
Comment by the authors, Ma;y 28, 1995 

We thank J. B. Shearer for pointing out that Theorem 3 of our 
paper is not new (see (1J, (2J, (31), and that the argument given 
in our paper actually proves the result with c=1/64, which is 
weaker than the best known (3J value c = 1/7. 
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There is a mistake in Lemma 2 of the paper, which requires 
halving the constants in Theorems 1,2,and 4. The constant 
in Theorems 1 and 4 should be changed from c < 1/32 to 
c < 1/64, and the constant in Theorem 2 should be changed 
from c < 1/64 to c < 1/128. 

As stated in the paper, Lemma 2 reads as follows: 
Let e,J be f!dges of K,. and X s;; E(K,.) be s1.1ch that M 

edge in X shil'fes an e•l4point with either e O'f f. Then we am 

find, fO'r each Hamilton CJICle C containing both e a•l4 f and 
no f!dges of X, a set S(C) of(n- 6)(n- 9)/2 Hamilton CJICles 
containing neither e, f O'f any edge in X, in s1.1ch a way thilt if 
C :f. C' the11 S(C) n S(C') = 0. 

We show with a counterexample that S(C) can be oo greater 
than n2 f4(n - 3)(n - 4), and then give an algorithm which 
a99ociates (n- 6)(n -7)/4 distinct cycles without e, J, or any 
edges of X with each distinct cycle containing e, J, and no 
edges of X. 

Cotmterexample: 
We pick a set X such that the ratio of the number of Hamil· 

ton cycles not containing e, J, or any edges of X to the number 
of Hamilton cycles containing e and f and no edges of X is lese 
than n2 : 4(n- 3)(n- 4). 



Let e0 , e.,and f 0 ,J1 be the endpoints of e and f, respectively. 
LetS be a cycle on the n-4 nodes of K,.\{ eo, e., f 0,J1}. Let X 
contain all edges in K,. except those in Sand those which share 
endpoints withe or f. Then the number of Hamilton cycles 
containing both e and f and no edges in X is 4(n- 4)(n- 3). 
Proof: In any such cycle, nodes other than endpoints of e and f 
may be adjacent only to their neighbors inS or to the endpoints 
of e and f. So all such cycles may be constructed by inserting 
e and f into S as follows. 

First pick an edge (a,b) in S, and substitute one of tbe 
node sequences < a, e0 ,e., b >,<a, e., eo,b > for the sequence 
< a, b >. Call the resulting cycle !! . Then pick an edge ( c:, d) in 
S'\{e}, and insert f by substituting one of the node sequences 
< c:, f., f., d >, < c:, f., fo, d > for < c,d >. There are (n - 4) 
places to insert e in S, 2 ways to orient e in that position, 
( n - 3) places to insert f in !! \ { e}, and 2 ways to orient f, 
which makes 4(n- 3)(n- 4) cycles in all. 

The number of cycles not containing e, f, or edges in f is less 
than n4 • Proof: The number of such cycles is just the number 
of ways to insert the four nodes eo,e 11 f 0, f 1 into S without 
makiogeoande, or foandf, adjacent. Let D= {eo,e.,fo,ft}· 
There are (n- 4)(n - 5)(n- 6)(n - 7) Hamilton cycles with 
none of the nodes in D adjacent to each other; if we add in 
the cycles with one or more pair of nodes in D adjacent, tbe 
number added is O(n3 ); the total number will still turn out to 
be lees than n4 • Thus there are fewer than n4/4(n- 3)(n- 4) 
Hamilton cycles not containing e, f, or edges in X for each 



Hamilton cycle containing e, J, and no edges of X. 

Construction: Let C be a Hamilton cycle containing e 
and f, and no edges in X. We a99ociate with C a set T( C) 
of Hamilton cycles which don't contain e, J, or any edges of 
X, constructed as follows. The new cycles are created by tak­

ing one endpoint each of e and f, and moving them to new 
positions, leaving the order of all other nodes fixed. 

1. Orient C so that the lower numbered of the two nodes 
adjacent to e0 and e1 follows e. Suppose without lo99 of 
generality that e 1 then follows eo. 

2. Pick any two edges of C other than the 6 edges incident 
with e0, e1, f 0 , and f 1• There are (<'';6~ ways to do this. Of 
the two chosen edges, let (a, b) be the first edge following 
eo in the given orientation of C; let (c, d) be the other 
edge. (If e 1 preceded e0 in C, we \rould let (a, b) be the 
first edge preceding e.) 

3. Remove e 1 from its original position and insert it between 
a and b. 

4. Choose one of fo and f 1 to move between c and d, choosing 
so as to preserve the order in which eo, Jo, and f 1 appear 
in the cycle. 

Call the new cycle C'. Notice that it is possible to recon­
struct the original positions of both e0 and e 1 by looking at 
C': eo hasn't moved, and the original position of e 1 is given 



by sliding it back around the cycle roward e0 , in whichever di­

rection pa99es neither fo nor f 1• It is not possible, however, 
to reconstruct the original positions of fo and J1; their relative 
positions are correct, but it is impo99ible to tell whether fo or 
f 1 has been moved. Thus each of the (n- 6)(n- 7)/2 cycles 
in T(C) is associated with two cycles: our original cycle C, 
aod a cycle identical to C e:x-cept that the edge f is positioned 
between nodes c and d (in the same orientation as in C). Thus 
for each distinct cycle C containiog e, f, and no edges of X, 
there are (n- 6)(n- 7)/4 distinct cycles not containing e, J, 
or any edges of X. 
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