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Abstract. Bounds on the number of simple zeros of the derivatives of a function are
used to give bounds on the number of distinct zeros of the function.

The Riemann ξ-function is defined by ξ(s) = H(s)ζ(s), where H(s) = 1
2
s(s−1)π−

1
2 sΓ( 1

2
s) and

ζ(s) is the Riemann ζ-function. The zeros of ξ(s) and its derivatives are all located in the critical
strip 0 < σ < 1, where s = σ+ it. Since H(s) is regular and nonzero for σ > 0, the nontrivial zeros
of ζ(s) exactly correspond to those of ξ(s). Let ρ(j) = β + iγ denote a zero of the jth derivative
ξ(j)(s), and denote its multiplicity by m(γ). Define the following counting functions:

N (j)(T ) =
∑

ρ(j)=β+iγ

1 zeros of ξ(j)(σ+ it) with 0 < t < T

N(T ) = N (0)(T ) zeros of ξ(σ + it) with 0 < t < T

N (j)
s (T ) =

∑
ρ(j)=β+iγ
m(γ)=1

1 simple zeros of ξ(j)(σ + it) with 0 < t < T

N
(j)

s, 12
(T ) =

∑
ρ(j)= 1

2 +iγ
m(γ)=1

1 simple zeros of ξ(j)(1
2 + it) with 0 < t < T

Mr(T ) =
∑

ρ(0)=β+iγ
m(γ)=r

1 zeros of ξ(σ + it) of multiplicity r with 0 < t < T

M≤r(T ) =
∑

ρ(0)=β+iγ
m(γ)≤r

1 zeros of ξ(σ + it) of multiplicity ≤ r with 0 < t < T

where all sums are over 0 < γ < T , and zeros are counted according to their multiplicity. It is well
known that N (j)(T ) ∼ 1

2πT logT . Let

αj = lim inf
T→∞

N
(j)

s, 12
(T )

N (j)(T )
. βj = lim inf

T→∞

N
(j)
s (T )

N (j)(T )
.

Thus, βj is the proportion of zeros of ξ(j)(s) which are simple, and αj is the proportion which are
simple and on the critical line. The best currently available bounds are α0 > 0.40219, α1 > 0.79874,
α2 > 0.93469, α3 > 0.9673, α4 > 0.98006, and α5 > 0.9863. These bounds were obtained by
combining Theorem 2 of [C2] with the methods of [C1]. Trivially, βj ≥ αj .
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Let Nd(T ) be the number of distinct zeros of ξ(s) in the region 0 < t < T . That is,

Nd(T ) =
∞∑
n=1

Mn(T )
n

. (1)

It is conjectured that all of the zeros of ξ(s) are distinct: Nd(T) = N(T ), or equivalently, all of
the zeros are simple: N (0)

s (T ) = N(T ). From the bound on α0 we have N (0)
s (T ) > κN(T ), with

κ = 0.40219. We will use the bounds on βj to obtain the following

Theorem. For T sufficiently large,

Nd(T) > kN(T),

with k = 0.63952 . . . . Furthermore, given the bounds on βj , this result is best possible.

We present two methods for determining lower bounds for Nd(T ). These methods employ
combinatorial arguments involving the βj . We note that the added information that αj detects zeros
on the critical line is of no use in improving our result. Everything below is phrased in terms of the
Riemann ξ-function, but the manipulations work equally well for any function such that it and all
of its derivatives have the same number of zeros. We write f(T ) � g(T ) for f(T ) ≥ g(T )+o(N(T ))
as T →∞. For example, N(j)

s (T) � βjN(T ) means N(j)
s (T ) ≥ (βj + o(1))N(T ) as T →∞.

The first method starts with the following inequality of Conrey, Ghosh, and Gonek [CGG]. A
simple counting argument yields

Nd(T ) ≥
R∑
r=1

M≤r(T )
r(r + 1)

+
M≤R+1(T )
R+ 1

. (2)

To obtain lower bounds for M≤r(T) we note that if ρ is a zero of ξ(s) of order m ≥ n+ 2 then ρ is
a zero of order m− n ≥ 2m/(n+ 2) ≥ 2 for ξ(n)(s). Thus,

N(n)
s (T ) ≤ N(T )− 2

n+ 2
(
N(T )−M≤n+1(T )

)
,

which gives

M≤n(T) �
(
βn−1(n+ 1)− n+ 1

2

)
N(T ). (3)

The bounds for αj now give: M≤1(T) � 0.40219N(T ), M≤2(T ) � 0.69812N(T), M≤3(T ) �
0.86938N(T ), M≤4(T) � 0.91825N(T ), M≤5(T ) � 0.94019N(T ), and M≤6(T ) � 0.9520N(T ).
Inserting these bounds into inequality (2) with R = 5 gives Nd(T ) � 0.62583N(T ). We note that
the lower bounds for M≤n(T ) are best possible in the sense that, for each n separately, equality
could hold in (3). However, inequality (3) is not simultaneously sharp for all n, and this possibility
imparts some weakness to the result. A lower bound for Nd(T ) was calculated in [CGG] in a spirit
similar to the above computation, but it was mistakenly assumed that M≤n(T ) � βn−1N(T ),
rendering their bound invalid.

Our second method eliminates the loss inherent in the first method. We start with this
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Lemma. In the notation above,

N (n)
s (T ) ≤

n+1∑
j=1

Mj(T ) + n
∞∑

j=n+2

Mj(T )
j

.

Proof. Suppose ρ is a zero of order j for ξ(s). If j ≥ n+ 2 then ρ is a zero of order j − n for

ξ(n)(s), so ξ(n)(s) has at least
∞∑

j=n+2

(j − n)Mj(T )
j

zeros of order ≥ 2. Thus,

N(n)
s (T ) ≤ N (n)(T)−

∞∑
j=n+2

(j − n)Mj(T )
j

=
∞∑
j=0

Mj(T )−
∞∑

j=n+2

(j − n)Mj(T )
j

=
n+1∑
j=1

Mj(T ) + n
∞∑

j=n+2

Mj(T )
j

,

as claimed.

Combining the Lemma with (1) we get

N (n)
s (T) ≤ nNd(T ) + n

n+1∑
j=1

(
1
n
− 1
j

)
Mj(T). (4)

Let In denote the inequality (4). Then, in the obvious notation, a straightforward calculation finds
that the inequality

IJ +
J−1∑
n=1

2J−n−1In

is equivalent to

(
2J − 1

)
Nd(T ) +

J+1∑
n=1

Mn(T)
n

≥ 2J−1M1(T ) +N (J)
s (T ) +

J−1∑
n=1

2J−n−1N (n)
s (T ). (5)

This implies

Nd(T ) ≥ 2−J
(

2J−1N (0)
s (T ) +N (J)

s (T ) +
J−1∑
n=1

2J−n−1N (n)
s (T )

)

� 2−J
(

2J−1β0 + βJ +
J−1∑
n=1

2J−n−1βn

)
N(T ). (6)

Choose J = 5 and use the trivial inequality βj ≥ αj and the bounds for αj to obtain the Theorem.



��� ��������	� 
������ �
 ����	�����	�� � ������� ��� �

Finally, we show that our result is best possible. In other words, if our lower bounds for the
βj were actually equalities, then the lower bound given by (6) is sharp. We will accomplish this by
showing that the Mn(T), the number of zeros of ξ(s) with multiplicity exactly n, can be assigned
values which achieve the bounds on βj , and which yield a value of Nd(T ) which is arbitrarily close
to the lower bound given by (6).

Suppose we have lower bounds for βj , for 0 ≤ j ≤ J, and let K ≥ J + 2. Suppose we had the
following four equalities:

M1(T ) = β0N(T ),

MK(T ) = K
K−J (1− βJ)N(T ),

MJ+1(T ) =
J + 1

2

(
βJ − βJ−1 −

1− βJ
K − J

)
N(T ),

and for 2 ≤ n ≤ J ,

Mn(T ) =
n

2

3βn−1

2
− βn−2 − 2n−J−1βJ −

1− βJ
2J−n+1(K − J)

−
J−1∑
j=n

2n−j−2βj

N(T )

and Mj(T ) = 0 otherwise. Then
∞∑
j=1

Mj(T ) = N(T) and for 0 ≤ n ≤ J we have

n+1∑
j=1

Mj(T ) + n
∞∑

j=n+2

Mj(T )
j

= βnN(T ), (7)

and
∞∑
n=1

Mn(T)
n

= 2−J
(

2J−1β0 + βJ +
J−1∑
n=1

2J−n−1βn

)
N(T ) +

(1− βJ )2−J

K − J N(T ). (8)

Since the left side of (8) is Nd(T ) and the second term on the right side can be made arbitrarily
small by choosing K large, we conclude that (6) is sharp. There are two things left to check. The
given values of Mn(T ) must be positive when K is large. It is easy to check this for J = 5 and our
lower bounds for βj . And since we supposed that our bounds for βj are sharp, we must show that
N

(j)
s (T ) = βjN(T ). To see this, note that, generically, the left side of (7) equals N (j)

s (T ). In other
words, the zeros of the derivatives of a generic function are all simple, except for those which are
“tied up” in high-order zeros of the original function.

By computing further values of αj , enabling us to take a larger value of J in (6), we could
improve the result slightly: this is due to a decrease in the loss in passing from (5) to (6). The
bound M≤6(T ) � 0.952N(T ) implies that this improvement could increase the lower bound we
obtained by at most 0.00021N(T ).
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