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Abstract

Let k andm be positive integers and λ/µ a skew partition. We compute the prin-
cipal specialization of the skew Schur polynomials sλ/µ(x1, . . . , xk) modulo qm − 1
under suitable conditions. We interpret the results thus obtained from the viewpoint
of the cyclic sieving phenomenon on semistandard Young skew tableaux of shape
λ/µ. As an application, we deal with evaluations of the principal specialization of
the skew Schur polynomials at roots of unity.

Mathematics Subject Classifications: 05E18, 05E05, 05E10

1 Introduction

The cyclic sieving phenomenon was introduced by Reiner, Stanton, and White in [16] as
a generalization of Stembridge’s q = −1 phenomenon [19, 20]. Let X be a finite set on
which a finite cyclic group C acts and let X(q) be a polynomial in q with nonnegative
integer coefficients. For d ∈ Z>0, let ωd be a dth primitive root of unity. We say that
the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon if #Xc = X(ωo(c)) for all
c ∈ C, where Xc is the set of fixed points under the action of c and o(c) is the order of c.

We identify a partition with the corresponding Young diagram. Given a Young dia-
gram λ, let SSYTm(λ) be the set of semistandard Young tableaux of shape λ with entries in
{1, . . . ,m}. In [17], Rhoades proved representation-theoretically that if λ is of rectangular
shape, the triple Ä

SSYTm(λ), 〈pr〉, q−κ(λ)sλ(1, q, . . . , qm−1)
ä
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exhibits the cyclic sieving phenomenon, where pr is jeu-de-taquin promotion, κ(λ) =∑
i>1(i−1)λi, and sλ(1, q, . . . , q

m−1) is the principal specialization of the Schur polynomial
sλ(x1, . . . , xm). Since then, there have been several studies on the following issues:

1. When λ is not of rectangular shape, what conditions guarantee the existence of an
action of a finite cyclic group C on SSYTm(λ) such that the tripleÄ

SSYTm(λ), C, q−κ(λ)sλ(1, q, . . . , q
m−1)
ä

exhibits the cyclic sieving phenomenon?

2. In (1), can we describe the cyclic group action explicitly?

For instance, see [4, 6, 9, 13, 14, 15]. In particular, it was shown in [13] that for any
Young diagram that satisfies the condition gcd(|λ|,m) = 1, the tripleÄ

SSYTm(λ), 〈c〉, q−κ(λ)sλ(1, q, . . . , qm−1)
ä

exhibits the cyclic sieving phenomenon. Here the action c arises naturally from the
Uq(slm)-crystal structure of SSYTm(λ).

In this paper, we consider cyclic sieving phenomena associated with semistandard
Young skew tableaux. Unlike tableaux of normal shape, little is known about cyclic sieving
phenomena that occur on semistandard Young skew tableaux. It has been conjectured
by Alexandersson and Amini [2, Conjecture 3.4] that for any k,m ∈ Z>0, there exists an
action of a cyclic group Cm of order m on SSYTk(λ) such that the triple

(SSYTk(mλ), Cm, smλ(1, q, . . . , q
k−1))

exhibits the cyclic sieving phenomenon. Here mλ denotes the stretched Young diagram
of λ by m. This conjecture turns out to be true in [14], where a crystal-theoretical
generalization of this phenomenon is also provided. Recently, a skew version of this
conjecture has been proposed by Alexandersson-Pfannerer-Rubey-Uhlin [4, Conjecture
50], which states that there is an action of a cyclic group Cm of order m on the set
SSYTk(mλ/mµ) such that the triple

(SSYTk(mλ/mµ), Cm, smλ/mµ(1, q, . . . , qk−1))

exhibits the cyclic sieving phenomenon.
The present paper concerns the conjecture given in [4, Conjecture 50]. We begin by

computing the principal specialization of smλ/mµ(x1, . . . , xk) modulo qm−1. For instance,
in case where λ = (3, 3, 2, 1), µ = (2, 1),m = 9, and k = 4, we observe that

s9λ/9µ(1, q, q2, q3) ≡ 54665112
q9 − 1

q − 1
− 3

q9 − 1

q3 − 1
+ 1 (mod q9 − 1).

This congruence tells us that the conjecture is not necessarily true. However, under the
condition that k is divisible by m, we prove that the conjecture is true. To be precise,
our first main result is the following.
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Theorem 1. Let k and m be positive integers and λ/µ a skew partition. If λi − µi is
divisible by m for all i > 1, then there exists an action of a cyclic group Cm of order m
such that the triple

(SSYTkm(λ/µ), Cm, sλ/µ(1, q, . . . , qkm−1))

exhibits the cyclic sieving phenomenon.

We also prove that the conjecture is true whenever λ/µ is a border strip, which is our
second main result.

Theorem 2. Let k and m be positive integers and λ/µ a border strip. If λi−µi is divisible
by m for all i > 1, then there exists an action of a cyclic group Cm of order m such that
the triple

(SSYTk(λ/µ), Cm, sλ/µ(1, q, . . . , qk−1))

exhibits the cyclic sieving phenomenon.

As an application, we deal with evaluations of the principal specialization of the skew
Schur polynomials at roots of unity. For each d | k, Reiner, Stanton, and White [16, The-
orem 4.3] provide a formula for sλ(1, q, . . . , q

k−1) when q is specialized to a dth primitive
root of unity, which involves the notion of d-cores and d-quotients of λ. Using a result
obtained in the proof of Theorem 1, we successfully generalize this formula to skew shapes
(see Theorem 16). In particular, the case where d = k is investigated in detail.

This paper is organized as follows. In Section 2, we collect the materials required
to develop our arguments. In Section 3 and Section 4, the proofs of Theorem 1 and
Theorem 2 are provided, respectively. In Section 5, a skew version of [16, Theorem 4.3]
is provided. The final section is devoted to a few remarks for readers’ understanding.

2 Preliminaries

2.1 Partitions, skew partitions, and border strip tableaux

A partition is any sequence λ = (λ1, λ2, λ3, . . .) of nonnegative integers in decreasing order
and containing only finitely many nonzero terms. The length `(λ) of λ is defined to be
the number of positive parts of λ. Unless otherwise specified, we usually omit the zero
parts of λ and simply write as λ = (λ1, λ2, . . . , λ`(λ)). Given any positive integer m, we
set mλ to be the stretched partition (mλ1,mλ2, . . . ,mλ`(λ)). A skew partition is a pair
of partitions (λ, µ) such that the Young diagram of λ contains the Young diagram of µ;
it is denoted by λ/µ. If λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .), then the containment of
diagrams means that λi > µi for all i.

A border strip is a connected skew shape with no 2×2 square. Define the height ht(B)
of a border strip B to be one less than its number of rows. Let α = (α1, α2, . . .) be a weak
composition of n. Define a border-strip tableau of shape λ/µ (where |λ/µ| = n) and type
α to be an assignment of positive integers to the squares of λ/µ such that
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• every row and column is weakly increasing,

• the integer i appears αi times, and

• the set of squares occupied by i forms a border strip.

Define the height ht(T) of a border-strip tableau T to be

ht(T ) = ht(B1) + ht(B2) + · · ·+ ht(Bk),

where B1, . . . ,Bk are the nonempty border strips appearing in T . For more details, see [18,
Section 7.17].

2.2 The abacus model for partitions, cores and quotients

Let us review the abacus model introduced by James and Kerber [10, Ch. 2.7] to encode
partitions and their quotients, some of which will be slightly modified for the simplicity
of the arguments.

With d > 1 fixed, we take an abacus with d vertical runners, numbered 0, 1, . . . , d− 1
from left to right, and we mark positions 0, 1, 2, . . . on these runners, reading from left to
right along successive rows. Let λ = (λ1, λ2, . . . , λ`) be a partition. For r > `, let δr be
the staircase partition (r − 1, r − 2, . . . , 1) and let λ+ δr be the sequence

(λ1 + r − 1, . . . , λi + (r − i), . . . , λr−1 + 1, λr) ,

where λi = 0 if i > `. Once r is chosen, the d-abacus display for λ is obtained by circling
the elements of λ + δr from the row containing the position labeled by 0 to the row
containing λ1 +r−1. It should be mentioned that r > ` if and only if the position labeled
by 0 is circled. We call a circled position a bead and a uncircled position a non-bead for
simplicity. See Figure 1 for an illustration.

Let λ∅ be the d-core of λ, which can be obtained by removing border strips of size
d from the diagram of λ as many as possible. It is well known that the abacus display
for λ∅ can be obtained from the abacus display for λ by moving all the beads as far up
their runners as they will go and then removing the rows containing beads only. For each
0 6 i 6 d − 1, let λ(i) be the partition whose j-part is the number of non-beads above
the jth bead from the bottom on runner i of the abacus display for λ. The sequence
(λ(0), . . . , λ(d−1)) is called the d-quotient of λ.

Next, let us introduce the abacus display for skew partitions. Let λ/µ be a skew
partition with `(λ) = `. Once d and r > ` are chosen, the d-abacus display for λ/µ
can be obtained by drawing the d-abacus for µ above the d-abacus for λ. It should be
mentioned that we are using the same r in obtaining the d-abaci for λ and µ. In the
present paper, r will always be set to be `. If the Young diagram of λ(i) contains the
Young diagram of µ(i) for all 0 6 i 6 d − 1, the d-quotient of λ/µ is defined to be the
sequence (λ(0)/µ(0), . . . , λ(d−1)/µ(d−1)). Otherwise, we say that the d-quotient of λ/µ does
not exist. For more information on the abacus display for skew partitions, we refer the
readers to [4, Section 5].
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Example 3. Let λ/µ = (92, 63, 4, 1)/(2, 13). The 3-abacus for λ/µ can be found in
Figure 1. And, the 3-quotient of λ/µ is ((4, 3)/(1), (2), (2, 12)).

runner 0 runner 1 runner 2

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

runner 0 runner 1 runner 2

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

Figure 1: The 3-abaci for (92, 63, 4, 1) and (92, 63, 4, 1)/(2, 13).

2.3 Basic results and definitions necessary for proofs

Here we collect the basic results and definitions necessary to develop our arguments. The
first result to introduce is due to Reiner, Stanton, and White. Let k, m, and n be positive
integers. Suppose that a cyclic group Cm of order m acts nearly freely on {1, . . . , k},
equivalently it is generated by an element c ∈ Sk whose cycle type is either

1. a cycles of size m, so that k = am (and Cm acts freely), or

2. a cycles of size m and one singleton cycle, so that k = am+ 1

for some positive integer a. Let X be an n-multiset of {1, . . . , k}, and

X(q) :=

ï
n+ k − 1

n

ò
q

.

Under this assumption, they prove in [16, Theorem 1.1] that the triple (X,Cm, X(q)) ex-
hibits the cyclic sieving phenomenon. Furthermore, letting Al(k, n) denote the coefficient
of ql in ï

n+ k − 1
n

ò
q

(mod qk − 1)

with the convention that A1(1, n) = 1, they show in [16, Corollary 1.3] that

Al(k, n) =
∑
d|n,k,l

A1

Å
k

d
,
n

d

ã
. (1)
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Let hn(x1, . . . , xk) be the nth homogeneous symmetric polynomial in variables x1, . . . , xk.
It is easy to see that the principal specialization of hn(x1, . . . , xk) equals X(q), that is,

hn(1, q, . . . , qk−1) =

ï
n+ k − 1

n

ò
q

.

Thus the theorem [16, Theorem 1.1] tells us that if a cyclic group of order m act nearly
freely on {1, . . . , k}, then

hn(1, q, . . . , qk−1) ≡
∑
d|m

ad
qm − 1

q
m
d − 1

(mod qm − 1)

for some nonnegative integers ad’s.
The second result to introduce is due to Alexandersson and Amini.

Lemma 4. (Alexandersson and Amini [2, Theorem 2.7]) Let f(q) ∈ Z>0[q] and suppose
f(ωjm) ∈ Z>0 for each j = 1, . . . ,m, where ωm denotes a primitive mth root of unity. Let
X be any set of size f(1). Then there exists an action of a cyclic group C of order m
on X such that (X,C, f(q)) exhibits the cyclic sieving phenomenon if and only if for each
d |m, ∑

j|d

µ(d/j)f(ωjm) > 0.

Here, µ is the Möbius function.

In Lemma 4, suppose that f(q) satisfies the condition that

f(q) ≡
∑
d|m

ad
qm − 1

q
m
d − 1

(mod qm − 1)

for some integers ad’s. Then it holds that∑
j|d

µ(d/j)f(ωjm) = dad (2)

(for instance, see the proof of [14, Theorem 3.2]). Hence, if ad > 0 for all d |n, then
(X,C, f(q)) exhibits the cyclic sieving phenomenon for a unknown cyclic group action
and ad is the number of C-orbits with exactly d elements.

Motivated by this observation, we introduce the following definition.

Definition 5. Let f(q) ∈ Z[q].

(a) We say that f(q) is a pre-CSP polynomial modulo m if

f(q) ≡
∑
d|m

ad
qm − 1

q
m
d − 1

(mod qm − 1)

for some integers ad’s.
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(b) We say that f(q) is a CSP polynomial modulo m if it is a pre-CSP polynomial
modulo m with ad > 0 for all divisors d of m.

In Definition 5(a), the coefficient ad is denoted byï
qm − 1

q
m
d − 1

ò
f(q)

for each divisor d of m because it is uniquely determined.

3 Proof of Theorem 1

In this section, we provide the proof of Theorem 1. We begin by introducing two important
lemmas. Given positive integersm and n, we denote by (m,n) the greatest common divisor
of m and n and [m,n] the least common multiple of m and n.

Lemma 6. For any positive integers k, m and n, hn(1, q, . . . , qkm−1) is a CSP polynomial
modulo m. Furthermore, for each divisor d of m,ï

qm − 1

q
m
d − 1

ò
hn(1, q, . . . , qkm−1) =

®î
qd−1
q−1

ó
hnd/m(1, q, . . . , qkd−1) if m

d
divides n,

0 otherwise.

Proof. By the theorem [16, Theorem 1.1], we can see that hn(1, q, . . . , qkm−1) is a CSP
polynomial modulo m as well as a CSP polynomial modulo km. Let e be any divisor of
km and set

be :=

ñ
qkm − 1

q
km
e − 1

ô
hn(1, q, . . . , qkm−1).

In view of (1), we have that

be =

®
A1

(
e, ne

km

)
if km

e
divides n,

0 otherwise.
(3)

Fix a divisor d of m and let Ad be the set of divisors e of km satisfying that (km
e
,m) = m

d
.

Setting

ad :=

ï
qm − 1

q
m
d − 1

ò
hn(1, q, . . . , qkm−1)

gives rise to the following relation between ad and be:

ad =
∑
e∈Ad

e

d
be. (4)

In case where m
d

divides n, applying (3) to this equality yields that

ad =
∑
e∈Ad
km
e
|n

e

d
be +

∑
e∈Ad
km
e

-n

e

d
be =

∑
e∈Ad
km
e
|n

e

d
be =

∑
e∈Ad
km
e
|n

e

d
A1

(
e,
ne

km

)
.
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Otherwise, there is no element e ∈ Ad with km
e
|n, and thus ad = 0 by (3) together with (4).

For the second assertion, observe that Ad is identical to the set of divisors e of kd
satisfying that (kd

e
, d) = 1. Set

a′d :=

ï
qd − 1

q − 1

ò
hnd/m(1, q, . . . , qkd−1).

Then we have

a′d =
∑
e∈Ad
kd
e
|nd
m

e

d
A1

(
e,
ne

km

)
.

Now our assertion follows from the fact that, for each e ∈ Ad, km
e

divides n if and only if
kd
e

divides nd
m

.

Lemma 7. Let m be a positive integer and let a, b be divisors of m. Then,

qm − 1

qa − 1
· q

m − 1

qb − 1
≡ m

[a, b]
· q

m − 1

q(a,b) − 1
(mod qm − 1). (5)

Proof. For simplicity, let d := (a, b) and l := [a, b]. Then we can write a = da′ and b = db′

with (a′, b′) = 1. The left hand side of (5) equals∑
06i<m/a
06j<m/b

qai+bj

and the right hand side of (5) equals

m

l

∑
06k<m/d

qdk.

Hence the assertion can be proven by showing that, for each 0 6 k < m
d

, the number of
solutions to the linear congruence

ai+ bj ≡ dk (mod m) with 0 6 i <
m

a
and 0 6 j <

m

b
(6)

is given by m
l
. To do this, we first note that the linear congruence ai+ bj ≡ dk (mod m)

is equivalent to a′i+ b′j ≡ k (mod m
d

). Then we consider the set{
a′i+ b′j : 0 6 i <

m

a
, 0 6 j <

m

b

}
. (7)

For each 0 6 c < m
ab′

, we claim that the subset{
a′(i+ cb′) + b′j : 0 6 i < b′, 0 6 j <

m

b

}
the electronic journal of combinatorics 29(4) (2022), #P4.6 8



is a complete system of residues modulo m
d

. Note that the number of elements in this set
is m

d
. Suppose that

a′(i1 + cb′) + b′j1 ≡ a′(i2 + cb′) + b′j2 (mod
m

d
),

where 0 6 i1, i2 < b′ and 0 6 j1, j2 <
m
b

. Then a′(i1 − i2) + b′(j1 − j2) = m
d
k for some

k. Applying b′ | m
d

and (a′, b′) = 1 to this equality yields that b′ | (i1 − i2). Since
−b′ < i1 − i2 < b′, this division relation implies that i1 = i2, thus j1 − j2 = m

b
k. It says

that j1 = j2 since −m
b
< j1 − j2 < m

b
, which completes the verification of the claim.

Applying the above claim to (7) shows that the number of solutions to (6) is given by

m
a
· m
b

m
d

=
m

l
,

as required.

Remark 8. Let m and k be positive integers. For every partition λ with at most km rows,
by applying Lemma 6 and Lemma 7 repeatedly, we deduce that hλ(1, q, . . . , q

km−1) is a
CSP polynomial modulo m. Going further, we deduce that the principal specialization of
every symmetric polynomial in Z[x1, . . . , xkm] is a pre-CSP polynomial modulo m since

{hλ(x1, . . . , xkm) : λ a partition with at most km rows}

is a basis over Z of the symmetric polynomials in x1, . . . , xkm.

To each skew partition λ/µ with `(λ) = l, we associate the l× l matrix M(λ/µ) defined
by

M(λ/µ)i,j = λi − µj + j − i. (8)

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let k be an arbitrary positive integer and be fixed throughout
the proof. By Remark 8, we have

sλ/µ(1, q, . . . , qkm−1) ≡
∑
d|m

cd
qm − 1

q
m
d − 1

(mod qm − 1),

where cd’s are integers. Due to Lemma 4 together with (2), for the assertion, we have
only to show that sλ/µ(1, q, . . . , qkm−1) is a CSP polynomial modulo m. This will be
accomplished by applying mathematical induction on m. When m = 1, there is nothing
to prove. Suppose that m > 2 and our assertion holds for all positive integers less than
m. For any n ∈ Z and any divisor d of m, let

ad(n,m) :=

ï
qm − 1

q
m
d − 1

ò
hn(1, q, . . . , qkm−1). (9)
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If n is a positive integer, by Lemma 6, we have

ad(n,m) =

®
ad(

nd
m
, d) > 0 if m

d
| (m,n),

0 otherwise.
(10)

One can also see that ad(0,m) = δd,1 and that when n is a negative integer, ad(n,m) = 0
for all d |m. Here δd,1 denotes the Kronecker delta.

Since every coefficient of sλ/µ(1, q, . . . , qkm−1) is nonnegative, one can see that cm(m) >
0. Let d be a divisor of m smaller than m, which will be fixed until the end of the proof.
In what follows, we will show that cd is nonnegative.

Let M := M(λ/µ) and l := `(λ). Consider the m
d

-abacus display for λ/µ and let

(λ(0)/µ(0), . . . , λ(
m
d
−1)/µ(m

d
−1)) be the m

d
-quotient of λ/µ. For 0 6 t 6 m

d
− 1, let

Ct := {1 6 i 6 l : the bead for λi + l − i is on runner t in the abacus display}.

Note that for 1 6 i 6 l, the bead for µi + l − i is on runner t if and only if i ∈ Ct since
λi − µi is divisible by m. For simplicity, let l(t) := |Ct| and write

Ct = {ct,1 < · · · < ct,l(t)}.

Pick any integer 0 6 t 6 m
d
− 1, which will be fixed until the end of the proof. Let us

introduce three l(t)× l(t) matrices M(t), P(t), and P̂(t) whose (i, j) entry is given by

M(t)i,j = Mct,i,ct,j ,

P(t)i,j = hM(t)i,j(1, q, . . . , q
km−1), and

P̂(t)i,j =
∑
e|d

ae (M(t)i,j,m)
qm − 1

q
m
e − 1

.

For σ ∈ Sl, let

fσ(q) := sgn(σ)
∏
16i6l

hλi−µσ(i)+σ(i)−i(1, q, . . . , q
km−1).

Let S := SC1 × SC2 × . . . × SCn and SCt is the symmetric group on Ct. In case where
σ ∈ Sl \S, by applying Lemma 6 and Lemma 7 to fσ(q), we derive thatï

qm − 1

q
m
e − 1

ò
fσ(q) = 0 for all e | d.

Combining this with Jacobi-Trudi formula, we also derive that

ce =
∑
σ∈Sl

ï
qm − 1

q
m
e − 1

ò
fσ(q) =

∑
σ∈S

ï
qm − 1

q
m
e − 1

ò
fσ(q) =

ï
qm − 1

q
m
e − 1

ò ∏
06t6m

d
−1

det(P(t)) (11)

for all divisors e of d, particularly for e = d. On the other hand, applying Lemma 7 toï
qm − 1

q
m
e − 1

ò
P(t)i,j =

ï
qm − 1

q
m
e − 1

ò
P̂(t)i,j for all 1 6 i, j 6 l and e | d

the electronic journal of combinatorics 29(4) (2022), #P4.6 10



gives rise to the identityï
qm − 1

q
m
e − 1

ò
det(P(t)) =

ï
qm − 1

q
m
e − 1

ò
det(P̂(t)) for all e | d. (12)

So our assertion reduces to showing that the right hand side of (12) is always nonnegative.
We start this by comparing M(λ(t)/µ(t)) and M(t). Note that for 1 6 i 6 l(t),

λ
(t)
i =

d(λct,i + l − ct,i − t)
m

− l(t) + i and µ
(t)
i =

d(µct,i + l − ct,i − t)
m

− l(t) + i.

Therefore, we have λ(t) − µ(t)
j + j − i =

dM(t)i,j
m

for 1 6 i, j 6 l(t).

Since λ
(t)
i −µ

(t)
i is divisible by d for all 1 6 i 6 l(t) and d < m, by induction hypothesis,

we have

sλ(t)/µ(t)(1, q, . . . , q
kd−1) ≡

∑
e|d

be
qd − 1

q
d
e − 1

(mod qd − 1),

where be’s are nonnegative integers. By replacing q by q
m
d , we have

sλ(t)/µ(t)(1, q
m
d , . . . , (q

m
d )kd−1) ≡

∑
e|d

be
qm − 1

q
m
e − 1

(mod qm − 1).

On the other hand, since
dM(t)i,j

m
= λ

(t)
i − µ

(t)
j + j − i, (9) yields the following congruence:

sλ(t)/µ(t)(1, q, . . . , q
kd−1) ≡ det

Ñ∑
e|d

ae

Å
dM(t)i,j
m

, d

ã
qd − 1

q
d
e − 1

é
16i,j6l(t)

(mod qd − 1).

This tells us that

sλ(t)/µ(t)(1, q
m
d , . . . , (q

m
d )kd−1) ≡ det

Ñ∑
e|d

ae

Å
dM(t)i,j
m

, d

ã
qm − 1

q
m
e − 1

é
16i,j6l(t)

≡ det

Ñ∑
e|d

ae(M(t)i,j,m)
qm − 1

q
m
e − 1

é
16i,j6l(t)

≡ det
Ä
P̂(t)i,j

ä
16i,j6l(t)

(mod qm − 1).

(13)

Here the second congruence follows from the formula (10). As a consequence,ï
qm − 1

q
m
e − 1

ò
det(P̂(t)) = be > 0 for all e | d.

This completes the proof.
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Remark 9. Let d be a divisor of m and e a divisor of d. In the proof of Theorem 1,
combining (11), (12), and (13), one can derive the equality

ce =

ï
qm − 1

q
m
e − 1

ò ∏
06t6m

d
−1

sλ(t)/µ(t)(1, q
m
d , . . . , (q

m
d )kd−1). (14)

The idea of obtaining this equality plays an important role in proving Proposition 15.

Example 10. Letm = 6, k = 1, and d = 2. We here simply write hn(q) for hn(1, q, . . . , q5)
for all n ∈ Z. If λ = (13, 103, 6) and µ = (7, 43), then 3-abacus display for λ/µ is

runner 0 runner 1 runner 2

0 1 2

3 4 5

6 7 8

9 10 11

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

λ(0)/ν(0) = (3, 2)/(1) λ(1)/ν(1) = (4)/(2) λ(2)/ν(2) = (4, 3)/(2, 1)

and sλ/µ(1, q, . . . , q5) = det(P) with

P :=


h6(q) h10(q) h11(q) h12(q) h17(q)
h2(q) h6(q) h7(q) h8(q) h13(q)
h1(q) h5(q) h6(q) h7(q) h12(q)
h0(q) h4(q) h5(q) h6(q) h11(q)
h−5(q) h−1(q) h0(q) h1(q) h6(q)

 .
Since C0 = {3, 5}, C1 = {2}, C2 = {1, 4}, and P(t) = P|Ct×Ct , it follows that

P(0) =

ï
h6(q) h12(q)
h0(q) h6(q)

ò
, P(1) =

[
h6(q)

]
, and P(2) =

ï
h6(q) h12(q)
h0(q) h6(q)

ò
.

4 Proof of Theorem 2

In this section, we provide the proof of Theorem 2.

Lemma 11. Let k, m, and n be positive integers. If n is a multiple of m, then

hn(1, q, . . . , qk−1) ≡
∑

06j6k−1

hj(1, q, . . . , q
n−1) (mod qm − 1).
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Proof. Note that

hn(1, q, . . . , qk−1) =
∑

T∈SSYTk((n))

qω(T ),

where ω(T ) =
∑

16i6k(i − 1)mi and mi is the number of occurrences of i in T . The
decomposition

SSYTk((n)) =
⋃

16i6k

Ai

with
Ai = {T ∈ SSYTk((n)) : the leftmost entry in T is i}

gives rise to the equality

hn(1, q, . . . , qk−1) =
∑
16i6k

qi−1hn−1(q
i−1, . . . , qk−1).

Applying hn−1(q
i−1, . . . , qk−1) = q(n−1)(i−1)hn−1(1, q, . . . , q

k−i) to the above equality, we
derive that

hn(1, q, . . . , qk−1) ≡
∑
16i6k

hn−1(1, q, . . . , q
k−i)

≡
∑

06j6k−1

hn−1(1, q, . . . , q
j) (by letting j := k − i)

≡
∑

06j6k−1

hj(1, q, . . . , q
n−1) (mod qm − 1).

The third congruence follows from the equality hn−1(1, q, . . . , q
j) = hj(1, q, . . . , q

n−1).

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let l := `(λ). Since λ/µ is a border strip, we may assume that
`(µ) = l−1. Under this assumption, λ/µ can be naturally identified with the composition
α = (α1, α2, . . . , αl) of |λ|− |µ|, where αi = λi−µi for 1 6 i 6 l. From now on, we simply
write rα(1, q, . . . , qk−1) and M(α) for sλ/µ(1, q, . . . , qk−1) and M(λ/µ), respectively. By (8),
it holds that

M(α)i,j =


αi + · · ·+ αj if 1 6 i 6 j 6 l,

0 if 2 6 i 6 l and i− j = 1,

< 0 otherwise.

Let P(α; k) be the l × l matrix defined by

P(α; k)i,j = hM(α)i,j(1, q, . . . , q
k−1).

Combining Jacobi-Trudi formula with Lemma 6 and Lemma 7, we can easily derive that

rα(1, q, . . . , qk−1) = det(P(α; k)) ≡
∑
d|m

cd(α, k,m)
qm − 1

q
m
d − 1

(mod qm − 1), (15)
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where cd(α, k,m)’s are integers. For our purpose, it should be verified that cd(α, k,m) > 0
for every divisor d of m. This will be accomplished by applying induction on m. When
m = 1, there is nothing to prove. Suppose that m > 2 and our assertion holds for all
positive integers less than m. Since every coefficient of rα(1, q, . . . , qk−1) is nonnegative,
it follows that cm(α, k,m) > 0. We now choose an arbitrary divisor d of m smaller than

m and set k′ := bd(k−1)
m
c+ 1, where bd(k−1)

m
c denotes the integer part of d(k−1)

m
.

Let P̂(d) be the l × l matrix defined by

P̂(d)i,j =


∑

06t6k′−1 hmt/d(1, q, . . . , q
M(α)i,j−1) if 1 6 i 6 j 6 l,

1 if 2 6 i 6 l, j = i− 1,

0 otherwise.

It is clear that P(α; k)i,j = P̂(d)i,j for 1 6 j < i 6 l. On the other hand, in case where
1 6 i 6 j 6 l, Lemma 6 and Lemma 11 imply that P(α; k)i,j is a CSP polynomial modulo
m satisfying that ï

qm − 1

q
m
e − 1

ò
P(α; k)i,j =

ï
qm − 1

q
m
e − 1

ò
P̂(d)i,j for all e | d.

So, from Lemma 7 it follows that cd(α, k,m) is equal to c′d :=
[
qm−1
q
m
d −1

]
P̂(d).

In the following, we will see that c′d > 0. Let β :=
(
dα1

m
, dα2

m
, . . . , dαl

m

)
. For 1 6 j < i 6 l,

it holds that P̂(d)i,j = P(β; k′)i,j. We next consider the case where 1 6 i 6 j 6 l. Recall
that

M(β)i,j =
dM(α)i,j

m
.

For each 0 6 t 6 k′ − 1, Lemma 6 shows that ht(1, q
m
d , . . . , (q

m
d )M(β)i,j−1) is a CSP

polynomial modulo m andï
qm − 1

q
m
e − 1

ò
ht(1, q

m
d , . . . , (q

m
d )M(β)i,j−1) =

ï
qm − 1

q
m
e − 1

ò
hmt/d(1, q, . . . , q

M(α)i,j−1) for all e | d.

Hence P̂(d)i,j and P(β, k′)i,j are CSP polynomials modulo m satisfying thatï
qm − 1

q
m
e − 1

ò
P(β; k′)i,j =

ï
qm − 1

q
m
e − 1

ò
P̂(d)i,j for all e | d.

Now, by applying Lemma 7 to this identity, we derive that c′d = cd(β, k
′, d). Since βi

is divisible by d for all 1 6 i 6 l and d < m, our induction hypothesis implies that
cd(β, k

′, d) > 0, as required.

Remark 12. In the proof of Theorem 2, we can additionally observe the following.

(a) Let (λ(0)/µ(0), . . . , λ(
m
d
−1)/µ(m

d
−1)) be the m

d
-quotient of λ/µ. Then λ(0)/µ(0) is the

border strip such that λ
(0)
i − µ

(0)
i = βi for all 1 6 i 6 l and λ(t)/µ(t) = ∅ for all

1 6 t 6 m
d
− 1.

(b) It holds that cd(α, k,m) = cd(β, k
′, d), which can be viewed as an analogue of

Lemma 6 (for the definition of either side, see (15)).
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5 Principal specializations of skew Schur polynomials at roots
of unity

Let λ/µ be a skew partition of size n. The skew characters χλ/µ(ν) of the symmetric
group Sn are then defined implicitly via

sλ/µ(X) =
∑
ν

χλ/µ(ν)
pν(X)

zν
, (16)

where the sum is over all partitions ν of n, zν :=
∏

jmj!j
mj , mj is the number of parts

in ν equal to j, and pν(X) is the power-sum symmetric function indexed by ν. It can be
found in [18, Theorem 7.17.3] that

χλ/µ(ν) =
∑
T

(−1)ht(T),

summed over all border-strip tableaux of shape λ/µ and type ν. In case where ν = (dm)
with n = dm, it was proved in [4, Corollary 30] that

χλ/µ((dm)) = ε|BST(λ/µ, d)|,

where BST(λ/µ, d) is the set of all border-strip tableaux of shape λ/µ and type (dm) and
ε = (−1)ht(T) for any T ∈ BST(λ/µ, d). The following lemma was also presented in the
same paper.

Lemma 13. ([4, Lemma 18]) Let λ/µ be a skew shape. Then the d-quotient of λ/µ exists
if and only if BST(λ/µ, d) is nonempty.

In the following, we will show that ε is given by the signature of a particular permu-
tation in Sn, assuming that the d-quotient of λ/µ exists. As above, let |λ/µ| = dm and
let l = `(λ). For 0 6 r 6 d− 1, let

λ[r] := {1 6 j 6 l : λj + (l − j) ≡ r (mod d)} and

µ[r] := {1 6 j 6 l : µj + (l − j) ≡ r (mod d)}.

Since the d-cores of λ and µ coincide, one sees that λ[r] and µ[r] have the same number
of elements. Let us enumerate the elements λ[r] and µ[r] in the increasing orders:

λ[r] = {ar,1 < ar,2 < · · · < ar,ir},
µ[r] = {br,1 < br,2 < · · · < br,ir}.

Mapping ar,i to br,i for 1 6 i 6 ir and for r = 0, 1, . . . , d−1, one can obtain a permutation
on {1, . . . , l}. The resulting permutation is denoted by perm(λ/µ). For instance, if
λ/µ = (92, 63, 4, 1)/(2, 13), then

λ+ δl = (15, 14, 10, 9, 8, 5, 1) ≡ (0, 2, 1, 0, 2, 2, 1) (mod 3),

µ+ δl = (8, 6, 5, 4, 2, 1, 0) ≡ (2, 0, 2, 1, 2, 1, 0) (mod 3),
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and thus perm(λ/µ) = 2147356.
Since the d-quotient of λ/µ exists, one can obtain µ from λ by removing border strips

of size d. Suppose that one removes a border strip of size d and height k whose highest
and rightmost cell is placed in the ith row of λ. Let us denote the resulting partition by
λ̃. It is easily seen that

λ̃j =


λj if 1 6 j 6 i− 1 or i+ k + 1 6 j 6 l,

λj+1 − 1 if i 6 j 6 i+ k − 1,

λi − d+ k if j = i+ k,

and therefore

λ̃+δl = (. . . , λi+1 + l − (i+ 1)︸ ︷︷ ︸
ith

, λi+2+ l−(i+2), . . . , λi+k+ l−(i+k), λi + (l − i)− d︸ ︷︷ ︸
(i+ k)th

, . . .).

Note that the symmetric group Sl acts on the set of weak compositions of length l by
place permutation. Using this action, one can see that

λ̃+ δl =

®
si+k−1 · · · si+1si · (λ+ δl − dei) if k > 0,

idi · (λ+ δl − dei) if k = 0,

where ei := (0, . . . ,
ith

1 , 0, . . . , 0) and sj := (j j+1) are simple transpositions of Sl. In case
where k = 0, the subscript in idi is used to indicate the row from which the border strip
of zero height is removed. One can see that k is equal to the length of si+k−1 · · · si+1si.
Continue this process until we get µ+ δl from λ+ δl. Composing permutations appearing
at each step, one can recover perm(λ/µ). The expressions of perm(λ/µ) obtained in
this way are in bijection with the methods of obtaining µ from λ by removing the border
strips of size d. Since each method can be uniquely described as a border-strip tableaux of
shape λ/µ and type (dm) by numbering the strips in descending order, we derive that the
set of the expressions of perm(λ/µ) obtained in this way is one-to-one correspondence
with BST(λ/µ, d).

Example 14. Let λ/µ = (92, 63, 4, 1)/(2, 13), l = 7, and d = 3. Then λ + δl =
(15, 14, 10, 9, 8, 5, 1) and repeat the above process until we get µ+ δl as follows:

(15, 14, 10, 9, 8, 5, 1)
s4 (15, 14, 10, 8, 6, 5, 1)

s5 (15, 14, 10, 8, 5, 3, 1)
s6 

(15, 14, 10, 8, 5, 1, 0)
s1 (14, 12, 10, 8, 5, 1, 0)

s2 (14, 10, 9, 8, 5, 1, 0)
s3 

(14, 10, 8, 6, 5, 1, 0)
s2 (14, 8, 7, 6, 5, 1, 0)

s4s3 (14, 8, 6, 5, 4, 1, 0)
s4 

(14, 8, 6, 4, 2, 1, 0)
s2 (14, 6, 5, 4, 2, 1, 0)

id1 (11, 6, 5, 4, 2, 1, 0)
id1 

(8, 6, 5, 4, 2, 1, 0) = µ+ δl

Thus we obtain an expression

perm(λ/µ) = id1 · id1 · s2 · s4 · s4s3 · s2 · s3 · s2 · s1 · s6 · s5 · s4
and the corresponding border-strip tableau is
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10
11

124 5
7

3 6 8
9

1 2

.

Proposition 15. Let d be a positive integer. If |λ/µ| = dm and the d-quotient of λ/µ
exists, then

sgn(perm(λ/µ)) = sgn(χλ/µ((dm))).

Proof. Let us obtain an expression of perm(λ/µ) in the above way. The number of
simple transpositions appearing in this expression equals the height of the corresponding
border-strip tableau of shape λ/µ and type (dm). Now the desired result follows from [4,
Corollary 30].

The following theorem is a skew version of [16, Theorem 4.3].

Theorem 16. Let d |N and let ωd be a primitive dth root of unity. Then sλ/µ(1, ωd, . . . , ω
N−1
d )

is zero unless the d-quotient of λ/µ exists, in which case

sλ/µ(1, ωd, . . . , ω
N−1
d ) = sgn(χλ/µ((dm)))

d−1∏
i=0

sλ(i)/µ(i)(1, 1, . . . , 1︸ ︷︷ ︸
N
d

),

where |λ/µ| = dm and the d-quotient of λ/µ is (λ(0)/µ(0), . . . , λ(d−1)/µ(d−1)).

Proof. In the case where the d-quotient of λ/µ does not exist, the proof can be done
in the same way as in [16, Theorem 4.3]. Choosing X = (1, ωd, . . . , ω

N−1
d , 0, 0, . . .) gives

pj(X) = 0 unless d | j. Hence, in view of (16), one has that

sλ/µ(1, ωd, . . . , ω
N−1
d ) =

∑
ν:d-stretched

χλ/µ(ν)
pν(1, ωd, . . . , ω

N−1
d )

zν
.

By Lemma 13, from the condition that the d-quotient of λ/µ does not exist it follows that
BST(λ/µ, d) is empty. Thus BST(λ/µ, ν) is also empty. Combining this with the formula

χλ/µ(ν) =
∑

B∈BST(λ/µ,ν)

(−1)ht(B),

we have χλ/µ(ν) = 0 and our assertion follows.
Now suppose that the d-quotient of λ/µ exists. Let l := `(λ), σ := perm(λ/µ), and

M := σ ·M(λ/µ). Here σ acts on M(λ/µ) by permuting the rows of M(λ/µ). Then

sλ/µ(1, q, . . . , qN−1) = det(M(λ/µ)) = sgn(σ) det(M) = sgn(χλ/µ((dm))) det(M).
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The last equality follows from Proposition 15. Note that det(M) is a pre-CSP polynomial
modulo N . Write

det(M) ≡
∑
e|N

ce
qN − 1

q
N
e − 1

(mod qN − 1),

where ce’s are integers.
Consider the d-abacus display for λ/µ and let (λ(0)/µ(0), . . . , λ(d−1)/µ(d−1)) be the d-

quotient of λ/µ. For 0 6 t 6 d− 1, let

Ct := {1 6 i 6 l : the bead for µi + l − i is on runner t of the abacus display}.

By the definition of σ, one can easily see that the bead for λi + l− i is on runner t if and
only if σ(i) ∈ Ct. Therefore, it follows that Mi,j is divisible by d if and only if i, j ∈ Ct
for some 0 6 t 6 d− 1. Using the same argument as in the proof of Theorem 1, for each
divisor e | N

d
, one can derive that

ce =

ñ
qN − 1

q
N
e − 1

ô ∏
06t6d−1

sλ(t)/µ(t)(1, q
d, . . . , qd(

N
d
−1)). (17)

Using (2), one can derive from (17) that

det(M)|q=ωd =
∑
e|N
d

ece =
∏

06t6d−1

sλ(t)/µ(t)(1, q
d, . . . , qd(

N
d
−1))

∣∣∣
q=ωd

=
∏

06t6d−1

sλ(t)/µ(t)(1, 1, . . . , 1︸ ︷︷ ︸
N
d

).

Remark 17. (a) Reiner, Stanton, and White proved [16, Theorem 4.3] by using the hook-
content formula for sλ(1, q, . . . , q

N−1), so one is tempting to prove Theorem 16 in a similar
manner. However, to the best of the authors’ knowledge, this formula has not yet extended
to general skew shapes (see [12, Section 8]).

(b) A similar result has been provided in [11, Examples I.5.24] in a slightly different
form.

The rest of this section is devoted to the case where d = N . Let `(λ) 6 N . From [16,
Theorem 4.3] it follows that sλ(1, ωN , . . . , ω

N−1
N ) is zero unless the N -core of λ is empty,

in which case

sλ(1, ωN , . . . , ω
N−1
N ) = sgn(χλ((Nm))) with |λ| = Nm. (18)

This evaluation can also be found in [11, Examples I.3.17]. Recall that the Kostka-Foulkes
polynomial Kλ,ν(q) is defined via the expansion

sλ(x1, x2, . . . , xN) =
∑
ν

Kλ,ν(q)Pν(x1, x2, . . . , xN ; q),
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where Pν(x1, x2, . . . , xN ; q) is the Hall-Littlewood polynomial indexed by ν. And the skew
Kostka-Foulkes polynomial Kλ/µ,ν(q) is defined by

Kλ/µ,ν(q) := 〈sλ/µ(X), Q′ν(X; q)〉, (19)

where Q′ν(X; q) =
∑

γKγ,ν(q)sγ(X) (see [7]).
Combining (18) with [7, Theorem 9.14], for any partition λ with |λ| = Nm and

`(λ) 6 N , we have

Kλ,mN (ωN) =

®
(−1)(N−1)m sgn(χλ((Nm))) if the N -core of λ is empty,

0 otherwise.
(20)

We will derive a skew version of this formula. To begin with, we observe that

Q′(mN )(X;ωN) = (−1)(N−1)mpN ◦ hm(X) = (−1)(N−1)m
∑
λ`Nm

sλ(1, ωN , . . . , ω
N−1
N )sλ(X),

where pN ◦ hm denotes the plethysm of hm by pN . The first equality follows from [7,
Theorem 9.2] and the second equality follows from [11, Examples I.8.7]. Plugging this
identity to (19) yields that, for any λ/µ with |λ/µ| = Nm,

Kλ/µ,mN (ωN) = (−1)(N−1)msλ/µ(1, ωN , . . . , ω
N−1
N ). (21)

Define a horizontal strip to be a skew shape with no two squares in the same column.
The following corollary is the desired skew version of (20).

Corollary 18. (cf. [11, Examples I.5.24]) Let ωN be a primitive N th root of unity.

(a) sλ/µ(1, ωN , . . . , ω
N−1
N ) is zero unless λ(i)/µ(i) is a horizontal strip for all 0 6 i 6

N − 1, in which case

sλ/µ(1, ωN , . . . , ω
N−1
N ) = sgn(χλ/µ((Nm))) with |λ/µ| = Nm.

(b) For any λ/µ with |λ/µ| = Nm, Kλ/µ,mN (ωN) is zero unless λ(i)/µ(i) is a horizontal
strip for all 0 6 i 6 N − 1, in which case

Kλ/µ,mN (ωN) = (−1)(N−1)m sgn(χλ/µ((Nm))).

Proof. (a) follows from Theorem 16 when d = N .
(b) can be obtained by combining (a) with (21).

6 Remarks

We provide a few remarks for readers’ understanding.
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1. As stated in Introduction, the present paper is motivated by the conjecture in [4,
Conjecture 50], which is equivalent to saying that smλ/mµ(1, q, . . . , qk−1) is a CSP
polynomial modulo m. It was shown in [1] that this is true in case where (k,m(|λ|−
|µ|)) = 1. However, one can find a counterexample in case where k is not divisible
by m and (k,m(|λ| − |µ|)) 6= 1. For instance, if λ = (3, 3, 2, 1), µ = (2, 1),m = 9,
and k = 4, using a computer, one can easily see that

s9λ/9µ(1, q, q2, q3) ≡ 54665112
q9 − 1

q − 1
− 3

q9 − 1

q3 − 1
+ 1 (mod q9 − 1).

On the other hand, in case where λ = (3, 3, 1), µ = (2, 1), m = 4, and k = 6, k is
not divisible by m but (k, |mλ/mµ|) = (6, 16) = 2 6= 1. In this case, one can see
that

s4λ/4µ(1, q, . . . , q5) ≡ 1576440
q4 − 1

q − 1
+ 264

q4 − 1

q2 − 1
+ 12 (mod q4 − 1).

It would be very nice to find a sharp condition for the triples (mλ/mµ,m, k) such
that smλ/mµ(1, q, . . . , qk−1) is a CSP polynomial modulo m.

2. Based on [3, Theorem 37], one may expect that any stretched skew Schur polynomial
smλ/mµ(1, q, . . . , qk−1) can be a CSP polynomial modulo m when multiplied by an
appropriate power of q. However, this immediately turns out to be false. For
instance, as shown in (1), s9λ/9µ(1, q, q2, q3) is not a CSP polynomial modulo 9 when
λ = (3, 3, 2, 1), µ = (2, 1), m = 9, and k = 4. In this case, qis9λ/9µ(1, q, q2, q3) are not
CSP polynomials modulo 9 for all 1 6 i 6 8, and which can be easily checked with
the help of a computer. Indeed, they are not even pre-CSP polynomials modulo 9.

3. It is well known that there is a one-to-one correspondence

SSYTk(λ/µ)
1−1←→

⋃
|λ|=|µ|+|ν|

SSYTk(ν)c
λ
µν ,

where cλµν is the Littlewood-Richardson number indexed by λ, µ and ν (see [8,
Section 5] or [5, Example 3.3]). However, some ν’s appearing on the right hand side
may not be m-stretched, thus [14, Corollary 3.4] cannot be applicable in attacking
the conjecture in [4, Conjecture 50]. For example, in case where λ = (3, 2), µ = (1),
m = 4, and k = 4, there is a one-to-one correspondence between SSYT4(4λ/4µ) and

SSYT4(11, 5) ∪ SSYT4(12, 4) ∪ SSYT4(8, 8) ∪ SSYT4(10, 6) ∪ SSYT4(9, 7).
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[3] P. Alexandersson, E. K. Oğuz, and S. Linusson. Promotion and cyclic sieving on
families of SSYT. Ark. Mat., 59(2):247–274, 2021.

[4] P. Alexandersson, S. Pfannerer, M. Rubey, and J. Uhlin. Skew characters and cyclic
sieving. Forum Math. Sigma, 9:Paper No. e41, 31, 2021.

[5] G. Benkart, F. Sottile, and J. Stroomer. Tableau switching: algorithms and applica-
tions. J. Combin. Theory Ser. A, 76(1):11–43, 1996.

[6] M. Bennett, B. Madill, and A. Stokke. Jeu-de-taquin promotion and a cyclic sieving
phenomenon for semistandard hook tableaux. Discrete Math., 319:62–67, 2014.

[7] J. Désarménien, B. Leclerc, and J.-Y. Thibon. Hall-Littlewood functions and Kostka-
Foulkes polynomials in representation theory. Sém. Lothar. Combin., 32:Art. B32c,
approx. 38, 1994.

[8] W. Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1997. With applications to representation
theory and geometry.

[9] S. Hopkins. Cyclic sieving for plane partitions and symmetry. SIGMA Symmetry
Integrability Geom. Methods Appl., 16:Paper No. 130, 40 pp., 2020.

[10] G. James and A. Kerber. The representation theory of the symmetric group, vol-
ume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn, With an intro-
duction by Gilbert de B. Robinson.

[11] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathemati-
cal Monographs. The Clarendon Press, Oxford University Press, New York, second
edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.

[12] A. H. Morales, I. Pak, and G. Panova. Hook formulas for skew shapes I. q-analogues
and bijections. J. Combin. Theory Ser. A, 154:350–405, 2018.

[13] Y.-T. Oh and E. Park. Crystals, semistandard tableaux and cyclic sieving phe-
nomenon. Electron. J. Combin., 26(4): #P4.39, 2019.

[14] Y.-T. Oh and E. Park. q-dimensions of highest weight crystals and cyclic sieving
phenomenon. European J. Combin., 97:Paper No. 103372, 14, 2021.

[15] S. Pon and Q. Wang. Promotion and evacuation on standard young tableaux of
rectangle and staircase shape. Electron. J. Combin., 18(1): #P18, 2011.

[16] V. Reiner, D. Stanton, and D. White. The cyclic sieving phenomenon. J. Combin.
Theory Ser. A, 108(1):17–50, 2004.

the electronic journal of combinatorics 29(4) (2022), #P4.6 21

https://arxiv.org/abs/1906.08216


[17] B. Rhoades. Cyclic sieving, promotion, and representation theory. J. Combin. Theory
Ser. A, 117(1):38–76, 2010.

[18] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a
foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[19] J. R. Stembridge. On minuscule representations, plane partitions and involutions in
complex Lie groups. Duke Math. J., 73(2):469–490, 1994.

[20] J. R. Stembridge. Canonical bases and self-evacuating tableaux. Duke Math. J.,
82(3):585–606, 1996.

the electronic journal of combinatorics 29(4) (2022), #P4.6 22


	Introduction
	Preliminaries
	Partitions, skew partitions, and border strip tableaux
	The abacus model for partitions, cores and quotients
	Basic results and definitions necessary for proofs

	Proof of Theorem 1
	Proof of Theorem 2
	Principal specializations of skew Schur polynomials at roots of unity
	Remarks

