
Comment by the authors, Ma;y 28, 1995 

We thank J. B. Shearer for pointing out that Theorem 3 of our 
paper is not new (see (1J, (2J, (31), and that the argument given 
in our paper actually proves the result with c=1/64, which is 
weaker than the best known (3J value c = 1/7. 
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There is a mistake in Lemma 2 of the paper, which requires 
halving the constants in Theorems 1,2,and 4. The constant 
in Theorems 1 and 4 should be changed from c < 1/32 to 
c < 1/64, and the constant in Theorem 2 should be changed 
from c < 1/64 to c < 1/128. 

As stated in the paper, Lemma 2 reads as follows: 
Let e,J be f!dges of K,. and X s;; E(K,.) be s1.1ch that M 

edge in X shil'fes an e•l4point with either e O'f f. Then we am 

find, fO'r each Hamilton CJICle C containing both e a•l4 f and 
no f!dges of X, a set S(C) of(n- 6)(n- 9)/2 Hamilton CJICles 
containing neither e, f O'f any edge in X, in s1.1ch a way thilt if 
C :f. C' the11 S(C) n S(C') = 0. 

We show with a counterexample that S(C) can be oo greater 
than n2 f4(n - 3)(n - 4), and then give an algorithm which 
a99ociates (n- 6)(n -7)/4 distinct cycles without e, J, or any 
edges of X with each distinct cycle containing e, J, and no 
edges of X. 

Cotmterexample: 
We pick a set X such that the ratio of the number of Hamil· 

ton cycles not containing e, J, or any edges of X to the number 
of Hamilton cycles containing e and f and no edges of X is lese 
than n2 : 4(n- 3)(n- 4). 



Let e0 , e.,and f 0 ,J1 be the endpoints of e and f, respectively. 
LetS be a cycle on the n-4 nodes of K,.\{ eo, e., f 0,J1}. Let X 
contain all edges in K,. except those in Sand those which share 
endpoints withe or f. Then the number of Hamilton cycles 
containing both e and f and no edges in X is 4(n- 4)(n- 3). 
Proof: In any such cycle, nodes other than endpoints of e and f 
may be adjacent only to their neighbors inS or to the endpoints 
of e and f. So all such cycles may be constructed by inserting 
e and f into S as follows. 

First pick an edge (a,b) in S, and substitute one of tbe 
node sequences < a, e0 ,e., b >,<a, e., eo,b > for the sequence 
< a, b >. Call the resulting cycle !! . Then pick an edge ( c:, d) in 
S'\{e}, and insert f by substituting one of the node sequences 
< c:, f., f., d >, < c:, f., fo, d > for < c,d >. There are (n - 4) 
places to insert e in S, 2 ways to orient e in that position, 
( n - 3) places to insert f in !! \ { e}, and 2 ways to orient f, 
which makes 4(n- 3)(n- 4) cycles in all. 

The number of cycles not containing e, f, or edges in f is less 
than n4 • Proof: The number of such cycles is just the number 
of ways to insert the four nodes eo,e 11 f 0, f 1 into S without 
makiogeoande, or foandf, adjacent. Let D= {eo,e.,fo,ft}· 
There are (n- 4)(n - 5)(n- 6)(n - 7) Hamilton cycles with 
none of the nodes in D adjacent to each other; if we add in 
the cycles with one or more pair of nodes in D adjacent, tbe 
number added is O(n3 ); the total number will still turn out to 
be lees than n4 • Thus there are fewer than n4/4(n- 3)(n- 4) 
Hamilton cycles not containing e, f, or edges in X for each 



Hamilton cycle containing e, J, and no edges of X. 

Construction: Let C be a Hamilton cycle containing e 
and f, and no edges in X. We a99ociate with C a set T( C) 
of Hamilton cycles which don't contain e, J, or any edges of 
X, constructed as follows. The new cycles are created by tak

ing one endpoint each of e and f, and moving them to new 
positions, leaving the order of all other nodes fixed. 

1. Orient C so that the lower numbered of the two nodes 
adjacent to e0 and e1 follows e. Suppose without lo99 of 
generality that e 1 then follows eo. 

2. Pick any two edges of C other than the 6 edges incident 
with e0, e1, f 0 , and f 1• There are (<'';6~ ways to do this. Of 
the two chosen edges, let (a, b) be the first edge following 
eo in the given orientation of C; let (c, d) be the other 
edge. (If e 1 preceded e0 in C, we \rould let (a, b) be the 
first edge preceding e.) 

3. Remove e 1 from its original position and insert it between 
a and b. 

4. Choose one of fo and f 1 to move between c and d, choosing 
so as to preserve the order in which eo, Jo, and f 1 appear 
in the cycle. 

Call the new cycle C'. Notice that it is possible to recon
struct the original positions of both e0 and e 1 by looking at 
C': eo hasn't moved, and the original position of e 1 is given 



by sliding it back around the cycle roward e0 , in whichever di

rection pa99es neither fo nor f 1• It is not possible, however, 
to reconstruct the original positions of fo and J1; their relative 
positions are correct, but it is impo99ible to tell whether fo or 
f 1 has been moved. Thus each of the (n- 6)(n- 7)/2 cycles 
in T(C) is associated with two cycles: our original cycle C, 
aod a cycle identical to C e:x-cept that the edge f is positioned 
between nodes c and d (in the same orientation as in C). Thus 
for each distinct cycle C containiog e, f, and no edges of X, 
there are (n- 6)(n- 7)/4 distinct cycles not containing e, J, 
or any edges of X. 
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