Comment. by the authors, May 33, 1995

‘We thank J. B. Shearer for pointing out that Theorem 3 of our
paper is not new (gee [1], [2], [3]), and that the argument given
in our paper actually proves the result with e=1/64, which is
weaker than the best known [3] value e = 1/7.
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Comment by Hachel Ene
Dept. of Mathematics, Carnegie Mellon Univeraity

(rnefcs.cmn.edn)
September 19, 1905,

There is a mistake in Lemma 2 of the paper, which requires
halving the copetants in Theorems 1,2.and 4. The constant
in Theorems 1 and 4 should be changed from ¢ < 1/32 to
¢ < 1/64, and the constant in Theorem 2 should be changed
from e < 1/64 to e < 1f128,

An gtated in the paper, Lemma 2 reads as follows:

Let e, f be adges of Ky ond X C E(K,) be such thet ne
edge in X shares an endpoint with either € or . Then we con
find, for ecach Hamillton eyele & confaining both £ and { and
e edges of X, o set B[O of fn— 8)(n — D) /2 Homillon eyeles
confaining neither e, f or any edge in X, in such o way that if
C £ O then S(C 1N S{C") = .

We ghow with a counterexample that 5{¢) can be oo greater
than n®/d{n — 8)(n — 4), and then give an algorithm which
amociates {n — 6)(n — 7) /4 distinet cyeles without e, f, or any
edgen of X with each distinct cyecle containing e, f, and no
edges of X.

Counterexample:

‘We pick a get X such that the ratio of the number of Hamil-
ton cycles not containing e, f, or any edges of A to the number
of Hamilton c¢ycles containing € and { and no edges of X is less
than #° : 4{n — 3(n — 4.



Let &g, &1,8nd fg, fi be the endpoints of £ and ', respectively.
Let S be a cycle on the n—4 nodes of K \eg, €1, fo, fi}. Let X
contain all edges in K, except those in 5 and those which share
endpoints with ¢ or f. Then the mumber of Hamilton cycles
containing hoth & and f and no edges in X is 4(n — 4)(n — 3).
Proof: In any such cycle, nodes other than endpoints of € and f
may be adjacent only to their neighbors in 5 or to the endpoints
of e and . So all such eyeles may be constructed by inserting
e and { into 5 as follows.

First pick an edge {a,8) in 8, and substitute one of the
node sequences < &, &y, &1, 5 >, < a,&, &, b > for the sequence
< &, & . Call the requlting ¢ycle 5. Then pick an edge (e, d) in
8"{e}, and insert { by substituting one of the node sequences
< & fo f1,d >, < & fi, fo,d > for < ¢,d ». There are (n — 4)
places to insert ¢ in 5, 2 ways to orient ¢ in that position,
(n — &) places to insert f in S'\{e}, and 2 ways to orient f,
which makes 4(n — 3)(n — 4) eycles in all.

The nmmber of cyclea not containing &, f, or edges in { is less
than nt. Proof: The numher of such cycles is just the numhber
of ways to insert the four nodes g;,¢&,, fi, fi into 5 without
making e; and &, or fy and i adjacent. Let D = {eg, &1, fo, f1}-
There are (n — 4){rn — 5)(n — 8){n — 7) Hamilton cycles with
none of the nodes in I} adjacent to each other; if we add in
the eycles with one or more pair of nodes in [} adjacent, the
number added is O{n3); the total number will still turn out to
be less than »®. Thus there are fewer than »*f4{n — 8)(n — 4)
Hamilton cyecles not containing &, {, or edges in X for each



Hamilton cycle containing £, f, and no edges of X.

Construction: Let & he a Hamilton cyele containing &
and f, and no edges in X. We amsociate with & a set T{C)
of Hamilton eycles which don’t contain e, {, or any edges of
A , constructed as follows. The new cycles are created by tak-
ing one endpoint each of € and f, and moving them to new
poeitions, leaving the order of all other nodes fived.

1. Orient ¢ so that the lower mmmhbered of the two nodes
adjacent to g¢ and €; follows &. Suppose without loss of
penerality that ; then follows &g.

3. Pick any two edges of ¢ other than the 6 edges incident
with eg, &1, fy, and f;. Thereare (*;®) ways to do this. Of
the two chosen edges, let {(a,8) be the first edge following
g in the given orientation of €} let (e, d) be the other
edge. [If &) preceded &g in C, we would let (&, &) be the
first edge preceding e.)

3. Remove e; from its original poeition and insert it between
a and &.

4. Choose one of {4 and i to move hetween ¢ and d, choosing
80 a8 to preserve the order in which &, fy, and f; appear
in the cycle.

Call the new cycle ©'. Notice that it is possible to recon-
struct the original poeitions of hoth &4 and &; by looking at
"1 & hasn’t moved, and the original position of &; is given



by eliding it back around the cycle toward ey, in whichever di-
rection passes neither f nor ;. It is not poesible, however,
to reconstruct the original poeitions of fi and fi; their relative
positions are correct, but it is impossible to tell whether §; or
f1 has been moved. Thus each of the (n — 8){n — 7) /2 eycles
in T{7) ig associated with two cycles: our original eycle O,
and a cycle identical to ' except that the edge { is positioned
between nodes ¢ and 4 (in the same orientation as in 7). Thus
for each distinct eyecle O containing £, {, and no edpes of X,
there are {n — 6){n — 7) /4 distinet eycles not containing e, f,
of any edges of X,



	v2i1r10.01.pdf
	v2i1r10.02a.pdf
	v2i1r10.02b.pdf
	v2i1r10.02c.pdf
	v2i1r10.02d.pdf

