Comment by the authors, May 28, 1995

We thank J. B. Shearer for pointing out that Theorem 3 of our paper is not new (see [1], [2], [3]), and that the argument given in our paper actually proves the result with $c=1 / 64$, which is weaker than the best known [$\mathbf{9}$] value $c=1 / 7$.

References

[1] B. Bollobás and P. Erdठs, Altemoting Homiltomion Cycles, Israel Journal of Mathematics, 29 (1976), pp. 126131, $(c=1 / 69)$.
[2] C. C. Chen and D. E. Daykin, Grophs with Homiltonion Cycles Hoving Adjocent Lines Different Colors, Journal of Combinatorial Theory B, 21 (1976), pp. 195-199, ($c=1 / 17$).
[9] J. B. Shearer, A Property of the Complete Colored Groph, Discrete Mathematics, 25 (1979), pp. 175-178, ($\mathrm{c}=1 / 7$).

Comment by Rachel Rue

Dept. of Mathematics, Carnegie Mellon University
(rmedcs.cnu.edr)
September 19, 1995.
There is a mistake in Lemma 2 of the paper, which requires halving the constants in Theorems 1,2 ,and 4 . The constant in Theorems 1 and 4 should be changed from $c<1 / 32$ to $c<1 / 64$, and the constant in Theorem 2 should be changed from $c<1 / 64$ to $c<1 / 128$.

As stated in the paper, Lemma 2 reads as follows:
Let ϵ, f be edges of K_{n} and $X \subseteq E\left(K_{n}\right)$ be such thot no edge in X shares an endpoint with eithere or f. Then we con find, for each Homilton cycle C containing bothe and f and no edges of X, a set $S(C)$ of $(n-6)(n-9) / 2$ Homitton cycles containing neither ϵ, f or any edge in X, in such a way thet if $C \neq C^{\prime}$ then $S(C) \cap S\left(C^{\prime}\right)=B$.

We show with a counterexample that $S(C)$ can be no greater than $n^{2} / 4(n-9)(n-4)$, and then give an algorithm which associates $(n-6)(n-7) / 4$ distinct cycles without ϵ, f, or any edges of X with each distinct cycle containing ϵ, f, and no edges of X.

Counterexample:

We pick a set X such that the ratio of the number of Hamilton cycles not containing ϵ, f, or any edges of X to the number of Hamilton cycles containing e and f and no edges of X is less than $n^{2}: 4(n-9)(n-4)$.

Let $\epsilon_{0}, \epsilon_{1}$, and f_{0}, f_{1} be the endpoints of ϵ and f, respectively. Let S be a cycle on the $n-4$ nodes of $K_{n} \backslash\left\{\epsilon_{0}, \epsilon_{1}, f_{0}, f_{1}\right\}$. Let X contain all edges in K_{n} except those in S and those which share endpoints with e or f. Then the number of Hamilton cycles containing both ϵ and f and no edges in X is $4(n-4)(n-9)$. Proof: In any such cycle, nodes other than endpoints of ϵ and f may be adjacent only to their neighbors in S or to the endpoints of ϵ and f. So all such cycles may be constructed by inserting ϵ and f into S as follows.

First pick an edge (a, b) in S, and substitute one of the node sequences $\left\langle a, \epsilon_{0}, \epsilon_{1}, b\right\rangle,\left\langle a, \epsilon_{1}, \epsilon_{0}, b\right\rangle$ for the sequence $\langle a, b\rangle$. Call the resulting cycle S^{\prime}. Then pick an edge (c, d) in $S^{\prime} \backslash\{\varepsilon\}$, and insert f by substituting one of the node sequences $\left\langle c, f_{0}, f_{1}, d\right\rangle,\left\langle c, f_{1}, f_{0}, d\right\rangle$ for $\langle c, d\rangle$. There are $(n-4)$ places to insert ϵ in $S, 2$ ways to orient ϵ in that position, $(n-9)$ places to insert f in $S^{\prime} \backslash\{\epsilon\}$, and 2 ways to orient f, which makes $4(n-9)(n-4)$ cycles in all.

The number of cycles not containing ϵ, f, or edges in f is less than n^{4}. Proof: The number of such cycles is just the number of ways to insert the four nodes $\epsilon_{0}, \epsilon_{1}, f_{0}, f_{1}$ into S without making ϵ_{0} and ϵ_{1} or f_{0} and f_{1} adjacent. Let $D=\left\{\epsilon_{0}, \epsilon_{1}, f_{0}, f_{1}\right\}$. There are $(n-4)(n-5)(n-6)(n-7)$ Hamilton cycles with none of the nodes in D adjacent to each other; if we add in the cycles with one or more pair of nodes in D adjacent, the number added is $\mathrm{O}\left(n^{3}\right)$; the total number will still turn out to be less than n^{4}. Thus there are fewer than $n^{4} / 4(n-9)(n-4)$ Hamilton cycles not containing ϵ, f, or edges in X for each

Hamilton cycle containing ϵ, f, and no edges of X.
Construction: Let C be a Hamilton cycle containing ϵ and f, and no edges in X. We associate with C a set $T(C)$ of Hamilton cycles which don't contain ϵ, f, or any edges of X, constructed as follows. The new cycles are created by taking one endpoint each of ϵ and f, and moving them to new positions, leaving the order of all other nodes fixed.

1. Orient C so that the lower numbered of the two nodes adjacent to ϵ_{0} and ϵ_{1} follows ϵ. Suppose without loss of generality that ϵ_{1} then follows ϵ_{0}.
2. Pick any two edges of C other than the 6 edges incident with $\epsilon_{0}, \epsilon_{1}, f_{0}$, and f_{1}. There are $\binom{(n-6)}{2}$ ways to do this. Of the two chosen edges, let (a, b) be the first edge following ϵ_{0} in the given orientation of C; let (c, d) be the other edge. (If ϵ_{1} preceded ϵ_{0} in C, we would let (a, b) be the first edge preceding ϵ.)
3. Remove ϵ_{1} from its original position and insert it between a and b.
4. Choose one of f_{0} and f_{1} to move between c and d, choosing so as to preserve the order in which ϵ_{0}, f_{0}, and f_{1} appear in the cycle.

Call the new cycle C^{\prime}. Notice that it is possible to reconstruct the original positions of both ϵ_{0} and ϵ_{1} by looking at $C^{\prime}: \epsilon_{0}$ hasn't moved, and the original position of ϵ_{1} is given

by sliding it back around the cycle toward ϵ_{0}, in whichever di-

 rection passes neither f_{0} nor f_{1}. It is not possible, however, to reconstruct the original positions of f_{0} and f_{1}; their relative positions are correct, but it is impossible to tell whether f_{0} or f_{1} has been moved. Thus each of the $(n-6)(n-7) / 2$ cycles in $T(C)$ is associated with two cycles: our original cycle C, and a cycle identical to C except that the edge f is positioned between nodes c and d (in the same orientation as in C). Thus for each distinct cycle C containing ϵ, f, and no edges of X, there are $(n-6)(n-7) / 4$ distinct cycles not containing ϵ, f, or any edges of X.