THE INDEPENDENCE NUMBER OF DENSE GRAPHS WITH LARGE ODD GIRTH

James B. Shearer
Department of Mathematics
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
JBS at WATSON.IBM.COM

Submitted: January 31, 1995; Accepted: February 14, 1995

Abstract

Let G be a graph with n vertices and odd girth $2 k+3$. Let the degree of a vertex v of G be $d_{1}(v)$. Let $\alpha(G)$ be the independence number of G. Then we show $\alpha(G) \geq 2^{-\left(\frac{k-1}{k}\right)}\left[\sum_{v \in G} d_{1}(v)^{\frac{1}{k-1}}\right]^{(k-1) / k}$. This improves and simplifies results proven by Denley [1].

AMS Subject Classification. 05C35

Let G be a graph with n vertices and odd girth $2 k+3$. Let $d_{i}(v)$ be the number of points of degree i from a vertex v. Let $\alpha(G)$ be the independence number of G. We will prove lower bounds for $\alpha(G)$ which improve and simplify the results proven by Denley [1].

We will consider first the case $k=1$. We need the following lemma.
Lemma 1: Let G be a triangle-free graph. Then

$$
\alpha(G) \geq \sum_{v \in G} d_{1}(v) /\left[1+d_{1}(v)+d_{2}(v)\right]
$$

Proof. Randomly label the vertices of G with a permutation of the integers from 1 to n. Let A be the set of vertices v such that the minimum label on vertices at distance 0,1 or 2 from v is on a vertex at distance 1. Clearly the probability that A contains a vertex v is $d_{1}(v) /\left[1+d_{1}(v)+d_{2}(v)\right]$. Hence the expected size of A is $\sum_{v \in G} d_{1}(v) /\left[1+d_{1}(v)+d_{2}(v)\right]$.
Furthermore, A must be an independent set since if A contains an edge it is easy to see that it must lie in a triangle of G a contradiction. The result follows at once.

We can now prove the following theorem.
Theorem 1. Suppose G contains no 3 or 5 cycles. Let \bar{d} be the average degree of vertices of G. Then

$$
\alpha(G) \geq \sqrt{n \bar{d} / 2}
$$

Proof. Since G contains no 3 or 5 cycles, we have $\alpha(G) \geq d_{1}(v)$ (consider the neighbors of v) and $\alpha(G) \geq 1+d_{2}(v)$ (consider v and the points at distance 2 from v) for any vertex v of G. Hence $\alpha(G) \geq \sum_{v \in G} d_{1}(v) /\left[1+d_{1}(v)+d_{2}(v)\right] \geq \sum_{v \in G} d_{1}(v) / 2 \alpha(G)$ (by lemma 1 and the preceding remark). Therefore $\alpha(G)^{2} \geq n \bar{d} / 2$ or $\alpha(G) \geq \sqrt{n \bar{d} 2}$ as claimed.

This improves Denley's Theorems 1 and 2. It is sharp for the regular complete bipartite graphs $K_{a a}$.

The above results are readily extended to graphs of larger odd girth.
Lemma 2: Let G have odd girth $2 k+1$ or greater $(k \geq 2)$. Then

$$
\alpha(G) \geq \sum_{v \in G} \frac{\frac{1}{2}\left(1+d_{1}(v)+\cdots+d_{k-1}(v)\right)}{1+d_{1}(v)+\cdots+d_{k}(v)} .
$$

Proof. Randomly label the vertices of G with a permutation of the integers from 1 to n. Let A (respectively B) be the set of vertices v of G such that the minimum label on vertices at distance k or less from v is at even (respectively odd) distance $k-1$ or less. It is easy to see that A and B are independent sets and that the expected size of $A \cup B$ is $\sum_{v \in G} \frac{\left(1+d_{1}(v)+\cdots+d_{k-1}(v)\right)}{1+d_{1}(v)+\cdots+d_{k}(v)}$. The lemma follows at once.
Theorem 2: Let G have odd girth $2 k+3$ or greater $(k \geq 2)$. Then

$$
\alpha(G) \geq 2^{-\left(\frac{k-1}{k}\right)}\left[\sum_{v \in G} d_{1}(v)^{\frac{1}{k-1}}\right]^{\frac{k-1}{k}}
$$

Proof. By Lemmas 1, 2

$$
\begin{aligned}
\alpha(G) \geq \sum_{v \in G}\left[\left[\frac{d_{1}(v)}{1+d_{1}(v)+d_{2}(v)}\right]\right. & +\frac{1}{2}\left[\frac{1+d_{1}(v)+d_{2}(v)}{1+d_{1}(v)+d_{2}(v)+d_{3}(v)}\right] \\
+\cdots+ & \left.\frac{1}{2}\left[\frac{1+d_{1}(v)+\cdots+d_{k-1}(v)}{1+d_{1}(v)+\cdots+d_{k}(v)}\right]\right] /(k-1) .
\end{aligned}
$$

Since the arithmetic mean is greater than the geometric mean, we can conclude that $\alpha(G) \geq \sum_{v \in G}\left[\frac{d_{1}(v) 2^{-(k-2)}}{1+d_{1}(v)+\cdots+d_{k}(v)}\right]^{1 / k-1}$. Since the points at even (odd) distance less than or equal k from any vertex v in G form independent sets we have $2 \alpha(G) \geq 1+$
$d_{1}(v)+\cdots+d_{k}(v)$. Hence $\alpha(G) \geq \sum_{v \in G}\left[\frac{d_{1}(v)}{2^{k-1} \alpha(G)}\right]^{\frac{1}{k-1}}$ or $\alpha(G)^{\frac{k}{k-1}} \geq \frac{1}{2}\left[\sum_{v \in G} d_{1}(v)^{\frac{1}{k-1}}\right]$
or $\alpha(G) \geq 2^{-\left(\frac{k-1}{k}\right)}\left[\sum_{v \in G} d_{1}(v)^{\frac{1}{k-1}}\right]^{\frac{k-1}{k}}$ as claimed.
Corollary 1: Let G be regular degree d and odd girth $2 k+3$ or greater $(k \geq 2)$. Then

$$
\alpha(G) \geq 2^{-\left(\frac{k-1}{k}\right)} n^{\frac{k-1}{k}} d^{\frac{1}{k}} .
$$

Proof. Immediate from Theorem 3.
This improves Denley's Theorem 4.

References

1. Denley, T., The Independence number of graphs with large odd girth, The Electronic Journal of Combinatorics 1 (1994) \#R9.
