . . . , λr)(x; q, t) =
∑
ν

tmaj(ν)κLLTMac(ν, fcc), (14)

where we sum over all tuples of ribbons whose bottom, far-right cell has content 0 and
such that |νj| = (λ[1..r])′j for 1 6 j 6 `(λ[1..r]) (i.e. the size of the j-th ribbon is equal to
the length of the j-th column of λ[1..r]) and fcc is the canonical coloring associated with
λ1, . . . , λr.

Proof. It is a direct consequence of the interpretation of the Macdonald cumulant as the
q-partial cumulant of the canonically r-colored partition and of theorem 2. Indeed, note
that for any subset B ⊂ [1..r], theorem 2 applied to λ = λB gives

H̃
(q,t)

λB
=
∑
ν

tmaj(ν) LLTMac(ν),

where we sum over skew-partitions whose j-th element is a ribbon of length (λB)′j whose
bottom, far-right cell has content 0. In particular, for any set-partition π ∈ P([1..r]), one
has ∏

B∈π

H̃
(q,t)

λB
=
∑
ν

∏
B∈π

tmaj((ν,fcc)B) LLTMac((ν, fcc)
B),
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where the sum runs over the same set as the summation in (5).
Strictly from the definition (6) of maj, one has

∑
B∈πmaj((ν, fcc)

B) = maj(ν) for any
set-partition π ∈ P([1..r]), and formula (14) follows.

Theorem 11. Suppose that conjecture 7 holds true. Then, for any r-colored tuple of skew
shapes (ν, f) and for any partition ν, the coefficients

[sν ]κLLTMac(ν, f) ∈ Z>0[q], [sν ]κLLT(ν, f) ∈ Z>0[q]

are polynomials in q with nonnegative integer coefficients. In particular, conjecture 6 holds
true.

Proof. Recall the definiton eq. (10) of LLT cumulants. We will show that there exist
graphs G ⊂ G′ such that

κ
(q)
[1..r](u(LLT)) = κ

(q)
[1..r](u(LLT

cospin)G
′
), (15)

κ
(q)
[1..r](u(LLT

Mac)) = κ
(q)
[1..r](u(LLT

cospin)G). (16)

Then the statements follow directly from theorem 5 and eq. (14).
Notice that the family of nonnegative integers (eB)B⊂V indexed by subsets of the set

V is the number of edges in some graph G = (V,E) linking vertices in B if and only if

eB >
∑
b∈B

e{b} and eB =
∑
B′⊂B,
|B′|=2

eB′ − (|B| − 2)
∑
b∈B

e{b}. (17)

Indeed, the inequality corresponds to eB counting all the loops on vertices from B, and
the equality counts the edges between each pair of vertices from B minus the overcounted
loops.

We first prove that there exist graphs G,G′ such that (15) and (16) hold. To show (15),
consider eB = minT∈SSYT((ν,f)B) inv(T ) = | Inv(T ) \ Invcospin(T )|, which does not depend
on the choice of T ∈ SSYT((ν, f)B). Then the conditions in (17) are satisfied since for a
pair of boxes � ∈ (ν, f){i} and �′ ∈ (ν, f){j}, one has (�,�′) ∈ Inv(T ) \ Invcospin(T ) if
and only if (�,�′) ∈ Inv(T{i,j}) \ Invcospin(T{i,j}), where T{i,j} is a tableau T restricted to
(ν, f){i,j}.

Similarly, for

eB = a((ν, f)B) =
∑

�∈Des((ν,f)B)

|{�′ : c(�′) = c(�), c̃(�′) > c̃(�)}|,

one has∑
�∈Des((ν,f)B)

|{�′ : c(�′) = c(�), c̃(�′) > c̃(�)}| =

∑
b∈B

∑
�∈Des((ν,f){b})

∑
b′∈B

|{�′ ∈ (ν, f){b
′} : c(�′) = c(�), c̃(�′) > c̃(�)}|. (18)
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Note that for any subset A ⊂ B and for each pair of boxes (�,�′) ∈ (ν, f)A, there is
a uniquely associated pair of boxes (�,�′) ∈ (ν, f)B and their contents are identical
in (ν, f)A and (ν, f)B, while their shifted contents might be different but the relation
c̃(�′) > c̃(�) is again the same in both (ν, f)A and (ν, f)B. This observation together
with (18) implies that the quantities eB satisfy (17). This proves (16).

Finally, we prove that G ⊂ G′, which is equivalent to proving that a((ν, f)B) 6
minT∈SSYT((ν,f)B) inv(T ). Let � ∈ Des((ν, f)B) and �′ ∈ (ν, f)B be such that c(�′) =
c(�), c̃(�′) > c̃(�). For any T ∈ SSYT((ν, f)B), we necessarily have T (�) > T (�↓).
Therefore, either (�,�′) ∈ Inv(T ) or (�′,�↓) ∈ Inv(T ) (or both). Summing over all
� ∈ Des((ν, f)B) and

�′ ∈ {�′ ∈ (ν, f)B : c(�′) = c(�), c̃(�′) > c̃(�)},

we have that a((ν, f)B) 6 inv(T ) for any T ∈ SSYT((ν, f)B). Thus, a((ν, f)B) 6
minT∈SSYT((ν,f)B) inv(T ), which is equivalent to the fact that G ⊂ G′. This implies that
[sν ]κLLTMac(ν, f) and [sν ]κLLT(ν, f) are indeed polynomials in q, so the result follows.

3 Graph colorings

In the following, we interpret LLT polynomials as the generating functions of colorings
of certain directed graphs. This viewpoint provides a natural graph-theoretic interpreta-
tion of LLT cumulants as well as various positivity properties generalizing some recent
results [AS22, Doł19].

3.1 LLT graphs and cumulants of r-colored LLT graphs

Definition 12. We call G an LLT graph if it is a finite directed graph with three types
of edges, visually depicted as →, �, and ⇒, which we call edges of type I, of type II, and
double edges, respectively. Denote the corresponding sets of edges by E1(G), E2(G), and
Ed(G). Additionally, write G for the Z[q]-module spanned by LLT graphs and G1 < G for
the submodule generated by LLT graphs with only edges of type II (E1(G) = Ed(G) = ∅).

Let QSym denote the ring of quasi-symmetric functions over Z[q]. We recall that a
quasisymmetric function f is a power series in variables x1, x2, . . . of a bounded degree
such that for any sequence of positive integers (α1, . . . , αn) the coefficients of the monomial
[xα1
i1
· · · xαnin ]f in f is the same for all possible choices of indices i1 < · · · < in (see [Ges84]

for more details on QSym). With an LLT graph G we associate its LLT polynomial :

LLT(G) :=
∑

f :V (G)→N

 ∏
(u,v)∈E(G)

ϕf (u, v)

 ·
 ∏
v∈V (G)

xf(v)

 , (19)

with

ϕf (u, v) =


[f(u) > f(v)] for (u, v) ∈ E1(G);

[f(u) > f(v)] for (u, v) ∈ E2(G);

q[f(u) > f(v)] + [f(u) 6 f(v)] for (u, v) ∈ Ed(G),
(20)
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Figure 2: The LLT graph corresponding to ((3,2)/(1), (1,1)).

where [A] is the characteristic function of condition A, i.e., is equal to 1 if A is true and
0 otherwise.

There is an obvious way to associate an LLT graph Gν to a sequence of skew shapes ν
such that LLT(Gν) = LLT(ν). To be precise, vertices correspond to cells, edges of type I
go from a cell � to �↓, edges of type II go from a cell � to �←, and double edges connect
cells that correspond to inversions (see fig. 2).

Let G be an LLT graph and let ei ∈ Ei(G) for i ∈ {1, d}. Define the local transfor-
mation

πei (G) =

{
G \ {e1} −Ge1→e2 for i = 1,

qG \ {ed}+ (1− q)Ged→e2 for i = d,

where ei → ej (ei → ej , respectively) denotes replacing the directed edge ei of type i by
the edge of type j with the opposite (the same, respectively) direction.

Example 13. We have

π(1,2)


1

2

3

 =

1

2

3

−
1

2

3

,

π(1,3)


1

2

3

 = q

1

2

3

+ (1− q)
1

2

3

.

We define
π(G) :=

( ∏
e∈E1(G)∪Ed(G)

πe

)
(G)

as the concatenation of local transformations over all edges of type I and double edges
(these transformations are commutative so their order does not matter and this concate-
nation is well-defined). Note that local transformations kill all edges of type I and d and
thus, the map π : G → G1 is well-defined. In fact, we claim that the map LLT: G → QSym
is a well-defined surjective homomorphism such that LLT(G) = LLT ◦π(G) for every LLT
graph.
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Lemma 14. For G and G1 as in definition 12, the following diagram is commutative:

G G1

QSym

π

LLT
LLT

Proof. Let G be an LLT graph. It was proved by Féray [F1́5] that LLT: G1 → QSym is a
well-defined surjective homomorphism. Moreover, it is straightforward from the definition
of the map LLT that it is invariant under the local transformations, i.e., for every e ∈
E1(G) ∪ Ed(G), one has LLT(πe(G)) = LLT(G). Thus, LLT(G) = LLT(π(G)), which
finishes the proof.

Remark 15. Let Ĝ1 < G1 be a submodule of G1 spanned by acyclic graphs. The main
result of Féray [F1́5] is an explicit description of the kernel of the map LLT: Ĝ1 → QSym
by using the cyclic inclusion-exclusion principle. This description together with lemma 14
can be a priori used to describe the kernel of the morphism LLT: G → QSym, thus to
understand all the relations between LLT graphs under the LLT morphism. Additionally,
G seems to carry a natural Hopf algebra structure. Studying various relations between
LLT polynomials is a very active topic recently and it proved to be useful in understanding
the combinatorial structure of LLT polynomials [Lee21, HNY20, AN21, AS22, Tom21].
We believe that further studies in the direction of understanding the algebraic structure
of the pair (G ,LLT) might bring better understanding of the combinatorial structure of
LLT polynomials, and we leave this problem for future research.

As a consequence of lemma 14 and its proof, we obtain two identities expressing the
LLT polynomial of a given LLT graph G in terms of two important LLT graphs, which do
not have any double edges. For any subset E ⊂ Ed(G), we define GE and G̃E as follows:

• V (G̃E) = V (GE) = V (G),

• Ed(G̃
E) = Ed(G

E) = ∅,

• E1(G̃
E) = E1(G

E) = E1(G) ∪ E,

• E2(G̃
E) = E2(G) ∪ {(u, v) | (v, u) ∈ Ed \ E}, and E2(G

E) = E2(G).

Example 16. For

G =

and E ⊂ Ed(G) equal to the set of the red edges above, we have

GE = , G̃E = .
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Corollary 17. For any LLT graph G, we have

LLT(G) =
∑

E⊆Ed(G)

q|E| LLT(G̃E) =
∑

E⊆Ed(G)

(q − 1)|E| LLT(GE).

Proof. Note that( ∏
e∈Ed(G)

π′e

)
(G) =

∑
E⊆Ed(G)

q|E|G̃E,

( ∏
e∈Ed(G)

π′′e

)
(G) =

∑
E⊆Ed(G)

(q − 1)|E|GE,

where π′ed (G) = Ged→e2 + qGed→e1 and π′′ed (G) = G \ {ed} + (q − 1)Ged→e1 for ed ∈
Ed(G). Moreover, LLT(G) = LLT(π′ed (G)) follows from the definition, and LLT(G) =
LLT(π′′ed (G)) follows from

LLT(G) = LLT(Ged→e2 ) + q LLT(Ged→e1 ) = LLT(G \ {ed}) + (q − 1) LLT(Ged→e1 )

since we have that LLT(Ged→e2 ) = LLT(G \ {ed})− LLT(Ged→e1 ).

The definition of LLT cumulants of r-colored tuples of skew-shapes generalizes natu-
rally to the definition of LLT cumulants of r-colored LLT graphs.

Definition 18. We say that (G, f) is an r-colored LLT graph if G is an LLT graph and
f ∈ V (G) → [1..r] is a surjective coloring of vertices of G such that both endpoints of
edges in E1(G) ∪ E2(G) have the same color. For any subset B ⊂ [1..r], we define the
vertex set VB := {v ∈ V (G) : f(v) ∈ B} and for any subset V ′ ⊂ V (G), we define G|V as
the subgraph of G obtained by restricting its set of vertices to V ′. Then, we define the
LLT cumulant of an r-colored LLT graph (G, f) as the q-partial cumulant κ(q)[1..r](u) for
the family defined by

uB := LLT(G|VB).

Observe that the first equation in corollary 17 is, in fact, a special case of a more
general formula:

Corollary 19. For any set-partition π ∈ P([1..r]), one has∏
B∈π

LLT(G|VB) =
∑

E⊆Ed(G)

LLT(G̃E)
∏
B∈π

q|EB |, (21)

where EB ⊂ E is the subset of edges with both endpoints in B.

Proof. Formula (21) is proved similarly to corollary 17, so we only sketch the proof. Let
Gπ :=

⊕
B∈π G|VB , where G1 ⊕ G2 is a disjoint union of the LLT graphs G1 and G2.

Then
∏

B∈π LLT(G|VB) = LLT(Gπ). Note that Gπ is obtained from G by removing all
the double edges connecting vertices with colors lying in different blocks of π. Consider
two local transformations: π′e(Gπ) for e ∈ Ed(Gπ) and π′′′e (Gπ) := (Gπ)e→e1 + (Gπ)e→e2
for any orientation e of e /∈ E(Gπ). Notice that( ∏

e∈Ed(Gπ)

ẽ∈Ed(G)\Ed(Gπ)

π′eπ
′′′
ẽ

)
(Gπ) =

∑
E⊆Ed(G)

G̃E
∏
B∈π

q|EB |.
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Finally, recall that LLT is invariant under taking the local transformation π′e and notice
that LLT(G) = LLT(π′′′e (G)) for any orientation e of e /∈ E(G). This finishes the proof.

In the following, we prove that the LLT cumulant of the r-colored LLT graph (G, f)
can be naturally expressed as a sum of LLT polynomials of so-called f -connected graphs.

Definition 20. Let (G, f) be an r-colored LLT graph. We say that it is f -connected
if the graph Gf obtained from G by identifying vertices of the same color is connected.
In other words, the graph G is f -connected if for every pair i, j ∈ [1..r], there exists
i = i0 6= i1 · · · 6= ik = j ∈ [1..r] and vertices v0, . . . , vk ∈ V (G) colored by i0, . . . , ik
respectively such that vi−1 is connected to vi for every 1 6 i 6 k.

Note that when f is a bijection then the graph G is f -connected if and only if G is
connected, and if f is a 1-coloring then the condition of being f -connected is empty (it is
always satisfied). We have the following combinatorial interpretation of an LLT cumulant
of an r-colored LLT graph (G, f).

Theorem 21. Let (G, f) be an r-colored LLT graph and denote Ed = Ed(G). Then:

κLLT(G, f)(q + 1) =
∑
E⊆Ed

GE f-connected

q|E|−r+1 LLT(GE)(q + 1). (22)

theorem 21 essentially shows the structure behind the, a priori, algebraic definition
of a cumulant: it kills all f -disconnected summands in the expansion and preserves the
f -connected ones. Furthermore, we note that we formulate the statement with the poly-
nomials evaluated at q + 1 to highlight the LLT-positivity of the cumulant after the
shift q 7−→ q + 1: an operation that is also relevant in the context of the e-positivity
phenomenon (see section 3.2.4).

Proof of theorem 21. We have

κLLT(G, f)(q + 1) : = q1−r
∑

π∈P([1..r])

(−1)|π|−1(|π| − 1)!
∏
B∈π

LLT(G|VB)

= q1−r
∑

π∈P([1..r])

(−1)|π|−1(|π| − 1)! LLT (Gπ) ,

where we recall that Gπ :=
⊕

B∈π G|VB .
By corollary 17, for each B ∈ P([1..r]), we get

LLT (Gπ) (q + 1) =
∑

E⊆Ed(Gπ)

q|E| LLT(GE
π )(q + 1) (23)

so that

κLLT(G, f)(q + 1) = q1−r
∑

π∈P([1..r])

(−1)|π|−1(|π| − 1)!
∑

E⊆Ed(Gπ)

q|E| LLT(GE
π )(q + 1). (24)
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Now consider an LLT graph G′ = GE
σ for some σ ∈ P([1..r]) and E ⊆ Ed(Gσ). For a

fixed G′ of this form, pick σ to be minimal, i.e. pick σ such that for every block B ∈ σ,
the graph G′|VB is f -connected. Note that G′ is f -connected if and only if σ = {[1..r]}.
We compute the contribution of the graph G′ to the RHS of the formula (24).

Note that G′ appears in a summand corresponding to a partition π if and only if for
every B ∈ σ, there exists C ∈ π such that B ⊆ C. This is known as the containment
relation σ 6 π on the set of set-partitions. Therefore, we have

[LLT(G′)(q + 1)]κLLT(G, f) = q|E|−r+1
∑
σ6π

(−1)|π|−1(|π| − 1)! = q|E|−r+1δσ,{[1..r]}.

The last equality comes from the well-known fact that (−1)|π|−1(|π| − 1)! is equal to the
Möbius function µ(π, {[1..r]}) on the poset of set-partitions (P([1..r]),6) and the sum of
the Möbius function µ(π, {[1..r]}) over the interval π ∈ [σ, {[1..r]}] is non-zero (and equal
to 1) only if σ = {[1..r]} (see, e.g., [Wei35]). This finishes the proof as σ = {[1..r]} if and
only if G′ is f -connected.

3.2 Various positivity results

The purpose of this section is to derive various combinatorial formulae for an LLT cumu-
lant of an r-colored LLT graph and proving certain positivity results. We start by a quick
review on G-inversion polynomials and their different interpretations.

3.2.1 G-inversion polynomials and Tutte polynomials

Let G be a multigraph (with possible multiedges and multiloops, as previously) on the
set of vertices [1..r]. We say that T is a spanning tree of G if it is a subgraph of G with
the same set of vertices [1..r] and it is a tree (it is connected and has no cycles). A pair
(i, j) is called an inversion of a spanning tree T of G if i, j 6= 1 and if i is an ancestor
of j and i > j. An inversion (i, j) is a κ-inversion if, additionally, j is adjacent to the
parent of i in G. A G-inversion polynomial is a generating function of spanning trees of
G counted with respect to the number of κ-inversions.

Let G̃ be a graph obtained from G by replacing all multiple edges by single ones. We
recall that for any subset B ⊂ V we denote the number of edges linking vertices in B by
eB. The G-inversion polynomial is given by

IG(q) = qnumber of loops in G
∑
T⊂G̃

qκ(T )
∏
{i,j}∈T

[e{i,j}(G)]q, (25)

where the sum runs over all spanning trees of G̃,

κ(T ) =
∑

{i,j}−κ−inversion in T

e{parent(i),j}(G), (26)

and we use the standard notation [n]q :=
qn−1
q−1 = 1+q+· · ·+qn−1. As we already mentioned

in the introduction, IG(q) = Tutte(1, q), where Tutte(x, y) is the Tutte polynomial of G
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(a classical graph invariant introduced by Tutte in [Tut54]):

TutteG(x, y) =
∑
H⊂G

(x− 1)c(H)−1 (y − 1)|E(H)|−|V |+c(H). (27)

The summation index above runs over all (possibly disconnected) subgraphs of G, c(H)
denotes the number of connected components of H, and E(H) is the set of edges of
H. In fact, we have the following lemma, which is essentially due to Gessel [Ges95]
and Josuat-Vergès [JV13] (see also [Doł19] for treating both frameworks in the setting of
multigraphs).

Lemma 22. Let G be a multigraph with the vertex set V = [1..r] and let u be a family
indexed by subsets of [1..r] defined as uB := qeB for every B ⊂ [1..r]. Then we have the
following equalities between the generating series:

IG(q) = TutteG(1, q) = κ(q)(u). (28)

3.2.2 Monomial positivity

Here, we prove the following theorem implying positivity of LLT cumulants for arbitrary
r-colored LLT graphs in the quasi-symmetric monomial basis (this is a refinement of the
main result from [Doł19]):

Theorem 23. Let (G, f) be an r-colored LLT graph and denote Ed = Ed(G). Then:

κLLT(G, f)(q) =
∑
E⊆Ed

ĜE f-connected

I(ĜE)f (q) LLT(G̃
E)(q), (29)

where ĜE is obtained from G̃E by removing all the edges of type II (i.e. E(ĜE) = E(G̃E)\
E2(G̃

E)).

Proof. Let ĜE be a graph obtained from G̃E by removing all the edges of type II and we
recall that (ĜE)f is a graph obtained from ĜE by identifying vertices of the same color, i.e.
v ∼ w if f(v) = f(w). Note that the vertex set of (ĜE)f is equal to [1..r] and |EB| in the
previous formula is equal to the number of edges of (ĜE)f with both endpoints belonging
to B (that we denote by eB to be consistent with the previous notation). Therefore,
following (21), we end up with the formula

κLLT(G, f) = (q − 1)1−r
∑

E⊆Ed(G)

LLT(G̃E)

( ∑
π∈P([1..r])

(−1)|π|−1(|π| − 1)!
∏
B∈π

q|EB |
)

=
∑

E⊆Ed(G)

κ
(q)
[1..r](u) LLT(G̃

E),

where uB := qeB . This can be rewritten as∑
E⊆Ed(G)

I(ĜE)f (q) LLT(G̃
E)(q)

the electronic journal of combinatorics 29(4) (2022), #P4.5 20



thanks to lemma 22. Finally, I(ĜE)f (q) = 0 whenever (ĜE)f is not connected (because
disconnected graphs have no spanning trees), which is the very definition of being f -
connected for ĜE. This finishes the proof.

3.2.3 Fundamental quasisymmetric functions and conjecture 7 for hooks

For any non-negative integer n and a subset A ⊂ [n − 1], we define the fundamental
quasisymmetric function Fn,A(x) to be the expression

Fn,A(x) :=
∑

i16...6in
j∈A=⇒ij<ij+1

xi1 . . . xin .

We say that a tableau T ∈ SSYT(ν) of a sequence ν with |ν| = n is standard if
T : ν → [n] is a bijection, and denote that fact by T ∈ SYT(ν). We also define the set of
descents Des(T ) of T (note that this is not the same as the set of descents of a tuple of
skew shapes ν, which appeared in the definition of Macdonald polynomials) as the set of
i ∈ [1..n] such that c̃(T−1(i+ 1)) < c̃(T−1(i)).

In [HHL05a], Haglund, Haiman and Loehr implicitly1 proved the following formula for
the expansion of LLT polynomials in the fundamental quasisymmetric functions.

Theorem 24 ([HHL05a]). For a sequence of skew shapes ν with |ν| = n, we have

LLT(ν) =
∑

T∈SYT(ν)

qinv(T )Fn,Des(T )(x). (30)

What is more, we can obtain a similar result in our language and notation.

Corollary 25. For any r-colored tuple (ν, f) of size n and for any set partition π ∈
P([1..r]), we have ∏

B∈π

LLT((ν, f)B) =
∑

T∈SYT(ν)

qinvπ(T )Fn,Des(T )(x), (31)

where invπ(T ) denotes the number of inversions in T with both boxes in the same block of
π.

Proof. The result is a straightforward application of the arguments used in [HHL05a].

Applying the same proof as in theorem 23 to (31), we obtain the following result (see
also [Doł19, Section 5] for an analogous argument applied to Macdonald cumulants):

1instead of LLT polynomials they expanded Macdonald polynomials into fundamental quasisymmetric
functions, but their arguments can be directly applied to LLT polynomials yielding (30)
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Theorem 26. Let (ν, f) be an r-colored sequence of skew shapes of size n. Then:

κLLT(ν, f)(q) =
∑

T∈SYT(ν)

∑
I
(Ĝν

ET
)f
(q)Fn,Des(T )(x), (32)

where the second sum runs over all subsets ET ⊆ Ed(Gν) for which Ĝν

ET

is f -connected

and T (i) > T (j) whenever (i, j) ∈ E(Ĝν

ET

).

In [Doł19], we were able to find an explicit formula for the coefficients of Schur sym-
metric functions indexed by hooks, i.e., partitions of the form (k, 1n−k), in Macdonald
cumulants, thanks to the arguments from [HHL05a]. Here, we will use a very nice the-
orem of Egge, Loehr and Warrington [ELW10] which gives a combinatorial description
of Schur coefficients of any symmetric function when given an expansion in fundamental
quasisymmetric functions.

Theorem 27 ([ELW10]). Suppose that∑
λ`n

cλsλ =
∑
α|=n

dαFn,A(α),

where A(α) = (α1, α1 + α2, . . . ,
∑`(α)−1

i=1 αi). Then we have c(k,1n−k) = d(k,1n−k) for all
1 6 k 6 n.

The original result from [ELW10] gives a description of the coefficients cλ for a general
λ ` n. However, since we only need the case in the statement (i.e., when λ is a hook),
we refer interested readers to [ELW10] for the general version, which is slightly more
complicated.

The following theorem is an immediate corollary of theorem 26 and theorem 27:

Theorem 28. Let (ν, f) be an r-colored sequence of skew shapes of size n. Then for any
1 6 k 6 n

[s(k,1n−k)]κLLT(λ) =
∑

T∈SYT(λ)
Des(T )={k,k+1,...,n−1}

∑
I
(Ĝν

ET
)f
(q),

where the second sum runs over all subsets ET ⊆ Ed(Gν) for which Ĝν

ET

is f -connected

and T (i) > T (j) whenever (i, j) ∈ E(Ĝν

ET

).

3.2.4 e-positivity

Let (eλ) be the basis of elementary symmetric functions, i.e. eλ :=
∏`(λ)

i=1 eλi , where
ei :=

∑
j1<···<ji xj1 · · ·xji is the i-th elementary symmetric function. e-positivity of a

given symmetric function f is a stronger property than Schur-positivity and it suggests
a specific interpretation of the function f in terms of the representation theory of the
symmetric group, and in algebro-geometric context. This observation recently generated a
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(λ1/µ1, λ2/µ2, λ3/µ3, λ4/µ4)

Figure 3: A tuple ν of vertical strips and the associated LLT graph Gν . The labels
of vertices are the shifted contents of the corresponding boxes. Graph G′ = GE for
E = {(0, 3), (3, 5), (4, 5), (4, 6)} is f -connected, where f(i) = i. In the last picture, the
displayed labels are the labels of the sources of G′ and the corresponding two equivalence
classes {0, 3, 5} and {4, 6, 7} are depicted by the whole and the empty vertices, respectively.

lot of research in studying e-positive symmetric functions, and after a series of conjectures
[Ber17, AP18, GHQR19], it was clear that e-positivity of a big class of symmetric functions
would be a consequence of e-positivity for vertical-strip LLT polynomials after the shift
q → q + 1, i.e. for LLT(ν)(q + 1) where (ν)i = (1ni+ki)/(1ki) for each 1 6 i 6 `(ν) and
some nonnegative integers ni, ki. An explicit combinatorial formula for the coefficients
of vertical-strip LLT polynomials in the basis of elementary functions was independently
conjectured in [GHQR19, Ale21]2 and shortly afterwards the positivity (without proving
the combinatorial interpretation) was proved in [D’A20] and subsequently [AS22] finalized
the picture by proving the combinatorial interpretation. In the following, we reformulate
this combinatorial interpretation in our current framework.

Let ν be a tuple of vertical-strips and let G = Gν be the associated LLT-graph. We
recall that a vertex v ∈ V (G) is associated with a box �(v) ∈ ν and the vertices are
naturally labeled by the shifted contents of the corresponding boxes c̃(v) := c̃(�(v)). Fix
E ⊂ Ed(G) and define G′ = GE. Since G′ is a directed graph (note that the condition
that ν is a tuple of vertical strips implies that G′ has only edges of type I), some of the
vertices of G′ have only outgoing edges – such vertices are called sources. We define the
following equivalence relation on the set of vertices V (G′): the vertices v ∼ w are in the
same equivalence class if the source θ(v) with the smallest label from which there exists
a directed path to v is the same as the source θ(w) with the smallest label from which
there exists a directed path to w. The partition λ(G′) is defined as the partition whose
parts are sizes of the equivalence classes in this relation. See fig. 3 for an example.

Theorem 29. [AS22] Let ν be a tuple of vertical-strips and let G = Gν be the associated
2in fact, these interpretations are not identical, since the authors use slightly different framework in

their works, but it is possible to show that they are equivalent
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LLT-graph. Then
LLT(ν)(q + 1) =

∑
E⊆Ed(G)

q|E|eλ(GE). (33)

In the following, we show that the vertical-strip LLT cumulants preserve e-positivity,
which refines theorem 29, but, most importantly, shows that e-positivity of vertical-strip
LLT polynomials naturally decomposes into f -connected components, each correspond-
ing to the vertical-strip LLT cumulant. In other terms, heuristically, the e-positivity
of vertical-strip LLT polynomials is “built” from e-positivity of LLT cumulants, which
naturally decompose LLT polynomials from the graph-coloring point of view.

Theorem 30. Let (ν, f) be an r-colored tuple of vertical-strips and let G = Gν be the
associated LLT-graph. Then

κLLT(ν, f)(q + 1) =
∑
E⊆Ed

GE f-connected

q|E|+1−reλ(GE). (34)

Proof. We recall that the q-partial cumulant of the family (u) is defined by the formula
(3). One can invert this formula in order to express uI in terms of the q-partial cumulants:

uI =
∑
π∈P(I)

(q − 1)|I|−|π|
∏
B∈π

κ
(q)
B (u).

Applying this to our setting, we obtain that for any r > 1 and for any r-colored tuple
(ν, f), one has

LLT(ν)(q + 1) =
∑

π∈P([1..r])

qr−|π|
∏
B∈π

κLLT((ν, f)
B, f |B)(q + 1),

where f |B is the |B|-coloring of (ν, f)B obtained from f by restricting it to the preimage
of B, i.e., f |B : f−1(B)→ B.

We prove (34) by induction on r. For r = 1, the LHS of (34) is equal to LLT(ν)(q+1),
while the RHS of (34) coincides with the RHS of (33), because every 1-colored graph is
trivially f -connected. Let (ν, f) be an r-colored tuple of vertical-strips with r > 1. Let
G′ = GE for some E ⊆ Ed(G). Note that decomposing G′ into f -connected components,
we find a set-partition π ∈ P([1..r]) such that each f -connected component has a vertex
set VB := {v ∈ V (G′) colored by b ∈ B} for some B ∈ π. Therefore, we can rewrite (33)
as follows

LLT(ν)(q + 1) =
∑

π∈P([1..r])

∏
B∈π

( ∑
EB⊆Ed(GB)

G
EB
B f |B-connected

q|EB |
)
e
λ(

⊕
B G

EB
B )

.

Notice also that e
λ(

⊕
B G|

EB
VB

)
=
∏

B∈π eλ(G|EBVB )
, which is immediate from the definition of

λ(G′). Indeed, the whole equivalence class has to be contained in the connected component
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of G, which is further contained in the f -connected component. Using the obvious identity

qr−|π| =
∏
B∈π

q|B|−1,

we obtain

κLLT(ν, f)(q + 1) =
∑

π∈P([1..r])

q1−|π|
∏
B∈π

( ∑
EB⊆Ed(GB) :

G
EB
B is f |B-connected

q|EB |
)
e
λ(

⊕
B G

EB
B )

−
∑

π∈P([1..r])
π 6={[1..r]}

qr−|π|
∏
B∈π

κLLT((ν, f)
B, f |B)(q + 1) =

∑
E⊆Ed

GE f -connected

q|E|+1−reλ(GE),

where the last equality follows from the inductive hypothesis, and the proof is finished.

4 Concluding remarks and questions

We conclude by proving conjecture 7 for some special cases and stating some more general
open questions.

We start by showing that conjecture 7 holds true when `(ν) = 2.

Proposition 31. Let ν = ((λ1/µ1, λ2/µ2), f) be an r-colored pair of skew Young dia-
grams. Then, for every partition λ the coefficient

[sλ]κLLTcospin(ν, f) ∈ Z>0[q]

is a polynomial in q with nonnegative integer coefficients.

Proof. We know that LLT polynomials are Schur positive, i.e

LLTcospin(ν)(q) =
∑
λ

cλλ1/µ1,λ2/µ2(q)sλ,

where cλλ1/µ1,λ2/µ2(q) =
∑dλ

λ1/µ1,λ2/µ2

i=0 cλ;iλ1/µ1,λ2/µ2q
i ∈ Z>0[q] and we know that

LLTcospin(λ1/µ1)(q) LLTcospin(λ2/µ2)(q) = LLTcospin(ν)(1).

Therefore, the case of 2-coloring gives us

κLLTcospin(ν, f) =
∑
λ

dλ
λ1/µ1,λ2/µ2∑

i=1

cλ;iλ1/µ1,λ2/µ2 [i]qsλ.

Since the LLT cumulant of 1-colored tuple is simply an LLT polynomial (which is Schur
positive by the result of Grojnowski and Haiman [GH07]) and there are no other r-
colorings of a pair of skew partitions, the proof is finished.
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Remark 32. Note that in this simple case, the coefficient [sλ]κLLTcospin(ν, f) is explicit
assuming that the coefficient [sλ] LLT

cospin(ν) is known. In our setting, this coeffi-
cient was described combinatorially in terms of inversions of Yamanouchi tableaux by
Roberts [Rob14], which, in effect, provides also the combinatorial interpretation of the
coefficient [sλ]κLLTcospin(ν, f).

An explicit expression for LLT(ν) in the Schur basis exists also for `(ν) = 3 due to
Blasiak [Bla16] but it is much more complicated and, as noticed by Blasiak, there are
serious difficulties in going beyond the case `(ν) = 3. Let us recover Blasiak’s result
here [Bla16, Corollary 4.3], so that we can state our conjecture connected to its cumulant
counterpart.

Let ν = (λ1/µ1, λ2/µ2, λ3/µ3). Blasiak proved that

LLT(ν)(q) =
∑
λ

cλν(q)sλ, where cλν(q) =
∑

T∈RSST(λ)
Des′3(T )=D

′(ν)
c̃(ν) - entries of T

qinv
′
3(T ), (35)

and

• RSST(λ) is the set of restricted square strict tableaux of shape λ, i.e., fillings of λ
whose columns strictly increase upwards, rows strictly increase rightwards, and the
filling of the cell (x, y) is smaller by at least 3 than that of (x′, y′) with x′ > x and
y′ > y;

• Des′3(T ) is the multiset of pairs (T (x, y), T (x′, y′)) with (x, y), (x′, y′) ∈ sh(T ) = λ,
such that T (x, y) − T (x′, y′) = 3, and either y > y′ and x 6 x′, or x = x′ + 1,
y = y′ + 1, and T (x′, y) = T (x, y)− 1;

• D′(ν) is the multiset of pairs (c̃(x, y), c̃(x′, y′)) with (x, y), (x′, y′) ∈ ν, such that
c̃(x, y) = c̃(x′, y′) + 3 and y < y′ and x 6 x′;

• c̃(ν) is the sequence of shifted contents of ν; and

• inv′3(T ) is the number of pairs ((x, y), (x′, y′)) with (x, y), (x′, y′) ∈ sh(T ) with 0 <
T (x, y)− T (x′, y′) < 3, such that y > y′ and x 6 x′.

Note that the sets Des′3(T ) and D′(ν) are indeed multisets. For instance, for ν =
((3, 3, 3), (1), (1)), we have

D′(ν) = {(6, 3), (3, 0), (3, 0), (3, 0), (0,−3), (0,−3), (0,−3), (−3,−6)}.

The point (3, 0) in D′(ν) counted with multiplicity 3 comes from the following pairs
(x, y), (x′, y′) ∈ ν: (2, 1), (2, 2) ∈ ν1, (2, 1), (3, 3) ∈ ν1, and (3, 2), (3, 3) ∈ ν1.
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Example 33. Let λ1/µ1 = λ3/µ3 = (1, 1) and λ2/µ2 = (2, 2)/(2) and consider
[s(3,2,1)] LLT(ν) for ν = (λ1/µ1, λ2/µ2, λ3/µ3). According to (35), it is counted by re-
stricted square strict tableaux of shape (3, 2, 1) with some additional constraints. On
the left hand side of fig. 4, we show ν with its shifted contents and we give an example
of a restricted square strict tableau T of shape (3, 2, 1), which satisfies the constraint
Des′3(T ) = D′(ν). We colored the boxes of λi/µi, therefore the pairs counting inv′3(T ) can
be represented as the edges of a graph on three vertices (which is shown on two drawings
on the right hand side).
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5

x− y

−1 0

1 2
λ1/µ1

λ2/µ2

λ3/µ3

ν = (λ1/µ1, λ2/µ2, λ3/µ3)

4

0

32

51

4

T ∈ RRST ((3, 2, 1))

D′(ν) = ((3, 0), (5, 2)) Des′3(T ) = ((3, 0), (5, 2))

1

2

3

inv′3(T ) = 5 e1,2 = e2,3 = 2, e1,3 = 1

inv′3(T ) = e1,2 + e2,3 + e1,3

Figure 4: Restricted square strict tableau corresponding to Schur-expansion of an LLT
polynomial of three skew shapes.

Using the notation from fig. 4, let ei,j(T ) denote the number of pairs (�,�′) contribut-
ing to inv′3(T ) with T (�) ≡ i and T (�′) ≡ j modulo 3, so that

inv′3(T ) = e1,2(T ) + e1,3(T ) + e2,3(T ).

We believe that the following is true:

Conjecture 34. For any triple of skew diagrams ν = (λ1/µ1, λ2/µ2, λ3/µ3) and every
triple {i, j, k} = {1, 2, 3} with i < j, we have

LLT(λi/µi, λj/µj)(q) · LLT(λk/µk)(q) =
∑
λ


∑

T∈RSST(λ)
Des′3(T )=D

′(β)
c(ν) - entries of T

qei,j(T )

 sλ. (36)

Corollary 35. Assume that conjecture 34 holds true. Then conjecture 7 holds true for
all r-colored triples of skew shapes.

Proof. The proof follows the same argument as the one used in theorem 23 to show that

[sλ]κLLT(ν, f) =
∑

T∈RSST(λ)
Des′3(T )=D

′(β)
c(ν) - entries of T

I(GT )f (q),
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Figure 5: The correspondence between unicellular LLT polynomials, Dyck paths and unit
interval graphs. The graph G(ν) on the right is the melting lollipop graph L(2)

(5,2) and we
display the arrangment of unit intervals which realizes it as the unit interval graph.

where GT is an f -colored graph whose vertices are entries of T and we connect pairs
contributing to inv′3(T ).

Note that the above argument works for any r-colored tuple of shapes (ν, f) and
thus, conjecture 7 suggests the following interesting structure of the coefficients of LLT-
polynomials in the Schur expansion.

Problem 36. Let ν = (λ1/µ1, . . . , λr/µr) be an r-tuple of skew Young diagrams. Is it
true that for any partition λ there exists a class of graphs Gνλ with the set of vertices [1..r]
such that for any set-partition π ∈ P([1..r]) one has

[sλ]
∏
B∈π

LLTcospin((ν)B) =
∑
G∈Gνλ

q
∑
B∈π eB ,

where (ν)B := (ν, id[1..r])
B and id[1..r] : [1..r]→ [1..r] is the identity function?

Note that the affirmative answer for this problem implies conjecture 7 providing its
combinatorial interpretation:

[sλ]κLLTcospin(ν, f) =
∑
G∈Gνλ

I(G)f (q).

In the next section, we show that problem 36 has an affirmative answer in some special
cases and thus, conjecture 7 holds true for them.

4.1 Unicellular LLT and melting lollipops

A Schröder path of length n is a path from (0, 0) to (n, n) composed of steps ↑ = (0, 1),
→ = (1, 0), and ↗ = (1, 1) (referred to as north, east, and diagonal steps, respectively),
which stays above the main diagonal (i.e., it can touch it, but the diagonal steps lie strictly
above it). Denote by (i, j) the coordinates of the 1 × 1 box with upper right vertex in
(i, j). It is well known [Hag08] that the vertical-shape LLT polynomials of homogenous
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degree n are in bijection with Schröder paths of length n: start from an `-tuple of vertical
shapes ν of size n, label its boxes by their shifted contents and standardize them, i.e.
replace them (in the unique way) by labels in [1..n] such that the order of new labels
is the same as the order of shifted contents. Now construct a Schröder path F (ν) such
that the box (i, j) lies below the path if and only if the entry i attacks the entry j in
ν and the box (i, j) lies on the diagonal step if the entry j lies directly below the entry
i. This procedure is clearly invertible and we denote by ν(F ) the tuple of vertical strips
associated with the Schröder path F (see the left side of fig. 5 and consult [Hag08] for
more details).

A special case of a Schröder path is a Dyck path, that is a path with no diagonal steps.
The corresponding `-tuple of vertical shapes ν of size n is a sequence of n single boxes
(i.e. ` = n) and its LLT polynomial is called unicellular. It is remarkable that the LLT
graphs associated with unicellular LLT polynomials are precisely unit interval graphs, i.e.
they can be realized as the intersection graphs of n unit intervals on the line (see the right
side of fig. 5).

Note that for every unit interval graph G on n vertices, one has

LLT(G)(1) = en1 =
∑
λ`n

∑
T∈SYT(λ)

sλ.

Therefore, it is natural to look for a statistic aG : SYT→ N such that

[sλ] LLT(G)(q) =
∑

T∈SYT(λ)

qaG(T ).

Recall that the descent set Des(T ) of a standard Young tableau T ∈ SYT(λ) is given by
the values i ∈ [1..n− 1] for which the entry i+1 lies in T in a row above the entry i3 and
define ←−−−−

Des(T ) := {n+ 1− i : i ∈ Des(T )}.

Let m > 1, n be nonnegative integers and 0 6 k 6 m − 1. A melting lollipop L
(k)
(m,n)

is a graph with the vertex set [1..m+ n], built by joining the complete graph on vertices
[1..m] with the path on vertices [m..m+ n] (with edges of the form (i, i+ 1)) and erasing
edges (1,m), (2,m), . . . , (k,m). The unit interval graph depicted in fig. 5 is the melting
lollipop L(2)

(5,2).
Recently Huh, Nam and Yoo proved the following theorem [HNY20]:

Theorem 37. [HNY20] Let Fn be the family of unit interval graphs with n vertices such
that

LLT(G)(q) =
∑
λ`n

∑
T∈SYT(λ)

q
∑
i∈
←−−−−
Des(T )

degGin(i)sλ

for each G ∈ Fn (here degGin(i) denotes the number of edges in G incoming to the vertex
i). Then Fn contains melting lollipops and their disjoint unions.

3it is easy to check that this definition coincides with the previous definition of Des(T ) given in
section 3.2.3 in the special case of ν = (λ) and T ∈ SYT(ν)
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Melting lollipops contain two extremal cases for which theorem 37 is a classical result:
the complete graph Kn = L

(0)
(n,0) and the path graph Pn = L

(0)
(1,n−1) = L

(0)
(2,n−2).

Theorem 38. Let G be a melting lollipop graph with r vertices. Then for every set-
partition π ∈ P([1..r]), one has

[sλ]
∏
B∈π

LLTcospin(G|B) =
∑

T∈SYT(λ)

q
∑
B∈π eB(G

←−−−−
Des(T )
in ),

where GA
in is a graph obtained from G by removing all the edges which are not incoming to

vertices in A ⊂ V . In particular, problem 36 and conjecture 7 have an affirmative answer
in this case and

[sλ]κLLTcospin(G, f) =
∑

T∈SYT(λ)

I
(G
←−−−−
Des(T )
in )f

(q).

Proof. It is enough to notice that

• for every set-partition π ∈ P([1..r]) the graph Gπ :=
⊕

B∈π G|VB is a disjoint union
of melting lollipops so that∏

B∈π

LLT(G|VB)(q) = LLT(Gπ)(q) =
∑
λ`n

∑
T∈SYT(λ)

q
∑
i∈
←−−−−
Des(T )

degGπin (i)
sλ;

• the identity ∑
i∈A

degGin(i) = |E(GA
in)|

follows directly from the construction of GA
in.

Remark 39. Note that the class Fn is strictly smaller than the class of unit interval graphs
on n vertices which can be seen already for n = 4: the unit interval graph G = (V =
[1..4], E) with E = {(1, 2), (2, 3), (2, 4), (3, 4)} does not belong to Fn. On the other hand,
we were not able to find any graph which belongs to Fn and is not a disjoint union of
melting lollipops, and it is tempting to conjecture that these two classes of graphs coincide.

We finish by discussing a different approach to attacking conjecture 7. One can try
to find an explicit formula for κLLTcospin(ν, f) as a linear combination of LLT polynomials
with coefficients in Z>0[q, q−1]. Note that Schur polynomials are a special case of LLT
polynomials so conjecture 7 claims that such an expression exists. Nevertheless, we want
to stress out that LLT polynomials are not linearly independent so one can hope that
some expressions are more natural and easier than others. One particular example where
we observed such a natural combinatorial expression is the unicellular case corresponding
to the complete graph, i.e., when ν is an r-colored tuple of r single boxes: λi = (1), µi = ∅
for all 1 6 i 6 r. This case might seem to be trivial at first sight, but one can quickly
convince oneself that this is a false impression. It turned out that the corresponding
cumulant involves beautiful combinatorial objects such as parking functions and it has a
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Figure 6: The correspondence between tuples of vertical shapes, Schröder paths and
parking functions.

form similar to the formula in the Shuffle Theorem, conjectured in [HHL+05b] and proved
by Carlson and Mellit [CM18]. Before we show the formula we quickly explain what
parking functions are.

A parking function P ∈ PFn−1 of size n−1 is a function P : [1..n−1]→ [1..n−1] such
that for each i ∈ [1..n− 1], one has |P−1(i)| > i. One can represent a parking function by
drawing a Dyck path from (1, 1) to (n, n) and labeling the boxes to the right of north steps
by distinct integers [1..n− 1] in such a way that the labels of boxes stacked in the same
column are upward increasing. Starting from a parking function P ∈ PFn−1, convert the
corresponding Dyck path of length n−1 into a Schröder path of length n by adding steps
↑,→ starting from (0, 0) and then replacing all the pairs of consecutive steps (→, ↑) by
↗, see the right side of fig. 6. The following formula was recently proved by the second
author:

Theorem 40. [Kow20] Let (ν, f) = (((1), . . . , (1)), f) be an r-colored tuple of r single
boxes. Then

κLLT(ν, f) = κLLTcospin(ν, f) =
∑

P∈PFr−1

LLT(ν(F (P ))), (37)

where we sum over all parking functions of size r − 1.

This formula gives a positive expression in terms of vertical-shaped LLT polyno-
mials, which are Schur-positive (by [GH07]) and e-positive after applying the shift
(by [D’A20, AS22]). In particular, theorem 40 gives yet another proof of conjecture 7
and also conjecture 6 in this special case. Although theorem 40 might suggest that there
is a combinatorial formula expressing an LLT cumulant as a positive combination of LLT
polynomials, we were not able to find a pattern allowing us to construct such a formula
in general and we leave this problem for further investigations in the future.
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