Counting distinct zeros of the Riemann zeta-function
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ABSTRACT. Bounds on the number of simple zeros of the derivatives of a function are
used to give bounds on the number of distinct zeros of the function.

The Riemann &-function is defined by &(s) = H(s)((s), where H(s) = $s(s— 1)%‘551“(%5) and
((s) is the Riemann (-function. The zeros of {(s) and its derivatives are all located in the critical
strip 0 < o < 1, where s = o +it. Since H(s) is regular and nonzero for o > 0, the nontrivial zeros
of ((s) exactly correspond to those of &(s). Let pl9) = 8 + iy denote a zero of the j** derivative

€U (s), and denote its multiplicity by m(v). Define the following counting functions:

NO(T) = Z 1 zeros of €9 (o +it) with 0 <t < T
p9)=p+ivy
N(T) = NO(T) zeros of £(o +it) with 0 <t < T
NUNT) = Z 1 simple zeros of £€U) (o +it) with 0 <t < T
P =p+ivy
m(y)=1
Nijl) (T) = Z 1 simple zeros of E(j)(% +it) with 0 <t < T
N P =% +iy
m(y)=1
M.(T)= > 1 zeros of &(o + it) of multiplicity r with 0 <t < T
p(0) =G+i~y
m(y)=r
M<,(T) = Z 1 zeros of £(o + it) of multiplicity < r with 0 <t < T
p<0)<:33<+iw
m(y)<r

where all sums are over 0 < v < T', and zeros are counted according to their multiplicity. It is well
known that NU)(T) ~ &=TlogT. Let

R e (C)) NP
U= LS NO(T) fi =t S5y

Thus, §; is the proportion of zeros of £()(s) which are simple, and «; is the proportion which are
simple and on the critical line. The best currently available bounds are ag > 0.40219, oy > 0.79874,
as > 0.93469, az > 0.9673, ag > 0.98006, and a5 > 0.9863. These bounds were obtained by
combining Theorem 2 of [C2] with the methods of [C1]. Trivially, 5; > «;.
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Let Ny4(T') be the number of distinct zeros of £(s) in the region 0 < ¢ < T'. That is,

Ny = 32 ) 0

n=1
It is conjectured that all of the zeros of £(s) are distinct: Ng(7') = N(T'), or equivalently, all of

the zeros are simple: N{” (T') = N(T'). From the bound on o we have NO (T) > Kk N(T), with
x = 0.40219. We will use the bounds on ; to obtain the following

Theorem. For T sufficiently large,
Ny(T) > kN(T),

with k = 0.63952 . ... Furthermore, given the bounds on (3;, this result is best possible.

We present two methods for determining lower bounds for Ny(T'). These methods employ
combinatorial arguments involving the 3;. We note that the added information that a; detects zeros
on the critical line is of no use in improving our result. Everything below is phrased in terms of the
Riemann é-function, but the manipulations work equally well for any function such that it and all
of its derivatives have the same number of zeros. We write f(7') 2 g(T') for f(T') > g(T)+o(N(T"))

as T — oo. For example, N(T) > 8;N(T) means N (T) > (8; + o(1)) N(T) as T — oc.

The first method starts with the following inequality of Conrey, Ghosh, and Gonek [CGG]. A
simple counting argument yields

R
Nu(r) = 3 el | Merad) ®

To obtain lower bounds for M<,(T") we note that if p is a zero of £(s) of order m > n + 2 then p is
a zero of order m —n > 2m/(n + 2) > 2 for £(™(s). Thus,

NI(T) < N(T) = —(N(T) ~ Meqia(T)),
which gives
Mey(1) 2 (B ), 3

The bounds for «; now give: M<(T)
0.86938N(T"), M<4(T) Z 0.91825N(T"), M<

Inserting these bounds into inequality (2) with R =5 gives Ny(T') = 0.62583N(T"). We note that
the lower bounds for M<,, (T") are best possible in the sense that, for each n separately, equality
could hold in (3). However, inequality (3) is not simultaneously sharp for all n, and this possibility
imparts some weakness to the result. A lower bound for N,(T') was calculated in [CGG] in a spirit
similar to the above computation, but it was mistakenly assumed that M<,(T) 2 5,1 N(T),
rendering their bound invalid.

~

> 0.40219N(T), M<y(T) > 0.69812N(T), M<s(T) >
M<s(T) 2 0.94019N(T), and M<g(T) > 0.9520N(T).

Our second method eliminates the loss inherent in the first method. We start with this
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Lemma. In the notation above,

n+1 (%)
NOT) < S M(T) +n Yy
j=n+2

Jj=1

M;(T)
—

Proof. Suppose p is a zero of order j for £(s). If 7 > n + 2 then p is a zero of order j — n for

€M (s), so €M (s) has at least i (jn)j—]WJ(T)

j=n-+42

zeros of order > 2. Thus,

NOYT) < Ny - 3 G

j=nt2 J
S (- n)M;(T)
~San - 30 U=
7=0 Jj=n+2 J
n+1 (%)
M, (T
=S ey B0
7j=1 j=n+2 J
as claimed.
Combining the Lemma with (1) we get
n+1 1 1
(n) —_ - ,
N <R 03 (7 -7) (4)

Let I,, denote the inequality (4). Then, in the obvious notation, a straightforward calculation finds

that the inequality
J—1

Iy + Y 2/,
n=1

is equivalent to

J+1 (T) J—1
(27 = 1)No(T) + > ”T > 277 My (T) + NYI(T) + ) 27 INI(T). (5)

This implies

J—1
Ny(T) >277 <2J—1N§0) (T) + N(T)+ > 27N (T))

n=1

J—1
z277 (2“60 +B+ 2J—”‘1ﬁn) N(T). (6)
n=1

Choose J = 5 and use the trivial inequality 8; > «; and the bounds for a; to obtain the Theorem.
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Finally, we show that our result is best possible. In other words, if our lower bounds for the
B; were actually equalities, then the lower bound given by (6) is sharp. We will accomplish this by
showing that the M, (T'), the number of zeros of £(s) with multiplicity exactly n, can be assigned
values which achieve the bounds on 3;, and which yield a value of N4(7") which is arbitrarily close
to the lower bound given by (6).

Suppose we have lower bounds for 3;, for 0 < j < J, and let K > J + 2. Suppose we had the
following four equalities:

K—J
J+1 1- 8,
My (T) = — (ﬂJ —Br—1— % J> N(T),
and for 2 <n < J,
n (33 1- 6, -
M, (T) = — nl g, oIl _ — N "on—i=23. | N(T

and M;(T) = 0 otherwise. Then ZMj (T') = N(T) and for 0 <n < .J we have

n+1 00 )
=1 j=n+2

and

oo J—1 _
Z Mnn(T) —9—J (2(]_150 + ﬂJ + ZQJ_H_lﬂn) N(T) + (1 KﬂJ)j JN(T) (8)

n=1

Since the left side of (8) is Ng(7T') and the second term on the right side can be made arbitrarily
small by choosing K large, we conclude that (6) is sharp. There are two things left to check. The
given values of M, (T) must be positive when K is large. It is easy to check this for J =5 and our
lower bounds for 3;. And since we supposed that our bounds for [3; are sharp, we must show that

Ngj)(T) = B;N(T). To see this, note that, generically, the left side of (7) equals Nﬁj)(T). In other
words, the zeros of the derivatives of a generic function are all simple, except for those which are
“tied up” in high-order zeros of the original function.

By computing further values of «;, enabling us to take a larger value of J in (6), we could
improve the result slightly: this is due to a decrease in the loss in passing from (5) to (6). The
bound M<¢(T) 2 0.952N(T) implies that this improvement could increase the lower bound we
obtained by at most 0.00021N (7).
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