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Abstract

A colouring of a digraph as defined by Neumann-Lara in 1982 is a vertex-colouring
such that no monochromatic directed cycles exist. The minimal number of colours
required for such a colouring of a loopless digraph is defined to be its dichromatic
number. This quantity has been widely studied in the last decades and can be
considered as a natural directed analogue of the chromatic number of a graph. A
digraph D is called even if for every 0-1-weighting of the edges it contains a directed
cycle of even total weight. We show that every non-even digraph has dichromatic
number at most 2 and an optimal colouring can be found in polynomial time. We
strengthen a previously known NP-hardness result by showing that deciding whether
a directed graph is 2-colourable remains NP-hard even if it contains a feedback
vertex set of bounded size.
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05C83, 05C85
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1 Introduction

Graphs in this paper are considered simple, that is, without loops and multiple edges,
while digraphs have no loops or parallel edges, but are allowed to have antiparallel pairs
of edges (digons). An undirected edge with endpoints u and v will be denoted by uv, or
vu symmetrically, while a directed edge with tail u and head v will be denoted as (u, v).
A digraph D is called strongly connected if for every pair of vertices u, v ∈ V (D) there is a
directed path from u to v and from v to u. The girth of D is the minimum length of a
directed cycle in D. We call a set X ⊆ V (D) acyclic, if D[X] is acyclic.

A colouring of a digraph D with k colours is a function c : V (D)→ {0, . . . , k − 1}. A
colouring is called proper if c−1(i) is acyclic for every i ∈ {0, . . . , k − 1}. The dichromatic
number ~χ(D) is the smallest integer k such that D has a proper colouring with k colours.

One of the arguably most influential problems in graph theory was the Four-Colour-
Conjecture, answered positively by Appel and Haken in 1976. As a directed version of
this famous theorem, the Two-Colour-Conjecture posed by Erdős and Neumann-Lara
and independently by Skrekovski still stands open. A digraph D is called oriented if its
underlying undirected graph is simple.

Conjecture 1 (Two-Colour-Conjecture[BFJ+04, NL82]). Every oriented planar digraph
D is 2-colourable.

Although this conjecture has an easy formulation, there seems to be a lack of methods
for attacking it. The strongest partial result proved so far is due to Mohar and Li, who
showed the following:

Theorem 2 ([LM17]). Every oriented planar digraph of girth at least 4 is 2-colourable.

In the undirected case, 2-colourability is very well understood and the class of bipartite
graphs can be characterised in many different ways. For one, bipartite graphs are exactly
the graphs without cycles of odd length, on the other hand the famous theorem by Kőnig
can also be used to characterise bipartite graphs.

Theorem 3 ([Kőn31]). A graph G is bipartite if and only if for all subgraphs G′ ⊆ G the
size of a maximum matching of G′ equals the size of a minimum vertex cover.

Matchings and vertex covers can be generalised to digraphs as well. A transversal, or
feedback vertex set, in a digraph D is a set T of vertices which intersects every directed
cycle in D, i.e., D − T is acyclic. A cycle packing is a collection C of pairwise (vertex-)
disjoint cycles. The cardinality of a minimum transversal of D is denoted by τ(D) and
the cardinality of a maximum cycle packing of D is denoted by ν(D). We say that D has
the Kőnig property if ν(D′) = τ(D′) for all subdigraphs D′ ⊆ D.

An edge (u, v) in a digraph D is butterfly contractible if it is the only outgoing edge
of u or the only incoming edge of v. The butterfly contraction of a butterfly contractible
edge (u, v) which is the only outgoing edge of u is obtained from D by adding the edge
(x, v) for every edge (x, u) in D (if it does not yet exist) and then deleting the vertex u.
Analogously, if (u, v) is the only incoming edge of v, we obtain the butterfly contraction
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of (u, v) by adding the edge (u, x) for every edge (v, x) in D (if it does not yet exist) and
then deleting v. A digraph D′ is a butterfly minor of D if it can be obtained by butterfly
contractions from a subdigraph of D.

For an undirected graph G, the digraph obtained from G by replacing every undirected

edge xy with the two directed edges (x, y) and (y, x) is called the bidirected graph
↔

G. If G

is a cycle we call
↔

G a bicycle.

Figure 1: The digraph F7.

Similar to Theorem 3 the digraphs with the Kőnig-property can be described by
forbidding odd bicycles and a single digraph called F7 (illustrated in Figure 1). Surprisingly,
this class turns out to be closed under butterfly minors.

Theorem 4 ([GT11]). A digraph D has the Kőnig-property if and only if it does not
contain F7 or an odd bicycle as a butterfly minor.

The odd bicycles also appear in another context. Namely, the so-called non-even
digraphs extend the class of digraphs described by Theorem 4 and were helpful in the
study of structural bipartite matching theory as well as in the solution of the famous
even cycle problem for digraphs. A digraph D is called even if for every edge weighting
w : E(D)→ {0, 1} there exists a directed cycle of even total weight in D.

Theorem 5 ([ST87]). A directed graph is non-even if and only if it does not contain an
odd bicycle as a butterfly minor.

Non-even digraphs and their recognition problem naturally correspond to a famous
problem from structural matching theory. An undirected graph G is called matching
covered if G is connected and for every edge e ∈ E(G) there is some M ∈ M(G) with
e ∈ M , where M(G) denotes the set of all perfect matchings of G. A set S ⊆ V (G)
of vertices is called conformal if G − S has a perfect matching. A subgraph H ⊆ G is
conformal if V (H) is a conformal set and H has a perfect matching. A cycle C in G
is called M-alternating if it alternately uses edges from M and E(G) \M . Clearly, the
conformal cycles of G are exactly the cycles occurring as an alternating cycle in at least
one perfect matching.

Counting the number of perfect matchings in a given graph (also known as the dimer
problem) is an important and well-known task which is known to be #P -hard on general
graphs [Val79]. However, there is a rather rich class of graphs for which the number of
perfect matchings can be expressed as the permanent of a well-known matrix and can thus
be computed in polynomial time [Kas67, Lit75, Tho06a], known as the Pfaffian graphs:
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A graph G is called Pfaffian if there exists an orientation
→
G such that every conformal

cycle of G contains an odd number of directed edges going in one direction and an odd

number of directed edges going in the other direction in
→
G. Such an orientation is also

called Pfaffian. It is well-known that any planar graph is Pfaffian (see [Kas67]). Since edges
that are not contained in a perfect matching do not contribute to a pfaffian orientation
in any way, one usually just considers matching covered graphs in this context. Similar
to non-even digraphs, bipartite matching covered Pfaffian graphs can be described by
forbidden minors. To state the complete theorem, we need a connection between directed
graphs and bipartite graphs with perfect matchings, as well as the definition for minors in
the context of matching covered graphs.

Let G be a graph with a perfect matching and let v0 be a vertex of G of degree two
incident to the edges e1 = v0v1 and e2 = v0v2. Let H be obtained from G by contracting
both e1 and e2 and deleting all resulting parallel edges and loops. We say that H is
obtained from G by bicontraction or bicontracting the vertex v0. Note that in case G is
matching covered, then so is H. We say that H is a matching minor of G if H can be
obtained from a conformal subgraph of G by repeatedly bicontracting vertices of degree
two. Similar to how topological minors specialise graph minors, there is the following
specialisation of matching minors: A bisubdivision of an edge is a subdivision, i.e. replacing
the edge by a path joining its endpoints, with an even number (possibly 2) of vertices. We
call H2 a bisubdivision of H1 if H1 is a matching covered graph and H2 can be obtained
by bisubdividing the edges of H1. If a matching covered graph G contains a conformal
bisubdivision of a matching covered graph H, then H is a matching minor of G, but the
converse is not true. If G contains no conformal bisubdivision of H, it is called H-free.

Definition 6. Let G = (A ∪B,E) be a bipartite graph and let M ∈M(G) be a perfect
matching of G. The M-direction D(G,M) of G is a digraph defined as follows. Let
M =

{
a1b1, . . . , a|M |b|M |

}
with ai ∈ A, bi ∈ B for 1 6 i 6 |M |. Then,

i) V (D(G,M)) :=
{
v1, . . . , v|M |

}
and

ii) E(D(G,M)) := {(vi, vj) | aibj ∈ E(G) , i 6= j}.

Note furthermore that the above operation is reversible and that every digraph D is the
M -direction of its bipartite splitting-graph equipped with the canonical perfect matching.

The M -directions of a bipartite matching covered graph G inherit some of the properties
of G. Most importantly, the directed cycles in an M -direction are in bijection with the
M -alternating cycles of G. Another relation is about connectivity. A graph G is called
k-extendable if it is connected, has at least 2k + 2 vertices and every matching of size k is
contained in a perfect matching of G. The following statement is folklore, it is mentioned
in [RST99] and a proof can be derived from [AHLS03] by using the notion of M -directions.

Theorem 7 (see [RST99, AHLS03]). Let G be a bipartite matching covered graph and
M a perfect matching of G. Then G is k-extendable if and only if D(G,M) is strongly
k-(vertex-)connected.
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Lemma 8 ([McC00]). Let G and H be bipartite matching covered graphs. Then H is
a matching minor of G if and only if there exist perfect matchings M ∈ M(G) and
M ′ ∈M(H) such that D(H,M ′) is a butterfly minor of D(G,M).

The problem of describing and recognising bipartite Pfaffian graphs has given rise to a
wide range of different results. For a good overview on the topic consult the outstanding
work by McCuaig [McC04] which also includes a proof of the following collection of results
based on Little’s characterisation of bipartite Pfaffian graphs [Lit75].

Theorem 9 ([Lit75, ST87, RST99, McC04]). Let G be a bipartite graph with a perfect
matching M . The following statements are equivalent.

i) G is Pfaffian.
ii) G does not contain K3,3 as a matching minor.

iii) D(G,M) is non-even.
iv) D(G,M) does not contain an odd bicycle as a butterfly minor.

Please note the huge discrepancy between the single forbidden minor K3,3 in the
matching setting opposed to the infinite antichain that needs to be excluded for digraphs.
We will later encounter a similar phenomenon in the proof of our main theorem.

R
↔

C5

Figure 2: The non-planar non-even digraph R and the planar even digraph
↔

C5.

Since every matching minor of a graph is also an ordinary minor, from Theorem 9
it becomes clear that every planar, bipartite and matching covered graph is Pfaffian,
which was known before. However, there are also non-planar Pfaffian graphs with non-
planar M -directions which still are non-even (for an example, consider the graph R in
Figure 2). On the other hand, every non-Pfaffian bipartite graph must be non-planar,
but the operation of contracting a perfect matching to obtain the M -direction does not
preserve non-planarity. In particular, all odd bicycles are indeed planar.

Therefore, a positive answer to the question whether all non-even digraphs are 2-
colourable is no answer to the Two-Colour-Conjecture. However, the class of non-even
digraphs and the class of planar oriented graphs have a non-trivial intersection.

A digraph D is called strongly planar if there is a simple, non-crossing topological
plane-embedding of D such that for each x ∈ V (D) the incoming (resp. outgoing) edges
incident to x form a consecutive interval in the cyclic ordering around x.
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For strongly planar oriented graphs, our main result as stated below yields a proof of
Conjecture 1.

Theorem 10. Let D be a non-even digraph. Then ~χ(D) 6 2.

The proof of Theorem 10 can be found in Section 2.
Given a matching covered graph G and a perfect matching M ∈M(G), an M -colouring

of G with k colours is a function c : M → {0, . . . , k − 1}. An M -colouring is called proper
if there is no M -alternating cycle whose matching edges are all of the same colour, i.e.,
c−1(i) is the unique perfect matching of the subgraph of G induced by the endpoints of the
edges in c−1(i) for all i. The M-chromatic number χ(G,M) of G is the smallest integer k
such that G has a proper M -colouring with k colours.

By the correspondence of M -alternating cycles in G and directed cycles in D(G,M),
we have χ(G,M) = ~χ(D(G,M)) for any bipartite graph G with a perfect matching M .

From Theorem 9 we immediately derive the following equivalent formulation of Theo-
rem 10.

Corollary 11. Let G be a bipartite graph with a perfect matching M . If χ(G,M) > 3,
then G contains K3,3 as a matching minor.

Due to their equivalence we refer to both of them by the term ‘main theorem’ and
only specify the digraphic (which is Theorem 10) or the matching theoretic (which is
Corollary 11) version when necessary.

Hadwiger [Had43] conjectured for the undirected chromatic number that, if χ(G) > k,
G would contain Kk as a minor. The case k = 5 has been shown by Wagner [Wag37] to
be equivalent to the Four-Colour-Theorem and, in this sense, our main theorem might
be regarded as a directed and matching theoretic analogue of this case. In other words,
Wagner proved that every graph with chromatic number at least five must contain K5

as a minor and therefore, in particular, the graph cannot be planar. From this angle,
Corollary 11 can be seen as a matching theoretic analogue of Wagner’s Theorem as K3,3 is
the smallest non-planar complete bipartite graph and, again, we have a connection between
the necessity of a certain number of different colours and the existence of a complete
(and particularly non-planar) matching minor. For the setting of digraphs however, this
analogue does not work just as smoothly since excluding K3,3 as a matching minor in
bipartite graphs is equivalent to the exclusion of a whole infinite anti-chain of butterfly
minors in digraphs. We discuss this topic in more detail in Section 7.

Since Wagner’s Theorem is a generalisation of the Four Colour Theorem to K5-minor
free graphs one could ask: What is the appropriate analogue of the Four-Colour-Theorem
for digraphs? One acceptable answer to this is Conjecture 1. However, Conjecture 1 does
not include all planar digraphs, it is only concerned with planar oriented graphs and
therefore it is not closed under any of the commonly used minor operations for digraphs
such as butterfly minors. To see this simply observe that any directed cycle contains
↔

K2 as a butterfly minor, which is not an oriented graph. Another way of relating the
Four-Colour-Theorem to digraphs could be to change the notion of planarity.
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The concept of strong planarity is closed under butterfly minors. Moreover, in [RST99]
it was shown that a digraph is non-even if and only if it can be constructed from strongly
2-connected strongly planar digraphs and F7 by means of local sum operations closely
resembling the clique sums which appear in the description of K5-minor free graphs given
by Wagner’s Theorem. So asking whether every strongly planar digraph has dichromatic
number at most two could also be seen as a worthy analogue of the Four-Colour-Theorem.
Since, however, every strongly planar digraph is non-even [RST99] and thus a positive
answer to this question follows directly from Theorem 10, Conjecture 1 appears to be a
more difficult problem. At last recall Figure 2 to see that also the strongly planar digraphs
do not contain all planar digraphs. Moreover, there are strongly planar digraphs which are
not oriented graphs and there are oriented graphs which are not strongly planar. Hence
both problems discussed here, while similar in spirit, are very much distinct.

In addition to Theorem 10 we present further results, which can be divided into four
main topics and are summarised below.

An Application: The Forcing Number In the context of M -colourings of graphs
one can identify certain subsets of perfect matchings, namely the forcing sets. Given
a perfect matching M of a graph, a subset S ⊆ M of edges is called forcing if M is
the unique perfect matching containing S. The forcing number f(G,M) of a graph G
with a perfect matching M denotes the size of a smallest forcing set for M . This notion
arises from resonance theory in chemistry and has attracted wide interest in the last three
decades. We refer to [CC11] for a comprehensive survey on this topic.

For any partial matching S ⊆M of a perfect matching M in a graph G, it is clear that
S is forcing if and only if there is no M -alternating cycle with vertices in V (G) \ V (S).
Consequently, an M -colouring with k colours corresponds to a partition M = S1 ∪ · · · ∪Sk
such that for any i, M \ Si is forcing. We may thus reformulate Corollary 11 as follows:

Corollary 12. Every perfect matching M of a Pfaffian bipartite graph G with at least
one perfect matching can be partitioned into two disjoint forcing sets.

This directly yields the following corollary.

Corollary 13. For any Pfaffian bipartite graph G and every perfect matching M of G,
we have f(G,M) 6 |M |

2
= |V (G)|

4
.

This generalises Theorem 2.9 in [CC11] from bipartite graphs without K3,3 as an
ordinary minor to bipartite graphs without K3,3 as a matching minor, which is a weaker
condition.

Other Notions of Colourings There are several concepts of colourings related to the
colourings used to define the dichromatic number. One possible such concept is the idea
of polychromatic colourings derived from hypergraph colourings as defined by Bollobás
et al. [BPRS10]. We consider polychromatic colourings for strongly planar digraphs in
Section 3. To the best of our knowledge, polychromatic colourings of digraphs in the above
sense have not been investigated before, and we hope that the conjectures proposed in
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Section 3 might initiate research in this direction. We also present, as evidence towards
our conjectures, that a relaxed version based on the fractional dichromatic number does
indeed hold for all strongly planar digraphs.

Another concept of colourings which also occurs for undirected graphs as a generalisation
of proper graph colourings is the notion of list colourings. In Section 4 we give an example
of a strongly planar, and therefore non-even, digraph which is not 2-choosable and thereby
refute that Theorem 10 can be extended to list colourings of non-even digraphs while still
using just two colours. We are, however, able to show that lists of size three suffice for any
non-even digraph, which therefore is the optimal upper bound.

Computational Complexity Similar to the undirected case, the problem of deciding
whether a given digraph D has dichromatic number at most k is NP-complete for all
k > 2 [FHM03], [HSS18]. For the chromatic number however, for example by using
Courcelle’s Theorem, one can approach colouring on undirected graphs by parametrising
with treewidth [Cou90]. While many problems become tractable for fixed parameters in
the undirected case (see [DF12] for an introduction to the topic) directed width measures
in general do not seem as capable [GHK+10]. In Section 5 we explore the computational
complexity of deciding the colourability of digraphs regarding fixed parameters.

We show in Theorem 42 that the positive results for treewidth and colouring of graphs
do not carry over to the world of digraphs. More precisely and somewhat surprisingly, we
show that deciding whether a digraph is 2-colourable is NP-hard even if τ(D) 6 6, where
D is the input digraph. With directed treewidth being bounded in a function of τ(D)
this implies the hardness for bounded directed treewidth. This strengthens the previous
hardness reduction due to [BFJ+04].

We then generalise this result in Theorem 44 and show that, under standard assump-
tions, the trivial brute-force algorithm for Digraph k-Colouring is essentially optimal,
even if k, the out-degeneracy1 and τ(D) are assumed to be constant.

M -Colourings of Non-Bipartite Graphs In Section 6 we consider a possible gener-
alisation of Corollary 11 to non-bipartite matching covered graphs. That is, we consider
χ(G,M) for non-bipartite graphs G with perfect matchings M . As these graphs bare a
much more complicated structure than their bipartite cousins, we are not able to extend
our colouring results in their full strength. Even in the planar case there exist graphs
which have a perfect matching that is not 2-colourable. A smallest example of such a graph
is found in the triangular prism, which is the complement of C6. However, we are able to
bring down the planar case to exactly this graph in the sense of conformal bisubdivisions
and matching minors.

Theorem 14. Let G be a planar and matching covered graph, and M a perfect matching
of G. If χ(G,M) > 3, then G contains a conformal bisubdivision of C6, and thus has C6

as a matching minor.

On non-bipartite graphs, to the best of our knowledge, very little is known on the
forcing number (see [CC11]). However, Theorem 14 implies that we can partition every

1See Section 5 for a definition.
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perfect matching of a planar, C6-free matching covered graph into two forcing sets and
thus we obtain the following corollary.

Corollary 15. For any planar matching covered graph G without a C6 matching minor
and every perfect matching M of G, we have f(G,M) 6 |M |

2
= |V (G)|

4
.

2 2-Colourings of Non-Even Digraphs

This section is dedicated to the proof of Theorem 10. The key idea of our proof is to
consider a minimal (with respect to the number of vertices) non-2-colourable non-even
digraph. We introduce a number of local reductions of digraphs transporting 2-colourability
while ensuring that the reduced digraph is still non-even and prove that for any non-even
digraph with at least 3 vertices one of our reductions is applicable.

Each of our reductions can be applied in polynomial time and thus this technique
implies a polynomial time algorithm for 2-colouring a non-even digraph.

We start with two splitting operations, reducing the 2-colouring problem to the strongly
2-connected non-even digraphs.

Definition 16. Let D, D1 and D2 be digraphs. Then D is called a 0-sum of D1 and D2

if there is a partition of V (D) into non-empty sets X and Y such that no edge of D has
its head in X and its tail in Y , and D1 = D[X], D2 = D[Y ].

We call a strongly connected digraph D the 1-sum of D1 and D2 at a vertex v ∈ V (D)
if there is a partition of V (D) \ {v} into non-empty sets X and Y such that no edge in D
has its head in X and its tail in Y , and such that D1 arises from D by identifying Y ∪ {v}
into a single vertex and D2 arises by identifying X ∪ {v} into a single vertex. In both
cases, we unify possible multiple occurences of parallel edges into single edges.

In the context of perfect matchings in bipartite graphs, the described reduction of D to
D1 and D2 corresponds to a so-called tight cut contraction. Let G be an undirected graph
and X ⊆ V (G). The cut around X, denoted by ∂(X), is the set of all edges in G with
exactly one endpoint in X. If G is matching covered and |∂(X) ∩M | = 1 for every perfect
matching M ∈ M(G), we call ∂(X) a tight cut. If ∂(X) is a tight cut and |X| > 2, it is
non-trivial. Identifying the shore X of a non-trivial tight cut ∂(X) into a single vertex is
called a tight cut contraction and the resulting graph G′ can easily be seen to be matching
covered again. Among many other things, tight cut contractions can be used to produce
reductions of Pfaffian graphs as shown by Vazirani and Yannakakis.

Theorem 17 ([VY89], Theorem 4.2). Let G be a matching covered graph, X ⊆ V (G)
such that ∂(X) is a non-trivial tight cut and G1, G2 the two graphs obtained by the tight
cut contractions of X and X in G respectively. Then G is Pfaffian if and only if G1 and
G2 are Pfaffian.

To combine the theory of tight cuts and digraphs we need to be able to translate between
the two more smoothly. Given a bipartite graph G = (A ∪B,E) and a set X ⊆ V (G) such
that |X ∩ A| < |X ∩B|, we call A the minority and B the majority of X, and analogously
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if the roles of A and B are reversed. Consider the following characterisation of tight cuts
in bipartite graphs.

Lemma 18 ([LdCM15], Proposition 5). Let G = (A ∪B,E) be a bipartite match-
ing covered graph and X ⊆ V (G) of odd size. Then ∂(X) is tight if and only if∣∣|X ∩ A| − |X ∩B|∣∣ = 1 and no vertex of the minority of X has a neighbour in X.

In a digraph D we call (X, Y ) a directed separation if X ∪ Y = V (D) and there is no
edge with tail in Y \X and head in X \ Y . The order of the separation is |X ∩ Y |. The
following is folklore, but we provide a proof for completeness.

Lemma 19. Let G = (A ∪B,E) be a bipartite matching covered graph, M a perfect
matching in G and let X ⊆ V (G). Moreover let MY := (E(G[Y ]) ∪ ∂(X)) ∩ M for
Y ∈

{
X,X

}
and let ve for e ∈M denote the vertex of the M-direction of G correspond-

ing to the edge e. Then ∂(X) is tight if and only if ({ve | e ∈MX} , {ve | e ∈MX}) or
({ve | e ∈MX} , {ve | e ∈MX}) is a directed separation of order 1 in D(G,M).

Proof. First suppose ∂(X) is tight. Note that this implies |X| to be odd, since for every
perfect matching M there is exactly one vertex of X not matched within X. By Lemma 18
no vertex of the minority of X has a neighbour in X. By symmetry, we may assume that
B ∩X is the minority of X. The M -direction of G must be strongly connected, however
there cannot exist an edge in D(G,M) with head ve and tail ve′ where e ⊆ X and e′ ⊆ X
since such an edge would link a vertex of X ∩B to a vertex of X ∩A. Hence every directed
path from ve′ to ve must contain the vertex vf where f is the unique edge of M in ∂(X).
Thus ({ve | e ∈MX} , {ve | e ∈MX}) is a directed separation and vf is the unique vertex
in the intersection of the two sets.

For the other direction let ({ve | e ∈MX} , {ve | e ∈MX}) be a directed separation of
order 1 in D(G,M). The other case follows analogously. Let f be the unique matching edge
corresponding to the cut vertex. Then every directed cycle in D(G,M) must contain vf
and has exactly one edge with endpoints in {ve | e ∈MX} \ {vf} and {ve | e ∈MX} \ {vf}.
This means that every M -alternating cycle in G contains exactly two edges of ∂(X), namely
f and one non-matching edge. We know that |∂(X) ∩M | = |{f}| = 1, and so to prove
that ∂(X) is tight, we must show that any other perfect matching M ′ of G has the same
number of edges on ∂(X) as M . For this, observe that the symmetric difference M∆M ′

decomposes into a vertex-disjoint union of cycles C1, . . . , Ct which are simultaneously M -
and M ′-alternating. Consequently, exchanging matching with non-matching edges for
each Ci one after the other (“flipping”) transforms M into M ′. Clearly, this operation can
change the number of matching edges on ∂(X) only if a cycle containing vertices of both
X and X is flipped, but according to the above, each such cycle must contain f , and so at
most one Cj can intersect ∂(X), and E(Cj) ∩ ∂(X) = {f, f ′} for a non-matching edge f ′.
Flipping Cj now makes f ′ into a matching and f into a non-matching edge. In any case,
after having performed the sequence of flips, we thus obtain that M ′ ∩ ∂(X) consists of a
single edge, and, hence, ∂(X) must be tight.

From Theorem 17 and Lemma 19 we obtain the following corollary.
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Corollary 20. Let D be a digraph and i ∈ {0, 1} such that D is the i-sum of the digraphs
D1 and D2. Then D is non-even if and only if D1 and D2 are non-even.

Proof. For i = 0, this can be seen directly from the definition of an even digraph: D is
non-even if and only if there is a subset A ⊆ E(D) of edges intersected an odd number
of times by each directed cycle. However, the set of directed cycles in D consists of the
directed cycles in D[X] = D1 and D[Y ] = D2 for a partition (X, Y ) as in Definition 16,
because no directed cycle can pass trough X and Y at the same time. Thus, the above is
the same as saying that there are edge sets Ai ⊆ E(Di), i = 1, 2, intersecting each directed
cycle in Di an odd number of times, which is the same as saying that D1, D2 are non-even.

For i = 1, this is a direct consequence of Lemma 19 and Theorems 9 and 17.

So 0- and 1-sums preserve non-eveness. Next, we need to make sure we can obtain a
2-colouring of D from 2-colourings of its sumands D1 and D2.

Lemma 21. Let D be a non-even digraph and D1, D2 digraphs such that D is the i-sum
of D1 and D2 for i ∈ {0, 1}. If D1 and D2 are 2-colourable, so is D.

Proof. Assume first that D is the 0-sum of D1 = D[X], D2 = D[Y ] for a partition X, Y
of V (D). Then the directed cycles in D are exactly the directed cycles in D1 together
with the directed cycles in D2, and thus any proper 2-colouring of D1 joined with a proper
2-colouring of D2 yields a proper 2-colouring of D.

Now assume D is the 1-sum of D1 and D2 at v, let v1 be the vertex of D1 obtained
from identifying Y ∪{v}, and let v2 be the vertex in D2 identifying X ∪{v}. For i ∈ {1, 2}
let ci : V (Di)→ {0, 1} be a proper 2-colouring of Di. By possibly exchanging 0 and 1 in
c2, we may assume that c1(v1) = c2(v2). We define a colouring c for D as follows.

c(u) :=


c1(u) , u ∈ X
c1(v1) = c2(v2) , u = v
c2(u) , u ∈ Y.

To see that this defines a proper 2-colouring of D, assume towards a contradiction that C
is a monochromatic directed cycle in D. If C stays within X ∪{v} or Y ∪{v}, then it also
appears as a directed cycle in D1, or D2 respectively, contradicting the feasibility of the
2-colourings c1 and c2. Otherwise, C traverses vertices of both X and Y and thus, as there
are no edges starting in Y and ending in X, C also contains v. Moreover, C − v can be
decomposed into exactly two directed paths P1 and P2, one contained in X and the other
in Y . Hence C corresponds to the directed cycles Ci = Pi + vi in Di for each i ∈ {1, 2} and
both Ci must be monochromatic under their respective colourings ci. This again violates
the feasibility of the ci. Consequently, c defines a colouring of D as desired.

Robertson et. al. [RST99] defined in total five different sum operations which they
used to prove a generation theorem for non-even digraphs. From this the following result
follows.

Theorem 22 ([Tho06b], Corollary 5.4). Let D be a strongly 2-connected and non-even
digraph on at least two vertices. Then |E(D)| 6 3 |V (D)| − 4.
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Corollary 23. Any strongly 2-connected, non-even digraph D on at least three vertices
contains at least two vertices of out-degree 2.

Proof. Let n := |V (D)|. By Theorem 22 we have |E(D)| < 3(n− 1). If at most one vertex
in D had out-degree less than 3 we would have |E(D)| =

∑
v∈V (D) degout(v) > 0 + 3(n−1),

a contradiction, and so there are at least two vertices of out-degree at most two, and thus,
because D is strongly 2-connected, exactly two.

Besides edge deletions, butterfly contractions and 0- and 1-sums, we will use another
special operation in order to reduce our digraphs. A bidirected K2 is called a digon. If we
encounter an out-degree 2 vertex v in a digraph D such that v is contained in at most
one digon, we will need to delete some edges incident with v in order to create a butterfly
contractible edge. However, if v is contained in two different digons, we will directly
contract the three digon vertices, namely v and the two vertices with which v forms a
digon each, into a single vertex. While this is not a standard butterfly contraction, it is
natural in the context of our proof and it preserves the property of being non-even, which
we show later by using matching theory.

Note that bicontractions in matching covered graphs are a special case of tight cut
contractions. To see this, consider X as the set of size 3 containing a degree 2 vertex v
together with its two neighbours. Then ∂(X) is tight since every perfect matching must
match v to one of its neighbours and thus exactly one matching edge can and must leave X.
Thus one can derive the following corollary from Theorem 17 or, alternatively, Theorem 9.

Corollary 24. Let G be a Pfaffian matching covered graph. Then every matching minor
of G is Pfaffian.

Lemma 25. Let D be a non-even digraph with a vertex v ∈ V (D) with Nout(v) = {v1, v2}
such that v induces a digon together with vi for both i ∈ {1, 2}. Then the digraph D∗,
obtained by first deleting all edges of the form (u, v) with u /∈ {v1, v2} as well as all edges
between the vertices v, v1, v2, and then identifying v1, v and v2 into a single vertex (and
identifying occurring parallel edges into single edges afterwards), is non-even as well.

Proof. Let D be the digraph together with the vertices v, v1, and v2 as in the assertion. By
Theorem 5, when deleting all incoming edges of v with tails other than v1 or v2 we obtain
a subdigraph D′ which is non-even as well. Moreover, by Corollary 20, D′ is non-even
if and only if every strongly connected component of D′ is non-even. Since v, v1 and v2
are contained in two digons sharing a vertex, they all must appear in the same strong
component of D′, say, D′0. Let H be the strong component of D∗ containing the vertex
obtained from identifying v, v1, and v2 into a single vertex. Observe that, by definition of
D∗, H is obtained from D′0 by all edges between the vertices v, v1, v2, and then identifying
v1, v and v2 into a single vertex (and identifying occurring parallel edges into single edges
afterwards). Hence, it suffices to show that the contraction of the three vertices into one
in D′0 preserves non-eveness.

With D′0 being strongly connected, there exists a bipartite matching covered graph G
together with a perfect matching M ∈M(G) such that D′0 = D(G,M). We identify the
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vertices v, v1 and v2 of D′0 as the edges ev, ev1 and ev2 , respectively, in M . Additionally
let A and B be the two colour classes of G. Then ax is the vertex of ex in A and bx the
vertex in B for all x ∈ {v, v1, v2}. Since v and v1 form a digon in D′0, the edges avbv1 and
av1bv exist in G and, thus, together with ev and ev1 they form a conformal cycle of length
4. Therefore we can obtain a new perfect matching from M as follows.

M ′ := (M \ {ev, ev1}) ∪ {avbv1 , av1bv}

Now consider G− ev and note that it still has M ′ as a perfect matching and that it is a
matching minor of G (see Figure 3 for an illustration). By our assumptions, v has exactly
two out- and two in-neighbours in D′0 and therefore the two vertices av and bv must be of
degree 2 in G− ev. Hence we can bicontract these two vertices and identify bv1 , av, and
bv2 into bv1vv2 and the other three vertices into av1vv2 respectively. Let us call the resulting
graph G∗ and denote the edge av1vv2bv1vv2 by ev1vv2 . One can easily check that G∗ still is
matching covered and since it is a matching minor of G it must be Pfaffian by Corollary 24.
Moreover, the strongly connected digraph D∗0 := D(G∗,M∗) must be non-even. Let M∗ :=
(M \ ev1 , ev, ev2)∪{ev1vv2}. Since M∗\{ev1vv2} = M ′\{avbv1 , av1bv, ev2} = M \{ev1 , ev, ev2}
and the two edges ev1 and ev1vv2 can be identified (again see Figure 3) D∗0 is isomorphic to
the digraph obtained from D′0 identifying the three vertices v, v1, and v2 into one, and so
the latter has to be non-even as well. From this we deduce that all strong components of
D∗ are non-even, proving the assertion.

D′0 = D(G,M) G and M,M ′ ∈M(G) G∗ and M∗ D∗0 = D(G∗,M∗)

vv1 v2
evev1 ev2 ev1vv2 uv1vv2

Figure 3: The four steps of the contraction of v, v1, and v2 in Lemma 25. The matching
M ′ is given by dashed edges while the edges of M are thicker.

We are now ready to prove our main theorem, concluding this section.

Proof (of Theorem 10). Assume towards a contradiction that there is a non-even digraph
D that is not 2-colourable. Furthermore, let us assume D to be minimal (with respect to
|V (D)|) with this property. Clearly |V (D)| > 3.

First observe that, due to Lemma 21, D is neither a 0-sum nor a 1-sum of some other
non-even digraphs D1 and D2. Hence, D does not have a directed cut or a cut vertex, and
must therefore be strongly 2-connected. By Corollary 23 there exists a vertex v ∈ V (D)
with degout(v) = 2. Let e1 = (v, v1) and e2 = (v, v2) be the two outgoing edges of v. We
now distinguish two cases:

Case 1 : Both edges e1 and e2 are contained in digons.
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If e1 and e2 are contained in digons, we can construct a non-even digraph D∗ from D
by applying the operation from Lemma 25 on v and its two out-neighbours. First, we
delete all incoming edges of v except (v1, v) and (v2, v) from the graph and then contract
v1, v, and v2 into a single vertex. Since |V (D∗)| = |V (D)| − 2 and D∗ is non-even, by the
minimality of D, D∗ admits a proper 2-colouring c∗ : V (D∗)→ {0, 1}. Denote by uv1vv2
the vertex of D∗ into which v1, v and v2 were identified. We now define a 2-colouring for
the vertices x ∈ V (D) as follows.

c(x) :=


c∗(uv1vv2) , x ∈ {v1, v2}
1− c∗(uv1vv2) , x = v
c∗(x) , otherwise.

By assumption, D is not 2-colourable and thus there must be a directed cycle C whose
vertices receive the same colour from c. Moreover, C must avoid v, since any directed cycle
in D containing v must either contain v1 or v2 and thus, by the definition of c, cannot be
monochromatic. Consequently, C must be contained in D − v. By identifying possible
occurrences of v1 or v2 with uv1vv2 , the existence of a closed directed monochromatic walk
C∗ in D∗ follows. Note that v1 and v2 do not form a digon, as otherwise v, v1 and v2
would be an odd bicycle in D, contradicting the assumption that D is non-even. Hence,
the walk C∗ must contain a directed cycle which, in turn, must also be monochromatic
with respect to c∗. However, the existence of such a cycle contradicts the choice of c∗.

Case 2 : At least one of the edges e1 or e2 is not contained in a digon.
Without loss of generality assume e1 to not be part of a digon in D. We now delete

all edges with endpoints v and v2, thereby obtaining a non-even digraph in which v has
a single out-going edge, which is e1. With this, e1 is now butterfly contractible. Let D′

be the digraph obtained by contracting e1 and let w be the contraction vertex. Butterfly
contractions are very special cases of 1-sums, where one of the two digraphs D1 and
D2 is a digraph on two vertices and the other one is D′. Therefore, Corollary 20 yields
that D′ is again non-even, alternatively, this follows from Theorem 5. Moreover, as
|V (D′)| = |V (D)| − 1, D′ must admit a proper 2-colouring c′ : V (D′) → {0, 1} by the
minimality of D. Similar to the first case we use c′ to define a 2-colouring c for the vertices
x ∈ V (D).

c(x) :=


c′(w) , x = v1
1− c′(v2) , x = v
c′(x) , otherwise.

Again, we assumed D to not be 2-colourable and thus there must be a monochromatic
(with respect to c) directed cycle C in D. If C contains v, it cannot contain v2 as
c(v2) 6= c(v). Therefore, it must contain the edge e1. Since e1 is not contained in a
digon we have |V (C)| > 3 and thus there exists a cycle C ′ in D′ with V (C ′) \ {w} =
V (C) \ {v, v1}. By definition of c, C ′ must be monochromatic with respect to c′ which
yields the desired contradiction in this case. Otherwise, C does not contain v. Then,
possibly after replacing v1 with w, C again corresponds to a directed cycle in D′ which,
again, has to be monochromatic with respect to c′, contradicting our choice of c′.
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The proof of Theorem 10 yields a polynomial time algorithm to find a proper 2-colouring
of a non-even digraph. One first reduces a digraph D into its strong components, then
finds the cut vertices and decomposes D into strongly 2-connected digraphs. Then, one
either finds a out-degree 2 vertex contained in two digons, which can be dealt with by Case
1 of the proof, or Case 2 of the proof can be applied. Afterwards, these reduction steps
are reiterated until every such graph is reduced to a digraph on one or two vertices, which
is trivially 2-colourable. Then, by reversing the reductions step by step, we can extend
these 2-colourings until all of D is coloured. Additionally, the work of Robertson et. al.
and McCuaig [RST99, McC04] imply polynomial time algorithms to recognise non-even
digraphs. Hence, given a digraph D we can decide whether it is non-even and then find a
proper 2-colouring in polynomial time.

3 Polychromatic Colourings and Cycle Packings of Strongly Pla-
nar Digraphs

In this section, we study colouring properties of so-called strongly planar digraphs. These
form a canonical class of planar non-even digraphs (however, there are many others). To
motivate their definition, consider an arbitrary bipartite, matching-covered planar graph
G with bipartition (A,B). Because G is planar, it must be Pfaffian. Choose some perfect

matching M of G. Considering the orientation ~G of G orienting all edges from A to B, we
can view D(G,M) as being obtained from ~G by contraction of all edges in M . It is now
clear that the digraph D(G,M) inherits a natural plane-embedding from G in which for
each vertex, the incident incoming and outgoing edges are separated into two intervals
in the cyclic ordering. It is not hard to reverse the described relationship to see that
any digraph D admitting such an embedding is isomorphic to D(G,M) for some planar
bipartite graph and a perfect matching M . In other words, a digraph D is springly planar
if and only if D ∼= D(G,M) for a planar bipartite graph G and a perfect matching M .

An example of a strongly planar digraph is given in Figure 4.

Figure 4: Left: An oriented grid equipped with a perfect matching. Right: The arising
M -direction, a strongly planar digraph.

By Theorem 9, every strongly planar digraph is non-even and so, according to Theo-
rem 10, it is 2-colourable.

In this section, we seek a strengthening of 2-colourability for strongly planar digraphs
of large girth. While ~χ(D) 6 2 for all strongly planar digraphs can be rephrased as the
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existence of a packing of two disjoint feedback vertex sets in any strongly planar digraph,
we conjecture the following generalisation.

Conjecture 26. For any strongly planar digraph D of girth g, there exists a packing of g
pairwise disjoint feedback vertex sets. In other words, D can be vertex g-coloured such
that every directed cycle uses each colour at least once.

Clearly, the directed cycle ~Cg of length g admits a packing of g and no more disjoint
feedback vertex sets, and consequently, this conjecture, if true, is best-possible.

For an arbitrary bipartite planar graph G with a perfect matching M , a feedback
vertex set in D(G,M) corresponds to a partial matching S ⊆M with the property that
every M -alternating cycle uses an edge in S, which is the same as saying that S is forcing.
Consequently, in the language of perfect matchings, the above translates to:

Conjecture 27. Let G be a bipartite planar graph with a perfect matching M and let
2g be the length of a shortest M -alternating cycle. Then M can be decomposed into g
pairwise disjoint forcing sets.

The type of colouring as described for cycles in digraphs was investigated more generally
for hypergraphs by Bollobás et al. [BPRS10]. Given a hypergraph H, a polychromatic
k-colouring of H is defined to be a vertex-colouring c : V (H)→ {0, . . . , k − 1} such that
every hyperedge e ∈ E(H) contains at least one vertex of each colour. The polychromatic
number of H then is defined as the maximal k for which a polychromatic k-colouring of
H exists. Clearly, the polychromatic number of a hypergraph H is upper bounded by its
rank, that is, the size of a smallest hyperedge.

Given a digraph D, we may associate with it the cycle hypergraph C(D) having V (D)
as vertex set and containing the vertex sets of all directed cycles in D as hyperedges. It
is now clear that Conjecture 26 claims that the cycle hypergraph C(D) of any strongly
planar digraph D has the very special property that the polychromatic number matches
its rank.

Looking at general planar digraphs, for any g > 2, there are examples of planar digraphs
with girth g which do not admit a packing of g disjoint feedback vertex sets (cf. [HS18]).
However, the following statement, which contains the 2-Colour-Conjecture (Conjecture 1)
as the subcase g = 3, might still be true.

Conjecture 28 (Hochstättler and S. [HS18]). For any planar digraph of girth g > 3,
there exists a packing of g − 1 disjoint feedback vertex sets.

The rest of this section is devoted to partial results towards Conjecture 26 using the
concept of fractional colourings.

Given a fixed natural number b > 1 and some k ∈ N, k > b, a b-tuple k-colouring of
a digraph D is defined to be an assignment of subsets of {0, . . . , k − 1} of size b to the
vertices of D in such a way that for any i ∈ {0, . . . , k − 1}, the subdigraph of D induced
by those vertices whose colour-set contains i is acyclic. The b-dichromatic number ~χb(D)
of a digraph is then defined to be the least k for which a b-tuple k-colouring of D exists.
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The fractional dichromatic number of a digraph defined as ~χf (D) := infb>1
~χb(D)
b
∈ [1,∞)

is always a lower bound for the dichromatic number.
It has been proved in [Sev], Chapter 5 that ~χf (D) is always a rational number and

can be alternatively represented as the optimal value of the following linear relaxation of a
natural integer program formulation of the dichromatic number:

Theorem 29 (Severino [Sev]). Let D be a digraph. Then there is an integer b > 1 such

that ~χf (D) = ~χb(D)
b

. Denote the collection of acyclic vertex sets in D by A(D) and for any
v ∈ V (D) let A(D, v) ⊆ A(D) consist of only those acyclic sets containing v. Then ~χf (D)
is the optimal value of

min
∑

A∈A(D)

xA (1)

subj. to
∑

A∈A(D,v)

xA > 1, for all v ∈ V (D)

x > 0.

The fractional dichromatic number has turned out to be a useful concept. For instance,
it was used in [MW16] to prove a fractional version of the so-called Erdős-Neumann-Lara-
Conjecture.

To make the statement of our results clearer, we reformulate Conjecture 26 in the
setting of circular colourings of digraphs. The star dichromatic number ~χ∗(D) of a digraph
was recently introduced in [HS18] as a refined measure of the dichromatic number of
a digraph which, similar to the circular or fractional chromatic number of a graph (cf.
[Vin88] and [SU11]), can take on rational values. Instead of a finite colour set, for any
p ∈ R, p > 1, in an acyclic p-colouring of a digraph D, vertices are coloured with points
on a plane circle Sp with perimeter p such that for any open cyclic subinterval I ⊆ Sp
of length 1, the set of vertices mapped to this interval is acyclic. The star dichromatic
number ~χ∗(D) is now defined as the infimal value of p for which an acyclic p-colouring of
D exists. It was proved in [[HS18], Proposition 5] that this infimum is attained and thus
may be written as a minimum.

Intuitively, having fractional or star dichromatic number close to 1 captures the property
of a digraph being “close” to acyclic.

We restate the following basics.

Proposition 30 (Hochstättler and S. [HS18]). Let D be a digraph, then the following
statements hold.

i) The star dichromatic number ~χ∗(D) is a fraction with numerator at most |V (D)|
satisfying d~χ∗(D)e = ~χ(D).

ii) For any pair of integers k > d > 1, we have ~χ∗(D) 6 k
d

if and only if there
is a colouring c : V (D) → Zk ' {0, 1, . . . , k − 1} of the vertices of D such that
c−1({i, i+ 1, . . . , i+ d− 1}) (sums taken modulo k) is an acyclic vertex set for every
i ∈ Zk.

iii) ~χf (D) 6 ~χ∗(D).
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iv) For every n ∈ N, n > 2 we have ~χf

(
~Cn

)
= ~χ∗

(
~Cn

)
= n

n−1 .

As a consequence of the second point, we obtain that, for a digraph D of girth g,
~χ∗(D) 6 g

g−1 if and only if V (D) can be coloured with the elements of Zg such that for

any i ∈ Zg, the vertices mapped to Zg \ {i} form an acyclic set. However, this is the
same as saying that D can be vertex-coloured with g colours such that each colour class
is a feedback vertex set of D. Therefore, the following is an equivalent reformulation of
Conjecture 26 (we use (iv) in Proposition 30 to conclude that ~χ∗(D) > ~χ∗(~Cg) = g

g−1 for

every planar digraph of directed girth g).

Conjecture 31. For any strongly planar digraph D of directed girth g > 2, we have
~χ∗(D) = g

g−1 .

For planar digraphs, the fractional and the star dichromatic number often coincide
or are closely tied to each other. Thus, the following result can be seen as a source of
evidence for Conjecture 26.

Theorem 32. For any strongly planar digraph D of girth g > 2, we have ~χf (D) = g
g−1 .

To prove this result, we use insights from the theory of clutters. A clutter is defined to
be a collection C of subsets of a finite ground set S such that C1 * C2 for any C1 6= C2 ∈ C.
We refer to the first chapter of [Cor01] for a short and comprehensible introduction to the
topic.

Associated with any clutter C over the ground set S we have a clutter matrix MC whose
columns are indexed by the elements of S and whose rows correspond to the characteristic
vectors of the members of C with respect to S. The following primal-dual pair of linear
optimisation programs resembles natural covering and packing problems related to clutters.
Here, w > 0 denotes a row vector whose entries are non-negative real numbers or possibly
∞, and 1 denotes the vector with all entries equal to 1 (with a slight abuse of notation we
use it both as a column and row-vector, it should always be clear from context what is
meant). Vector-inequalities are to be understood component-wise.

min {wx | x > 0, MCx > 1} (2)

= max {y1 | y > 0, yMC 6 w} (3)

In the following, we introduce a number of important notions for clutters related to
integral solutions of the linear programs (2) and (3).

Given a clutter C, we will say that it admits the Max-Flow-Min-Cut-Property (MFMC
for short) if, for any non-negative w with integral entries, there exists a primal-dual pair
of integral optimal solutions to the linear programs (2) and (3).

We say that C packs if the same holds true at least for w = 1. If such an integral
primal-dual solution exists for all vectors w with entries 0, 1 or ∞, we say that the clutter
is packing.

It is not hard to see that if a clutter has the MFMC-property, it is packing, and, clearly,
any packing clutter also packs. While there are examples of clutters that pack but do not
have the packing property, it is a famous open problem due to Conforti and Cornuejols to
show that in fact, the packing property and the MFMC-property are equivalent.
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Conjecture 33 (Conforti and Cornuejols). A clutter has the packing property if and only
if it has the MFMC property.

For the following, we will furthermore need the notion of idealness for clutters. A
clutter is said to be ideal if, for any real-valued vector w > 0, the primal linear program (2)
has an integral optimal solution vector x. It is not hard to show that the MFMC-property
implies idealness of a clutter, we refer to the paragraph after Definition 1.5 in [Cor01] for
detailed explanation of this fact.

A famous example of a clutter related to digraphs is the clutter of all minimal directed
cuts of a fixed directed graph D. The following well-known result of Lucchesi and Younger
can be rephrased as the fact that the clutter of minimal directed cuts of any digraph has
the MFMC-property. To formulate the theorem, we need the following terminology: A
dijoin of a digraph D is a subset of E(D) intersecting every directed cut in at least one
edge.

Theorem 34 (Lucchesi and Younger [LY78]). Let D be a digraph and w : E(D)→ N0 a
non-negative integral edge-weighting. Then the minimal weight of a dijoin in D equals the
maximal size of a collection of (minimal) directed cuts in D so that any edge e ∈ E(D) is
contained in at most w(e) of them.

Using planar duality of digraphs, the above theorem restricted to planar digraphs
reformulates as follows.

Corollary 35. Let D be a planar digraph and w : E(D) → N0 a non-negative integral
edge-weighting. Then the minimal weight of a directed cycle in D equals the maximal
number of feedback arc sets containing any edge e ∈ E(D) at most w(e) times.

We now use the above result to prove that given a strongly planar digraph D, the
associated clutter containing the vertex sets of all induced directed cycles in D admits
the MFMC-property. This result has already been observed for instance in [Gue01], we
provide its proof for completeness.

Theorem 36. Let D be strongly planar. Then for any non-negative integral vertex-
weighting w : V (D) → N0, the minimal weight of a feedback vertex set in D equals the
maximal number of (induced) directed cycles in D which together contain any vertex
x ∈ V (D) at most w(x) times.

Proof. We construct an auxiliary splitting-digraph D′ by replacing each vertex x ∈ V (D)
by a directed edge ex ∈ E(D′) in such a way that all the incoming edges incident to x in
D are now incident to tail(ex) while all the outgoing edges of x in D are now emanating
from head(ex). By contracting the edge ex for each x ∈ V (D), it is clear that the directed
cycles in D′ are in one-to-one correspondence with the directed cycles of D. Moreover, the
vertex-intersection of a pair of directed cycles in D yields a subset of the edge-intersection
of the corresponding directed cycles in D′. It is furthermore easy to see from the fact that
the outgoing and incoming edges incident to any vertex in D are separated in the cyclic
ordering, that D′ indeed admits a planar embedding. We now define a corresponding
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weighting of the edges of D′ by setting w′(ex) := w(x) for any x ∈ V (D) and w′(e) := M
for a large natural number M ∈ N for any other edge of D′. If we choose M large enough,
we find that the minimal edge-weight of a feedback edge set in D′ is exactly the minimal
vertex-weight of a feedback vertex set in D. Corollary 35 now tells us that the latter is
the same as the maximal size of a collection of directed cycles in D′ in which any ex is
contained at most w(x) times while any other edge is contained at most M times. As
the latter condition becomes redundant for M large enough, this again is the same as
the maximal size of a collection of directed cycles in D in which any vertex x ∈ V (D) is
contained at most w(x) times. As we may assume all the directed cycles in an optimal
collection to be induced, this implies the claim.

As a consequence, the clutter of vertex sets of induced directed cycles of a strongly
planar digraph D is MFMC and, thus, also ideal.

Given any clutter (S, C), we may define a corresponding dual clutter (called blocking
clutter and denoted by (S, C∗)) which contains all the inclusion-wise minimal subsets
X ⊆ S with the property that X ∩ C 6= ∅ for all C ∈ C. It is clear that the blocking
clutter of the clutter of vertex sets of induced directed cycles of a digraph is just the clutter
of inclusion-wise minimal feedback vertex sets. To proceed, we will need the following
theorem of Lehman.

Theorem 37 (Lehman, [Leh79], and [Cor01], Theorem 1.17). A clutter is ideal if and
only if its blocking clutter is.

In our case, this implies that, for strongly planar digraphs, the clutter of minimal
feedback vertex sets is ideal and, consequently, the corresponding linear optimisation
problem (2) admits an integer optimal solution x > 0 for any real-valued vector w > 0.
By setting w := 1T , we obtain the following.

Lemma 38. Let D be a strongly connected strongly planar and let g be the girth of D.
Then there is a collection F1, . . . , Fm of feedback vertex sets of D equipped with a weighting
y1, . . . , ym ∈ R>0 such that y1 + · · · + ym = g and for any vertex v ∈ V (D), we have∑
{j|v∈Fj} yj 6 1.

Proof. Let x > 0 be an integer-valued optimal solution of the linear program (2) corre-
sponding to the clutter of inclusion-wise minimal feedback vertex sets of D and w = 1T .
It is easy to see from the definition of the linear program (2) that, in any optimal solu-
tion, we have x 6 1 (component-wise), as otherwise one could replace x with min {x,1},
obtaining a better solution to the linear program, contradicting the optimality. Conse-
quently, we know that x has only 0 and 1 as entries and is thus determined by its support
X := supp(x) ⊆ V (D). From the conditions in the program (2) we derive that X has
a non-empty intersection with every feedback vertex set of D and thus must contain a
directed cycle (as V (D) \X cannot be a feedback vertex set). Hence wx = |X| > g. On
the other hand, the (0, 1)-vector whose support is given by the vertex set of some directed
cycle of length of g clearly has value g and also satisfies the conditions of the program
and thus is an optimal solution. Consequently, also the optimal value of the dual program
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(3) is g and thus there is an optimal solution vector y > 0 with y1 = g. This implies the
claim.

We are now ready to give a proof of Theorem 32 which will conclude this section.

Proof (of Theorem 32). Let D be strongly planar and let g > 2 denote the girth of D. We
show that ~χf (D) = g

g−1 . First of all, the fractional dichromatic number cannot increase

by taking subdigraphs, and so we have ~χf (D) > ~χf

(
~Cg

)
= g

g−1 . It remains to prove

~χf (D) 6 g
g−1 . For this purpose we construct a feasible instance of the linear optimisation

program (1) with value at most g
g−1 . To do so, let F1, . . . , Fm be a collection of feedback

vertex sets as given by Lemma 38 with a corresponding weighting y1, . . . , ym > 0. The
complements V (D) \ Fi are clearly acyclic for any j ∈ {1, . . . ,m}. For any acyclic vertex
A ∈ A(D) we now define the value of the corresponding variable to be

xA :=
1

g − 1

∑
{j|A=V (D)\Fj}

yj > 0.

We then have for any vertex v ∈ V (D):

∑
A∈A(D,v)

xA =
1

g − 1

∑
{j|v/∈Fj}

yj =
1

g − 1


m∑
j=1

yj︸ ︷︷ ︸
=g

−
∑
{j|v∈Fj}

yj︸ ︷︷ ︸
61

 >
g − 1

g − 1
= 1,

so this is indeed a feasible instance of the program (1) and we obtain

~χf (D) 6
∑

A∈A(D)

xA =
1

g − 1

m∑
j=1

yj =
g

g − 1

as desired.

4 List Colourings of Non-Even Digraphs

List colourings naturally generalise several types of colourings of graphs and have been
widely investigated. While a lot of progress has been made in the last decades, many
important questions, such as the list colouring conjecture, still remain open.

Given some collection P of subsets of a ground sets P , we denote by
⋃
P the set⋃

X∈P X.
It is natural to apply the concept of list colouring also to colourings of digraphs.

Indeed, such a notion was investigated in [BHKL18]. Therein, for a given digraph D
equipped with an assignment of finite colour lists L = {L(v)|v ∈ V (D)} to the vertices, an
L-list-colouring of D is defined to be a choice function c : V (D)→

⋃
L such that for any
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vertex v ∈ V (D), we have c(v) ∈ L(v), and moreover, c defines a proper digraph colouring,
that is, D[c−1(i)] is acyclic for all i ∈

⋃
L.

Putting L(v) := {1, . . . , k} for each vertex simply yields the definition of a usual digraph
k-colouring. In [BHKL18], a digraph D is called k-list colourable (also k-choosable) if for
any list assignment L, where |L(v)| > k for every v ∈ V (D), there is an L-list colouring of
D. The smallest integer k > 1 for which a digraph D is k-choosable now is defined to be
the list dichromatic number (also choice number) ~χ`(D). Clearly, we have ~χ(D) 6 ~χ`(D)
for every digraph. However, as pointed out in [BHKL18], this estimate can be arbitrarily
bad in general.

It is therefore desirable to identify classes of digraphs with bounded choice number. In
the context of Conjecture 1, the authors of [BHKL18] observed that every oriented planar
digraph is 3-choosable and posed the question whether all oriented planar digraphs are
2-choosable.

We have shown in Section 2 that all non-even digraphs are 2-colourable, and so it
is natural to ask whether they are even 2-choosable. This question can rather easily be
answered in the negative, see Figure 5 for an example of a strongly planar digraph with
choice number 3. In the remainder of this section, we show that 3 is the (best possible)
upper bound for the choice number of non-even digraphs.

{0, 1}

{1, 2}

{0, 2}

{0, 1}

{1, 2}

{0, 2}

Figure 5: A non-2-choosable strongly planar digraph.

Theorem 39. Let D be a non-even digraph. Then ~χ`(D) 6 3. Moreover, for any
choice of a designated vertex v0 ∈ V (D), D is L-list colourable for every list assignment
L = {L(v)|v ∈ V (D)} fulfilling |L(v0)| = 1 and |L(v)| > 3 for all v ∈ V (D) \ {v0}.

Proof. We show the second (stronger) assertion. Assume towards a contradiction that
there is a non-even digraph D which does not satisfy the assertion, and assume D to be
chosen minimal with respect to the number of vertices. Let in the following L be a fixed
list assignment for D, where |L(v0)| = 1 for some designated v0 ∈ V (D), |L(v)| > 3 for all
v ∈ V (D) \ {v0}, and such that D is not L-choosable. Clearly, we have |V (D)| > 3.

We first show that D must be strongly 2-connected: Assume for a contradiction that
there is a directed separation of order i ∈ {0, 1} in D. By Corollary 20, we find that there
are non-even digraphs D1 and D2 with fewer vertices than D such that D is the i-sum of
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D1 and D2. By the assumed minimality of D, we know that D1 and D2 both satisfy the
assertion.

If i = 0, consider a partition (X, Y ) of V (D) such that D1 = D[X], D2 = D[X] and
the edges with exactly one endpoint in X and exactly one endpoint in Y form a directed
cut in D. Restricting L to X resp. Y defines list assignments for D1 and D2 (each with
at most one list of size less than 3), and we find that Dj admits a choice function cj for
j = 1, 2 that defines a valid digraph colouring and satisfies cj(x) ∈ L(x) for all x ∈ V (Dj).
Putting

c(x) :=

{
c1(x) , x ∈ X
c2(x) , x ∈ Y

now defines a valid choice of colours for D without a monochromatic directed cycle, proving
that D is L-choosable. This is a contradiction to our initial assumption.

If i = 1, let w ∈ V (D) be such that D is the 1-sum of D1 and D2 along w. Consider a
partition (X, Y ) of V (D) \ {w} such that no edge in D has its head in X and its tail in Y ,
and such that D1 arises from D by identification of Y ∪ {w} into a single vertex v1, and
D2 by identification of X ∪ {w} into a vertex v2.

We have that v0 ∈ X∪{w} or v0 ∈ Y ∪{w}. Assume for the following that v0 ∈ X∪{w},
the other case works symmetrically. Define an assignment L1 of lists to the vertices of
D1 according to L1(x) := L(x) for all x ∈ X and L1(v1) := L(w). Because D1 satisfies
the assertion, we find a choice function c1 which defines a proper digraph colouring of D1

while satisfying c1(x) ∈ L(x), x ∈ X, and c̃ := c1(v1) ∈ L(w). Now define a list assignment
L2 for D2 according to L2(x) := L(x) for x ∈ Y and L2(v2) := {c̃}. Because we have
|L2(x)| = |L(x)| > 3 for all x ∈ Y = V (D2) \ {v2}, we can apply the assertion to D2

and thus find a choice function c2 on V (D2) satisfying c2(x) ∈ L(x) for all x ∈ Y and
c2(v2) = c̃ = c1(v1). Now define a choice function c on V (D) by

c(x) :=


c1(x) , x ∈ X
c̃, x = w
c2(x) , x ∈ Y.

By the above it is clear that we have c(x) ∈ L(x) for all x ∈ V (D). Because D is not
L-choosable, this implies that there is a directed cycle C in D which is monochromatic
under c. Because c1 and c2 are valid digraph colourings of D1 and D2, C must contain
vertices of both X and Y and therefore must visit w as well as exactly one edge with tail
in X and head in Y . Therefore, identifying all vertices in Y ∪{v} on C into a single vertex
results in a directed cycle in D1, which has to be monochromatic as well. This finally is a
contradiction to the definition of c1.

As both cases led to a contradiction, for the rest of the proof we may assume that
|V (D)| > 3 and D is strongly 2-connected. Applying Corollary 23 we find that there
is a vertex u ∈ V (D) \ {v0} of out-degree two. Clearly, D − u is non-even as well
and has less vertices, so the minimality of D implies that for the induced assignment
L′ := {L(x)|x ∈ V (D) \ {u}} of lists, there is a choice function c′ which defines a
valid digraph colouring of D − u. Let u1, u2 be the two out-neighbours of u. Since

the electronic journal of combinatorics 29(4) (2022), #P4.10 23



|L(u) \ {c′(u1), c′(u2)}| > 1, we can extend c′ to a choice function c on V (D) such that
c(x) = c′(x) ∈ L(x) for all x ∈ V (D) \ {u} and c(u) ∈ L(u) \ {c(u1), c(u2)}. Because D
is by initial assumption not L-choosable, this implies that there is a directed cycle in
D which is monochromatic with respect to c. Since c′ defined a valid digraph colouring,
this is only possible if the cycle traverses u and thus one of the edges (u, u1) or (u, u2).
However, this gives a contradiction to the fact that both of these edges are bi-coloured.

This final contradiction shows that our initial assumption was false and concludes the
proof of the Theorem.

5 Computational Hardness

Formally, we consider the following decision problem.
Digraph k-Colouring

Input A digraph D.
Question Does there exist a proper k-colouring for D?

Our hardness results bounds not only τ(D), but also the out-degeneracy of D.

Definition 40. Let D be a digraph. The out-degeneracy of D (written d(D)) is the
minimum x such that a linear ordering � of V (D) exists with the property that

|{u ∈ Nout(v) |u � v}| 6 x

for each v ∈ V (D).

The hardness result presented below is relatively tight with respect to τ(D) and d(D):
If τ(D) 6 k − 1, we can find a feedback vertex set S in time f(k)nO(1) [CLL+08], assign
each vertex of S a different colour in [k − 1] and the remaining vertices the remaining
colour k. Further, one can easily find a proper (d(D) + 1)-colouring of a digraph by
greedily assigning each vertex a colour which does not appear in its smaller outneighbours.
Hence, if d(D) 6 k − 1 or τ(D) 6 k − 1, finding a proper k-colouring for D can be done
in f(k)nO(1) time. In contrast, our hardness result excludes the existence of an nf(k)-time
algorithm if we only assume τ(D) 6 k + 4 and d(D) 6 k + 1 instead, leaving only the
cases k 6 τ(D) 6 k + 3 and d(D) = k open.

In what follows, for a natural number n ∈ N we denote the set {1, . . . , n} by [n].

Lemma 41. Digraph 2-Colouring is NP-hard even if τ(D) 6 6 and d(D) 6 3, where
D is the input digraph.

Proof. We provide a reduction from SAT to Digraph 2-Colouring. Let C1, C2, . . . , Cm
denote the clauses and X1, X2, . . . , Xn the variables in the SAT instance. We construct a
digraph D which is 2-colourable if and only if there is a satisfying assignment for the SAT
instance. For each clause Ci we add the vertex ci to D, and for each literal Lj ∈ Ci we add
the vertex lj,i. That is, we add the vertex xj,i if Xj ∈ Ci and the vertex xj,i if Xj ∈ Ci. To
simplify our notation, we assume that a literal Lj is associated with the variable Xj , that is
Lj = Xj or Lj = Xj , and that lj corresponds to the lower-case variant of Lj , that is lj = xj
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x1x1,1 x1,2

t1 f1

(a) Literal gadget.

x1 x1

t2 f2

(b) Variable gadget.

x1,2 x2,2c2

f3t3

(c) Clause gadget.

Figure 6: Variable, literal and clause gadgets of the proof of Lemma 41 for the variable X1

and the clause (X1 ∨X2) in the SAT formula (X1 ∨X2) ∧ (X1 ∨X2) ∧ (X1 ∨X2).

if Lj = Xj and lj = xj if Lj = Xj. We want the colour of a vertex xj,i to correspond to
an assignment of the variable Xi. To this end, we add a set S = {t1, t2, t3, f1, f2, f3} of
vertices which will correspond to a feedback vertex set in D. Furthermore, for each literal
Lj we add a vertex lj. We now add cycles to D in such a way that any proper colouring
c : V (D)→ {0, 1} must have the following properties.

(i) c(lj,i) = c(lj,h) for all j ∈ [n] and i, h ∈ [m], and
(ii) c(xj,h) 6= c(xj,i) for all j ∈ [n] and i, h ∈ [m].

Clearly, these properties allow us to obtain a variable assignment from any proper 2-
colouring of D.

To ensure (i), we construct a literal gadget (illustrated in Figure 6a). First, we add the
cycle t1, f1. Then, for each literal Lj and each clause Ci with Lj ∈ Ci we add the cycles
lj, lj,i, t1 and lj, lj,i, f1. If there are i, h ∈ [m] such that lj,i and lj,h have different colours,
one of them, say, lj,i, must have the same colour as lj . Since t1, f1 forms a cycle, they must
have different colours in any solution of the 2-colouring problem. Hence, the cycle lj, lj,i, t1
or the cycle lj, lj,i, f1 is monochromatic if li,j and li,h have different colours. This proves
(i).

For (ii), we construct a variable gadget (illustrated in Figure 6b). First, we add the
cycle t2, f2. Then, we add the cycles xj, xj, t2 and xj, xj, f2 for each j ∈ [n] where both Xj

and Xj appear in the formula. If xj and xj receive the same colour, then one of the added
cycles is monochromatic as t2 and f2 must receive different colours. Because of the literal
gadgets, we know that lj and lj,i have different colours for all j ∈ [n] and i ∈ [m]. As xj
and xj have different colours, it follows from (i) that xj,i and xj,h have different colours for
all j ∈ [n] and all i, h ∈ [m]. This implies (ii).

We now construct a clause gadget (illustrated in Figure 6c) that ensures that each
clause is satisfied by at least one of its literals. We first add the cycle t3, f3. Then, for
each clause Ci we add the cycle ci, t3. Finally, we add the cycle ci, lj1,i, lj2,i, . . . , ljh,i, f3,
where lj1,i, lj2,i, . . . , ljh,i are the literals of Ci. We sort the literals in such a way that
j1 < j2 < · · · < jh and such that Xj comes before Xj. This concludes the construction
of D.

We first show that τ(D) 6 6. We claim that the set S = {t1, t2, t3, f1, f2, f3} is a
feedback vertex set of D. We prove that D− S is acyclic by finding a topological ordering
of its vertices. We first take the positive literal vertices xj and the clause vertices ci
into the ordering, as these are sources in D − S. Removing these vertices, all negative
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literal vertices xj become sources, which we then add to the end of the current topological
ordering. The only remaining vertices are the variable vertices lj,i. It follows from the
construction of the clause gadget that ordering the lj,i monotonically in j, with positive
literals preceding corresponding negative literals, completes the topological ordering of
D − S.

To show that the degeneracy of D is 3, we construct a linear ordering of the vertices
as follows. The first vertices of the ordering are t1, f1, t2, f2, t3 and f3. These have at most
one outgoing arc to vertices which are smaller. Afterwards come all positive literal vertices
xj, then all negative literal vertices xj, followed by the variable vertices lj,i. The vertices
xj have arcs to t2 and f2, and xj has no arc to smaller vertices. Hence, they have at most
two arcs to smaller vertices. The vertices lj,i have arcs to t1, f1 and potentially to some
other lh,i or to f3, but never both. Hence, they have at most 3 arcs to smaller vertices.
The last vertices in the ordering are the clause vertices ci. These have an arc to t3 and
another to some lj,i. Hence, the directed degeneracy of D is at most 3.

We now prove that D is 2-colourable if there is a truth assignment of the variables
satisfying all clauses.

Let β : {Xj | j ∈ [n]} → {0, 1} be a satisfying truth assignment of the variables. We
construct a colouring c : V (D)→ {0, 1} as follows.

i) c(fi) := 0 and c(ti) := 1 for i ∈ [3].
ii) c(ci) := 0 for i ∈ [m].
iii) c(xj,i) := β(Xj) for all j ∈ [n] and i ∈ [m] with Xj ∈ Ci.
iv) c(xj,i) := 1− β(Xj) for all j ∈ [n] and i ∈ [m] with Xj ∈ Ci.
v) c(xj) := 1− β(Xj) and c(xj) := β(Xj) for all j ∈ [n].

This concludes the construction of c. We now argue that each colour class induces an
acyclic digraph in D.

Let d ∈ {0, 1} be some colour. Note that either t1, t2, t3 ∈ c−1(d) or f1, f2, f3 ∈ c−1(d),
as these vertices receive different colours. Since S is a feedback vertex set of D, it suffices
to show that there are no cycles using vertices of Sd := c−1(d) ∩ S in D[c−1(d)].

Assume, without loss of generality, that t1, t2 ∈ c−1(d). The case f1, f2 ∈ c−1(d) follows
analogously. We prove that no cycle contains t1 or t2 by progressively identifying and
removing sinks fromD[c−1(d)]. As for all j ∈ [n] and i ∈ [m] we have c(xj) 6= c(xj) = c(xj,i),
it follows that all xj are sinks in D[c−1(d)]. Removing all xj, we can see that t2 is now a
sink. Hence, no directed cycle in D[c−1(d)] contains t2. As c(xj) 6= c(xj,i), it follows that
xj is now a sink and we can remove it. Without literal vertices, t1 becomes a sink, implying
no cycle goes through t1 in D[c−1(d)], as desired. Consequently, for any d ∈ {0, 1}, no
directed cycle in D[c−1(d)] can possibly use one of the vertices t1, t2, f1, f2 and therefore
must either contain t3 or f3.

If t3 ∈ c−1(d), then ci 6∈ c−1(d) for all i ∈ [m], as c(t3) = 1 and c(ci) = 0. Hence, t3 has
no neighbours in D[c−1(d)] and cannot be in any cycle. If f3 ∈ c−1(d), assume towards a
contradiction that there is a cycle C in D[c−1(d)] containing f3. Note that this cycle must
also contain ci for some i ∈ [m], as these are the only out-neighbours of f3 in D[c−1(d)].
Furthermore, the out-neighbour of ci in C is some lj,i, and the only out-neighbours of lj,i
are t1 and potentially some lh,i or f3, as these were the arcs added in the clause gadgets.

the electronic journal of combinatorics 29(4) (2022), #P4.10 26



The vertices lj,i in C correspond to the literals in ci. In order to form a cycle, all literals
in ci must be in C. However, this means that c(xj,i) = 0 for all Xj in clause Ci and
c(xj,i) = 0 for all Xj in clause Ci. By construction of c, this implies that all literals in Ci
are set to false, which means that the clause is not satisfied, a contradiction to our initial
assumption. Hence, the digraph D[c−1(d)] is acyclic, and D is 2-colourable.

We now show that the formula is satisfiable if ~χ(D) 6 2 by constructing a satisfying
variable assignment β from a proper 2-colouring of D. Let c : V (D)→ {0, 1} be a proper
colouring of D. Without loss of generality, we assume that c(t3) = 1, which implies that
c(f3) = 0. We set β(Xj) to true if c(xj) = 0 and to false if c(xj) = 1.

Assume towards a contradiction that there is some clause Ci which is not satisfied
by β. By simply renaming the variables, we can assume without loss of generality that
the literals of Ci are L1, L2, . . . , La. As Ci is not satisfied, it follows that all Lj evaluate
to false with β. By construction of the literal gadget, c(lj) 6= c(lj,i) for all i ∈ [m] with
Lj ∈ Ci. From (i) and (ii), for all j ∈ [n] it follows that c(lj,i) = 1 if the literal Lj is true,
and that c(lj,i) = 0 if the literal Lj is false. As Ci is not satisfied, c(ci) = c(f3) = c(lj,i) = 0
for all j ∈ [a]. Hence, the cycle C = ci, l1, l2, . . . la, f3 is monochromatic, contradicting
our assumption that c is a proper colouring. This implies that β is a satisfying variable
assignment, concluding our proof.

With a simple self-reduction, we can extend the previous result to all k > 2.

Theorem 42. For each k > 2, Digraph k-Colouring is NP-hard even if τ(D) 6 k + 4
and d(D) 6 k + 1, where D is the input digraph.

Proof. We prove the statement by induction on k. The case k = 2 follows from Lemma 41.
We provide a reduction from Digraph (k − 1)-Colouring to Digraph k-Colouring
such that τ(D′) 6 τ(D) + 1 and d(D′) 6 d(D) + 1, where D is the input instance and D′

is the reduced instance. We obtain D′ be adding a vertex x to D, together with the edges
{(x, v) , (v, x) | v ∈ V (D)}. If D is (k − 1)-colourable, then setting the colour of x to k
gives a proper k-colouring for D′. If D′ is k-colourable, then no vertex in D has the same
colour as x. Hence, D is (k− 1)-colourable. Furthermore, all new cycles created by adding
x go through x. If D − S is acyclic for some vertex set S, then D′ − (S ∪ {x}) = D − S
is also acyclic. Hence, τ(D′) 6 τ(D) + 1 = k + 4. To show that the degeneracy of D′

increased by at most one, we consider some ordering of D with degeneracy d(D) = k. By
placing x as the smallest vertex with respect to the ordering, we increase the outdegree of
the vertices in D by one. Hence, the degeneracy of D′ is at most d(D) + 1 = k + 1, as
desired.

As an immediate consequence of the above theorem arises the following corollary.

Corollary 43. There is no nf(k,x,y)-time algorithm deciding Digraph k-Colouring
where x = τ(D), y = d(D) and f is some function, unless P=NP.

A finer analysis of the reduction provided in Lemma 41 gives us stronger hardness
results under a different assumption. Similar to how no polynomial-time algorithms for
NP-complete problems are known, no 2o(n)nO(1)-time algorithm for k-SAT is known, where
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n is the number of variables in the input formula (which contains at most k literals in each
clause). An algorithm with such a running time is called a subexponential-time algorithm.
Impagliazzo and Paturi [IP01] provided evidence that no such algorithm for k-SAT exists,
and formulated the following hypothesis (often referred to as ETH ).

Hypothesis (Exponential Time Hypothesis [IP01]). For each k > 3 there is some sk > 0
such that no 2sknnO(1)-time algorithm for k-SAT exists.

Note that the ETH only considers the running time with respect to the number of
variables in the input formula, not the number of clauses. In several reductions, however,
it is difficult to ensure that the size of the reduced instance depends only on the number
of variables. For example, the reduction in Lemma 41 contains one vertex for each clause.
This would prevent us from directly applying the ETH. Fortunately, [IPZ01] showed that
it is possible to assume that m ∈ O(n), where m is the number of clauses, by proving the
following lemma.

Lemma (Sparsification Lemma, Impagliazzo, Paturi and Zane [IPZ01]). For all ε > 0
and k > 0 there is a constant C so that any k-SAT formula Φ with n variables can be
expressed as Φ′ =

∨t
i=1 Ψi, where t 6 2εn and each Ψi is a k-SAT formula with at most

Cn clauses such that each variable appears in constantly many clauses. Moreover, this
disjunction can be computed by an algorithm running in time 2εnnO(1).

By first applying the sparsification lemma to the input formula and then the reduction
from Theorem 42, we can show the following.

Theorem 44. For each k > 2 there is some ε > 0 such that no 2εnnf(x,y) algorithm for
Digraph k-Colouring exists, where D is the input digraph, x = τ(D), y = d(D) and f
is some function, unless the ETH is false.

Proof. First note that the reduction from Digraph (k − 1)-Colouring to Digraph
k)-Colouring from Theorem 42 increases the input instance by one vertex. Hence, it
suffices to show the statement for k = 2, as the remaining cases follow by induction. We
first use the sparsification lemma to obtain at most 2εn many 3-SAT instances where
each variable appears in constantly many clauses. Applying the reduction from Lemma 41
to each instance, we obtain at most 2εn many digraphs where for each variable we have
constantly many vertices and for each clause we have one vertex. This means that the
number of vertices on the reduced instances is linear in the number of variables of the
formula. Hence, a subexponential-time algorithm for Digraph 2-Colouring implies a
subexponential-time algorithm for 3-SAT, which would contradict the ETH.

Note that an algorithm with running time O(kn · (n + m)) is trivial: test all kn

colourings of the vertices of D, and then check if each colour class is a DAG in linear time
by computing a topological ordering.
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6 Non-Bipartite Graphs

In the previous sections we were concerned with digraphs, which correspond exactly to
the bipartite graphs with perfect matchings. However, a matching covered graph does not
need to be bipartite. In fact, most parts of (bipartite) matching theory directly translate
into the world of general matching covered graphs. This includes, especially, tight cuts,
their contractions, and pfaffian orientations.

In particular, the M -chromatic number is defined on all matching covered graphs. By
Corollary 11 and Theorem 9 every bipartite Pfaffian graph has M -chromatic number at
most 2 for every perfect matching. A natural question to ask would be whether this
generalises to all Pfaffian graphs. To this question there exists a rather easy negative
answer. The triangular prism is the complement C6 of the 6-cycle.

Figure 7: The triangular prism C6 together with a perfect matching M .

It is planar and therefore Pfaffian, but when considering the perfect matching M from
Figure 7, one can see that any two of the three edges in M lie together on a 4-cycle. Hence
no two of the three edges may receive the same colour and therefore χ

(
C6,M

)
= 3.

In Corollary 11 we went for a class closed under matching minors, so a next step would
be to consider a subclass of the C6-matching minor-free graphs. The triangular prism
is one of two graphs appearing in a fundamental theorem by Lovász on non-bipartite
matching covered graphs.

Theorem 45 (Lovász [Lov87]). Every non-bipartite matching covered graph contains a
conformal bisubdivision of K4 or C6.

A matching covered graph without a non-trivial tight cut is called a brace if it is
bipartite and a brick otherwise. In his seminal paper [Lov87], Lovász introduced a
decomposition procedure, known under the name tight cut decomposition, which, given
a matching covered graph, searches for non-trivial tight cuts, computes both tight cut
contractions, and iterates this for both reduced matching covered graphs, until a list of
bricks and braces, which are not reducible any more, is obtained. Among many other
things, Lovász proved that the list of bricks and braces does not depend on the chosen
order in which the tight cuts are contracted. As the following theorem shows, braces
correspond exactly to the strongly 2-connected digraphs.

Theorem 46 (Lovász and Plummer [LP86]). A bipartite graph G is a brace if and only if
it is 2-extendable.

Bricks have a more complicated structure and although every 2-extendable graph is
either a brick or a brace as seen in Theorem 47, there are bricks that are not 2-extendable.
For an example of such a brick consider the triangular prism.
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Theorem 47 (Plummer [Plu80]). Let G be a 2-extendable graph. Then, G is either a
brace or a brick.

There exists a generalisation of tight cuts that crosses the border towards bricks. Given
a matching covered graph G and a set X ⊆ V (G) we call the graph GX obtained from G
by identifying X into a single vertex, removing all loops, and identifying parallel edges the
X-contraction of G. Now a cut ∂(X) is called separating if both GX and GX are matching
covered.

Theorem 48 (de Carvalho, Lucchesi and Murty [dCLM02]). Let G be a matching covered
graph and X ⊆ V (G). The cut ∂(X) is separating if and only if for every edge e ∈ E(G)
there is a perfect matching Me of G containing e such that |∂(X) ∩Me| = 1.

We call a matching covered graph solid if every non-trivial separating cut is already
tight.

One can easily check the following lemma on bipartite graphs, showing that any
bipartite matching covered graph is solid.

Lemma 49 (de Carvalho, Lucchesi, Kothari and Murty [LDCKM18]). Let G be a bipartite
matching covered graph. Then ∂(X) is separating if and only if it is tight.

Moreover, being solid is preserved by tight cut contractions (cf. [dCLM02]) and thus a
matching covered graph is solid of and only if all of its bricks and braces are solid. Please
note that braces are bipartite and thus, by Lemma 49, it further follows that a matching
covered graph is solid if and only if all of its bricks are solid.

Please note that bricks may contain non-trivial separating cuts. Again consider the
triangular prism from Figure 7 and take a cut around one of the two triangles. Such a cut
is separating. In fact, the existence of a prism as a conformal bisubdivision immediately
implies the existence of a non-trivial and non-tight separating cut.

Lemma 50 (de Carvalho, Lucchesi, Kothari and Murty [LDCKM18]). Every solid graph
is C6-free.

The goal of this section is to establish an extension of Corollary 11 to non-bipartite
matching covered graphs in the form of a conjecture.

Conjecture 51. Let G be a solid and Pfaffian graph and M a perfect matching of G.
Then χ(G,M) 6 2.

To provide some evidence towards Conjecture 51, the remainder of this section is
dedicated to settle the planar case. For this we first establish a more general version
of Lemma 21 by proving it directly for tight cut contractions. We will need a bit of
notation here. If G is matching covered, M a perfect matching, and GX is a tight cut
contraction of ∂(X) with contraction vertex vX , we denote by MX the perfect matching
{e ∈M | e ⊆ V (G−X)} ∪ {uvX} where u is the unique vertex of X covered by the edge
of M in ∂(X).
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Lemma 52. Let G be a matching covered graph, ∂(X) a non-trivial tight cut in G and
M a perfect matching. If χ(GX ,MX) 6 2 and χ(GX ,MX) 6 2, then χ(G,M) 6 2.

Proof. For Y ∈
{
X,X

}
let cY be a proper 2-colouring of MY in GY . Let eY ∈MY be the

edge covering the contraction vertex. Then we can rename the colours for cX and cX such
that cX(eX) = cX(eX) and we define a colouring for M as follows.

c(e) :=


cX(e) , e ∈MX

cX(eX) = cX(eX) , e ∈ ∂(X) ∩M
cX(e) , e ∈MX .

Suppose G contains an M -alternating cycle C that is monochromatic with respect to c. If
V (C) is a subset of either X or X, by definition of c, C must be a monochromatic cycle
in either GX or GX and, thus, C must cross ∂(X). Since ∂(X) is tight, C has exactly two
edges in ∂(X), one of them belonging to M and the other one not. To see this note that
M∆E(C) is also a perfect matching of G and thus |(E(C) \M) ∩ ∂(X)| = 1, but since C
is a cycle it must have an even number of edges in ∂(X). Therefore C − (∂(X) ∩ E(C))
contains exactly 2 components. Each of them is a path of even length and M covers all
vertices but exactly one endpoint. Moreover, each of these paths forms, together with
the corresponding edges in ∂(X), an MY -alternating cycle in their respective contraction
GY . By definition of c, these two cycles must also be monochromatic which ultimately
contradicts the choice of the cY and completes the proof.

Both shores of a tight cut must be connected graphs [Lov87]. Hence, tight cut
contractions of a graph G are minors of G, and therefore preserve planarity. Using the
tight cut decomposition, the above Theorem, and this observation, it suffices to show that
every perfect matching of a solid planar brick or planar brace is 2-colourable. The brace
case is of course taken care of by Corollary 11 and thus our only concern are the solid
planar bricks. By Lemma 50 we only have to consider C6-free planar bricks. A theorem of
Kothari and Murty (cf. [KM16]) gives a precise description of these bricks.

A graph Wk consisting of a cycle of length k and a single vertex adjacent to every
vertex on the cycle is called a wheel. If k is odd, we call Wk an odd wheel; every odd wheel
is a brick.

Let (u1, u2, . . . , uk) and (v1, v2, . . . , vk) be two disjoint paths with k > 2. The graph
S2k+2 obtained from the union of these paths by adding the edges uivi for all i ∈ {1, . . . , k},
two new vertices x and y joined by an edge and the edges xu1, xv1, yuk, yvk, is called a
staircase of order 2k + 2. Every S2k+2 is a brick and S6 is isomorphic to the triangular
prism.

Theorem 53 (Kothari and Murty [KM16]).
i) A matching-covered graph is C6-free if and only if all the bricks and braces in its

tight cut decomposition are C6-free.
ii) The only planar C6-free bricks are the odd wheels, the staircases of order 4k and the

tricorn (see Figure 8).
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Figure 8: The tricorn together with a perfect matching of type I and a perfect matching
of type II.

If we have a planar and matching covered graph G that does not contain a conformal
bisubdivision of C6, by Theorem 53 the only bricks G can have are odd wheels, staircases
of orders divisible by 4 and tricorns. Along with these bricks, G can have any planar brace.
Planar braces are Pfaffian and thus by Corollary 11 2-colourable. While it is our goal to
provide evidence towards the 2-colourability of solid Pfaffian graphs, for the planar case
we can prove a stronger statement, namely Theorem 14.

Proof (of Theorem 14). Recall that we aim to prove that every perfect matching M of a
planar matching covered graph that is C6-free can be coloured with two colours without
producing monochromatic M -alternating cycles.

Observe that every shore of a tight cut must be a connected graph [Lov87], thus
tight cut contractions are special cases of minors and therefore, in particular, tight cut
contractions preserve planarity. Hence, by applying Lemma 52, it suffices to consider
planar and C6-free bricks and planar braces. Since planar braces G all satisfy χ(G,M) 6 2
for all perfect matchings M by Corollary 11 the only case left is where G is a planar and
C6-free brick. So with Theorem 53 we have to show that the perfect matchings of the odd
wheels, staircases of order 4k and the tricorn are 2-colourable.

Odd Wheels
For K4 = W3 we have exactly two edges in every perfect matching and thus are done.

Let k > 4 be any odd number. For the odd wheel Wk on k+ 1 vertices, let x be the unique
vertex of degree k. Clearly every perfect matching M has to cover x with an edge, say,
eMx , and every other matching edge lies on the cycle induced by the neighbourhood of x.
Consider the graph induced by

⋃
M \

{
eMx
}

. Since N(x) induces a cycle, this graph is a
path and thus every M -alternating cycle in Wk must contain eMx . Hence, by colouring eMx
with 0 and every other edge of M with 1 we have found a proper 2-colouring for M in Wk.

Staircases of Order 4k
For the staircases S4k we give a 2-colouring c : E(S4k) → {0, 1} of the edges that

induces a proper 2-colouring for every perfect matching. Let xy be the unique edge with
endpoints in two disjoint triangles. Let (u1, . . . , u2k−1) be the path from the construction
of S4k not on the outer face and assume xu1 to be an edge of S4k. We colour xy with 0.
Then, going counter-clockwise around the outer face, we assign 0 as the colour of the edges
xv1 and v1v2, the next two edges receive the colour 1, then two times colour 0 and so forth
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until the edge v2k−1y is coloured. Since S4k is of order 4k we colour 2k edges this way and
the last two edges receive colour 1. With this the path (x, v1, . . . , v2k−1, y) on the outer
face is coloured. We set c(uiui+1) := 1 − c(vivi+1) for i = 1, . . . , 2k − 2 and c(xu1) := 1
while c(yu2k−1) = c(u2k−2u2k−1). At last we need to colour the spokes. Let c(viui) := i
mod 2 for i = 1, . . . , 2k − 1. For an illustration consider Figure 9. To show that c induces
a proper 2-colouring for every perfect matching, we must show that there is no conformal
cycle C such that every second edge has the same colour.

Assume for a contradiction that S4k[c
−1(0)] contains C. However, this graph contains

a single cycle and this cycle contains exactly the vertices incident with at most one edge of
colour 1 in G. Moreover, if k is odd, then the unique cycle in S4k[c

−1(0)] is of odd length,
hence we may assume k to be even. By these arguments, V (G) \ V (C) is a stable set and
thus C is not conformal, a contradiction.

Thus C must contain an edge of colour 1 and therefore, by construction, also two
consecutive such edges. Consequently, by choice of C, every second edge of C must be
of colour 1. There does not exist a path of length 5 in S4k such that the first, third, and
fifth edge are coloured with 1, hence C must have length 4. Clearly none of the 4-cycles
contains two disjoint edges of the same colour and thus C cannot exist.

Figure 9: The staircase of order 16 together with a 2-colouring of the edges inducing a
proper 2-colouring for every perfect matching. The solid edges are considered to be of
colour 0, while the dashed ones are of colour 1.

Tricorn
For the tricorn we first observe that we can classify its perfect matchings into two types.

Any perfect matching either contains exactly one edge on the outer face that belongs to a
triangle or none (compare Figure 8). If we fix such an edge e on the outer face belonging to
a triangle for our perfect matching M1, the remaining edges of M1 are uniquely determined.
This can be seen as follows: Taking an edge from one of the triangles forces us to match
the remaining vertex of said triangle to the middle vertex. Then the remaining neighbours
of the middle vertex have to be matched within their respective triangles in such a way
that the remaining two vertices are adjacent. There is only one way to do this after e has
been chosen and thus {e} is in fact a forcing set for M1. Hence colouring e with 0 and all
other edges of M1 with 1 yields the desired colouring. We call such a matching type I.
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A matching of type II is a matching not containing any edge on the outer face belonging
to a triangle. Note that any perfect matching must contain two edges of the outer face.
So let e1 and e2 be these two edges. One of the three triangles contains an endpoint from
both e1 and e2, and its third vertex has to be matched to the middle one. This is already
enough to determine the last two edges and we obtain M2. Hence {e1, e2} is a forcing set
of M2 and, since the tricorn contains no 4-cycle, by colouring e1 and e2 with 0 and the
rest of M2 with 1 we are done.

By the above discussion it is clear that any perfect matching of the tricorn is either of
type I or II and this concludes the proof.

By applying Lemma 50, we obtain the special case of Theorem 14 for planar and solid
graphs.

Corollary 54. Let G be a planar solid graph and M a perfect matching of G, then
χ(G,M) 6 2.

Please note that the proof of Theorem 14 works for every Pfaffian matching covered
graph whose bricks are planar and C6-free. If one was able to show that the number of
edges in a solid Pfaffian brick is linearly bounded in the number of vertices, an approach
similar to the one for Theorem 10 would likely be successful. It does not seem very
likely that solid bricks in general can be very dense, as they cannot contain conformal
bisubdivisions of the triangular prism, however, no linear bound on the number of edges is
known.

7 Concluding Remarks

In this paper, we initiated the study of relationships between butterfly-minor closed classes
of digraphs and the dichromatic number by characterising the largest butterfly-minor
closed class of 2-colourable digraphs. Since odd bicycles have dichromatic number 3, one
direction of the following is Theorem 5, the reverse follows from Theorem 10.

Corollary 55. The non-even digraphs form the unique inclusion-wise largest class D2 of
2-colourable digraphs which is closed under butterfly-minors.

In the undirected case, Hadwiger’s Conjecture claims a characterisation of the largest
minor-closed class of k-colourable graphs. In view of Corollary 55, the following is a
natural directed analogue.

Question 56. Given a natural k > 3, what is the largest butterfly-minor closed subclass
Dk of the k-colourable digraphs?

Due to the existence of infinte antichains (such as the odd bicycles) in the butterfly-
minor order of digraphs, we believe that for larger values of k, possibly no very simple
description of the forbidden butterfly minors for Dk can be obtained. This is already
illustrated by the fact that D2 excludes all odd bicycles, for larger values of k one could
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expect more complicated anti-chains. Looking at the case k = 2, this drastically changed
when moving from digraphs to the corresponding bipartite graphs, where we only needed
to exclude K3,3 as a matching minor. While by now the K3,3-matching minor-free bipartite
graphs (that is, the Pfaffian bipartite graphs) have many equivalent characterisations
and can be recognised in polynomial time, not much is known about the classes of Kk,k-
matching minor-free graphs with k > 4. Clearly, the complete bipartite graph Kk,k has
M -chromatic number k for any perfect matching. Concerning Corollary 11, we think that
the following analogue of Hadwiger’s Conjecture for M -colourings of bipartite graphs could
be true.

Conjecture 57. Let k ∈ N, G be a bipartite graph and M an arbitrary perfect matching
of G, such that χ(G,M) > k. Then G contains Kk,k as a matching minor.

While for k = 1, 2, the statement is trivial, the case k = 3 amounts to Corollary 11.
At the current state, we do not have a good approach for proving this conjecture even
in the first open case of k = 4, which is mostly due to the fact that our proof for k = 3
relied on a certain sparsity of Pfaffian bipartite graphs, which has not yet been established
for classes excluding larger complete bipartite graphs as matching minors. Please note
that, if one were only interested in a qualitative description of Dk, a relaxed analogue of
Conjecture 57 might still be true.

Conjecture 58. There exists a constant c ∈ N such that for every k ∈ N and every

digraph D, if ~χ(D) > ck, then D contains
↔

Kk as a butterfly minor.

Note that we cannot hope for this conjecture to hold with c = 1, since for every integer

k > 3 the digraph obtained from
↔

Kk+2 by removing the arc-set of a
↔

C5 has dichromatic

number k but does not contain
↔

Kk as a butterfly-minor.
A related question regarding the existence of complete bipartite graphs as matching

minors is, whether high extendibility forces the existence of large minors.

Question 59. Is there a function f : N→ N such that every (k − 1)-extendable bipartite
graph G without a Kk,k-matching minor on n vertices has at most f(k)n edges? In other
words, is the average degree of these graphs bounded in terms of k?

The following observation, which is a direct consequence of a result of Aboulker et al.
[ACH+19], provides some evidence towards Conjecture 57.

Theorem 60 (Theorem 32 in [ACH+19]). Let D and F be digraphs, m := |E(F )|, n :=
|V (F )|. If ~χ(D) > 4m(n− 1) + 1, then D contains a subdivision of F as a subdigraph.

Corollary 61. There is a function f : N → N such that for any k ∈ N, every bipartite
graph G with a perfect matching M satisfying χ(G,M) > f(k) contains Kk,k as a matching
minor.

Proof. Set f(k) := 4k
2−k(k− 1) + 1 and let G be a bipartite graph with a perfect matching

M such that χ(G,M) > f(k). As the complete bioriented digraph
↔

Kk has k2 − k edges
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and k vertices, we deduce from Theorem 60 that ~χ(D(G,M)) = χ(G,M) > f(k) implies

the existence of a subdivision of
↔

Kk as a subdigraph of D(G,M). Clearly, this implies

that
↔

Kk, which is the unique perfect matching-direction of Kk,k, is a butterfly minor of
D(G,M). The claim now follows from Lemma 8.

It would be interesting to see whether Conjecture 57 would already imply Hadwiger’s
Conjecture for graphs. While we do not have a proof of this implication yet, it does seem
quite likely that a relation exists. For this, note that the chromatic number of a graph can
be expressed as the dichromatic number of its bidirection, and that the matching minors
of the corresponding bipartite graph to some extent resemble the ordinary minors of the
original graph. Here, the complete graph Kk yields the bidirected k-clique, which in the
matching context corresponds to Kk,k.

An additional line of future research could be to investigate colouring properties of
classes of digraphs which are closed under different notions of digraph minors. One such
candidate are the topological minors, which are defined similarly to the undirected case: A
digraph D1 is called a directed topological minor of another digraph D2 if D2 contains a
subdivision of D1 (that is, replacing directed edges by directed paths of positive length)
as a subdigraph. It is easily seen that topological minors are always butterfly-minors, but
that the converse fails in general. In any class of 2-colourable digraphs which is closed
under topological minors, the odd bicycles must form a set of forbidden minors. So far,
we have been unable to decide the following question. If true, this statement would be a
proper generalisation of Theorem 10.

Question 62. Let D be a digraph with ~χ(D) > 3. Must D contain a subdivision of an
odd bicycle?

Figure 10: A planar bipartite graph such that for any 2-colouring of its edges, there is a
perfect matching with a monochromatic alternating cycle.

Considering the notion of M -colourings, it is natural to ask whether it is necessary to
have different colourings of the matching edges for every perfect matching, or whether one
might strengthen Corollary 11 by finding a single 2-colouring of all edges in a bipartite
Pfaffian graph, such that for any perfect matching M the induced 2-colouring on the
matching edges yields a proper M -colouring. For an example consider the 2-colouring of
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the staircase in Figure 9. Although it seems to be possible to find such a “super”-colouring
for many bipartite Pfaffian graphs such as the Heawood graph or square grids, there are
small examples of (even planar) Pfaffian bipartite graphs without such a colouring (cf.
Figure 10).

Furthermore, all stated results and Conjectures are worthy to consider in the more
general setting of solid graphs. However, here, even more fundamental questions concerning
the structure of these graphs are left widely open, see Section 6.

The questions raised in Section 3 concerning the relationship of girth and disjoint
packings of feedback vertex sets might also apply to non-planar digraphs excluding certain
butterfly-minors; in fact, Theorem 32 easily extends to the class of so-called mengerian
digraphs generalising the strongly planar digraphs ([Gue01]), with very similar properties.
To conclude, we want to mention the similarity of the treated problems with the following
open subcase of a Conjecture of Woodall.

Conjecture 63 ([Egr17]). In every planar digraph D of girth g > 3, there exists a packing
of g disjoint feedback arc sets.
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Peter Rossmanith, and Somnath Sikdar. Are there any good digraph width
measures? In International Symposium on Parameterized and Exact Compu-
tation, pages 135–146. Springer, 2010.

[GT11] Bertrand Guenin and Robin Thomas. Packing directed circuits exactly.
Combinatorica, 31(4):397–421, 2011.

[Gue01] Bertrand Guenin. Circuit mengerian directed graphs. In Integer Programming
and Combinatorial Optimization, pages 185–195. Springer, 2001.
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