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Abstract

In this paper we study the spectral resolution of the Laplacian L of the Koszul
complex of the Lie algebras corresponding to a certain class of posets.

Given a poset P on the set {1, 2, . . . , n}, we define the nilpotent Lie algebra LP
to be the span of all elementary matrices zx,y, such that x is less than y in P . In this
paper, we make a decisive step toward calculating the Lie algebra homology of LP in
the case that the Hasse diagram of P is a rooted tree.

We show that the Laplacian L simplifies significantly when the Lie algebra cor-
responds to a poset whose Hasse diagram is a tree. The main result of this paper
determines the spectral resolutions of three commuting linear operators whose sum
is the Laplacian L of the Koszul complex of LP in the case that the Hasse diagram
is a rooted tree.

We show that these eigenvalues are integers, give a combinatorial indexing of these
eigenvalues and describe the corresponding eigenspaces in representation-theoretic
terms. The homology of LP is represented by the nullspace of L, so in future work,
these results should allow for the homology to be effectively computed.

AMS Classification Number: 17B56 (primary) 05E25 (secondary)

1 Preliminaries

1.1 Definitions

A partially ordered set P (or poset, for short) is a set (which by abuse of notation we
also call P ), together with a binary relation denoted ≤ (or ≤P when there is a possibility
of confusion), satisfying the following three axioms:

1. For all x ∈ P , x ≤ x. (reflexivity)

2. If x ≤ y and y ≤ x, then x = y. (antisymmetry)

3. If x ≤ y and y ≤ z, then x ≤ z. (transitivity)
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A chain (or totally ordered set or linearly ordered set) is a poset in which any
two elements are comparable. A subset C of a poset P is called a chain if C is a chain

when regarded as a subposet of P .

Definition 1.1 A poset P is linear if for any two comparable elements x, y ∈ P , the
interval [x, y] is a chain, i.e., if every interval has the structure of a chain.

The length l(C) of a finite chain C is defined by l(C) = |C| − 1.

1.2 The homology of a poset

The combinatorial approach to a homology theory for posets was developed by Rota [29],
Farmer [8], Lakser [22], Mather [25], Crapo [5] and others (more references can be found
in [33]). A systematic development of the relationship between the combinatorial and

topological properties of posets was begun by K. Baclawski [1] and A. Björner [2] and
continued by J. Walker [33].

Define the set Cr(P ) to be the set of 0-1 chains of length r in the poset P . By abuse of

notation we will use the same name for the complex vector space Cr or Cr(P ), with basis
the set of r-chains. The Cr’s are called chain spaces. The map ∂r : Cr → Cr−1, called the
boundary map, is defined by:

∂r(0̂ < x1 < . . . < xr < 1̂) =
r∑
i=1

(−1)i−1(0̂ < x1 < . . . < x̂i < . . . < xr < 1̂)

It is easy to check that:

Lemma 1
∂r−1 ◦ ∂r = 0.

This allows us now to define the homology of a poset to be:

Hr(P ) = Ker(∂r)/Im(∂r+1)

Later in this work we will talk about an operator, called the Laplacian of a complex, for
which we need to identify the transpose of the boundary map. We are in fact transposing
the matrix of the boundary map with respect to the basis of r-chains. In this case - the case
of the poset homology, the transpose of the boundary map is not so difficult to evaluate.

Lemma 2 The transpose of the boundary operator (viewed as a linear map), is given by
the following expression:

∂t(0̂ < x1 < . . . < xr < 1̂)

=

r∑
i=0

∑
xi<y<xi+1

(−1)i(0̂ < x1 < . . . < xi < y < xi+1 < . . . < xr < 1̂),

where x0 = 0̂ and xr+1 = 1̂.
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1.3 Lie Algebras

In this section we will introduce some basic notions from the theory of Lie algebras, and
the homology of Lie algebras.

We will always work over �, the field of complex numbers.
Lie algebras arise “in nature” as vector spaces of linear transformations endowed with

an operation which is in general neither commutative nor associative:

[x, y] = xy − yx.

It is possible to describe this kind of system abstractly in a few axioms.

Definition 1.2 A vector space L over a field �, with an operation L × L → L, denoted
(x, y)→ [x, y] and, called the bracket or commutator of x and y, is a Lie algebra over

� if the following axioms are satisfied:

(L1) The bracket operation is bilinear.

(L2) [x, x] = 0 for all x ∈ L.

(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (x, y, z ∈ L).

Axiom (L3) is called Jacobi identity. The axioms (L1) and (L2) imply (L2’): [x, y] =
−[y, x]. In the field of complex numbers (L2’) implies (L2).

1.4 Homology of a Lie algebra

Suppose L is a Lie algebra and A is a module over L. The space Γq(L;A) of q-dimensional
chains of the Lie algebra L with coefficients in A is defined as A ⊗ ΛqL. The boundary
operator ∂ = ∂q : Γq(L;A)→ Γq−1(L;A) acts in accordance with the formula

∂(a⊗ (x1 ∧ . . . ∧ xq)) =

=
∑

1≤s<t≤q
(−1)s+t−1a⊗ ([xs, xt] ∧ x1 ∧ . . . x̂s . . . x̂t . . . ∧ xq) (1)

+
∑

1≤s≤q
(−1)s−1xsa⊗ (x1 ∧ . . . x̂s . . . ∧ xq)

Lemma 3

∂r−1∂r = 0

The proof of this lemma is straightforward.
Let θ be the representation of L on A⊗ ΛqL. If y ∈ L, we have:

θ(y)(a⊗ x1 ∧ . . . ∧ xq)
= (y · a⊗ x1 ∧ . . . ∧ xq) +

∑
i

(a⊗ x1 ∧ . . . ∧ [y, xi] ∧ . . . ∧ xq)

It is easy to check:
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Lemma 4 For y ∈ L:
∂q ◦ θ(y) = θ(y) ◦ ∂q

The homology of the complex {Γq(L;A), ∂q} is referred to as the homology of the Lie
algebra L with coefficients in A and denoted by Hq(L;A); if A is the field of complex

numbers viewed as a trivial L-module (as in our case), the second sum in the formula 1
vanishes. In this case the notations Γq(L;A) and Hq(L;A) are abbreviated to Γq(L) and
Hq(L).

1.5 The Laplacian operator

Suppose that {Γr(L), ∂r} is a finite dimensional complex. We will first define an orthogonal
inner product 〈·, ·〉 on the product ⊕Γr, such that 〈Γr,Γs〉 = 0 whenever r 6= s. We will

restrict our attention to the subspaces of the nilpotent Lie algebra Tn(�) of all strictly upper
triangular matrices over the complex numbers, with standard basis {zi,j : 1 ≤ i < j ≤ n},
so we can define this product naturally:

Definition 1.3 Let L be a Lie algebra, L ⊂ Tn(�). Define an inner product for standard

basis elements v, w ∈ L by:

〈v, w〉 =

 1 if v = w
0 otherwise
0 if v and w have different exterior degrees

Extend this to the exterior algebra, i.e., to the complexes mentioned above.

Definition 1.4 Suppose that v = v1 ∧ · · · ∧ vk and w = w1 ∧ · · · ∧ wk. Then define the

inner product:
〈v, w〉 = det(〈vi, wj〉)1≤i,j≤k

Note that this can be written also as

〈v, w〉 =
∑
σ∈Sn

sgn(σ)
∏
i

〈vi, wσ(i)〉 =

{
sgn(σ) iff vi = wσ(i) for all i
0 otherwise

In other words, the product of two pure wedges of basis elements is nonzero if and only if

two pure wedges differ only in the order of the elements, and in that case, the product is
just the sign of the permutation that changes one into another.

Define δr mapping Γr into Γr+1 by

〈δrv, w〉 = 〈v, ∂r+1w〉

over all v ∈ Γr, and all w ∈ Γr+1. It is enough to calculate δ on pure wedges (as in our

definitions), since the inner product and δ are both linear functions.
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Lemma 5 The map δ is given by

δr(zx1,y1 ∧ zx2,y2 ∧ . . . ∧ zxr ,yr)

=
r∑

s=1

(−1)s−1
∑

xs<l<ys

zx1,y1 ∧ . . . ∧ zxs,l ∧ zl,ys ∧ . . . ∧ zxr,yr

Note: It is easy to check that δr+1δr = 0, thus δ∗ defines a coboundary operator, and
so we can define the cohomology to be

Hr(L) = Ker(δr)/Im(δr−1)

Proof: But to prove that, it is enough to show that the coefficient of the pure wedge
zx1,y1 ∧ zx2,y2 ∧ . . . ∧ zxr,yr in ∂(zx1,y1 ∧ · · · ∧ zxs,l ∧ zl,ys ∧ · · · ∧ zxr,yr) is (−1)s−1 for any
l ∈ (xs, ys), i.e.,

∂(zx1,y1
∧ . . . ∧ zxs,l ∧ zl,ys ∧ . . . ∧ zxr,yr)

= . . . + (−1)s−1(zx1,y1 ∧ zx2,y2 ∧ . . . ∧ zxr,yr) + . . .

and this is not difficult by the definition of ∂.

Note that we can change the order of the elements in the pure wedges, and obtain a
slightly different form for δ:

δr(zx1,y1 ∧ zx2,y2 ∧ . . . ∧ zxr ,yr)

=
r∑

s=1

(−1)s−1
∑

xs<l<ys

zx1,y1 ∧ . . . ∧ zxs,l ∧ zl,ys ∧ . . . ∧ zxr,yr

=
∑
m

∑
xm<l<ym

(zxm,l ∧ zx1,y1 ∧ · · · ∧ zl,ym ∧ · · · ∧ zxk,yk)

This is the form for the δ = ∂t we will use.

Definition 1.5 Define the Laplacian operator Lr : Γr → Γr by

Lr = δr−1∂r + ∂r+1δr

Theorem 6 (Kostant, [19] ) Let B = {β1, . . . , βd} be a basis for Ker(Lr). Then B
is simultaneously a complete set of representatives of Hr(L) and Hr(L). In particular
dim(Hr(L)) = dim(Hr(L)) = dim(Ker(Lr)).

Sometimes, the Laplacian Lr will turn out to be very simple. In these cases, Theorem 6

is a very efficient method for evaluating the homology and cohomology of a Lie algebra.
One famous result obtained in this way is given by Kostant [19].
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1.6 Kostant’s Theorem

We need some preliminary definitions. Suppose G is a semisimple Lie algebra, with the
root system R, whose basis is ∆. Thus G = H ⊕ (⊕α∈R〈zα〉), where H is the torus.
Suppose that S ⊂ ∆, and let RS be the set of roots in the � (integer) module spanned by
elements of S. Define GS to be GS = H ⊕ 〈zα : α ∈ RS〉. Define a GS module NS to be

NS = 〈zα : α ∈ R+ \R+
S 〉.

We will state a couple of facts without proof:

• NS is a nilpotent subalgebra of G.

• Let W be a G-module. Then W is also a NS-module and a GS-module.

• Thus we can compute H(NS;W µ) as GS-module, where W µ is an irreducible G-
module. Kostant used the Laplacian operator to prove the following theorem:

Theorem 7 (Kostant, Theorem 5.7,[19]) Let λ be a dominant weight for G, and let µ
be a minimal weight for GS . Let V be a GS-invariant subspace of W λ ⊗

∧r NS isomorphic
to the GS-irreducible (indexed by µ) with minimal weight µ.

• The Laplacian L = δ∂ + ∂δ preserves V .

• Then, L|V is a scalar, and the scalar is given by

1

2
(|ρ+ λ|2 − |ρ− µ|2)

where ρ is half of the sum of the positive roots of G.

1.7 The Lie Algebra corresponding to a Poset

Definition 1.6 A standard labeling of the poset P is a total ordering of the elements
of P such that whenever x <P y, x precedes y in that total ordering.

Since P is a partial order, i.e. transitive , there always is such labeling. Fix a standard
labeling of the poset P .

We can define a Lie algebra LP corresponding to the poset P in the following way. First,
for every relation x <P y in the poset P , i.e., for every two elements x, y ∈ P such that
x <P y we can define the matrix zx,y having all entries equal to zero, except for exactly
one entry equal to 1, namely the entry at the position x, y in the standard labeling of the

poset P .
All matrices zx,y are strictly upper triangular because of our labeling. So LP is a

subalgebra of Tn. The Lie algebras LP obtained from distinct labellings are isomorphic –
the labeling only specifies embedding of LP in the n× n matrices.
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2 The Formula for Laplacian of a Linear Poset

In this section we will present a significant simplification of the Lie algebra Laplacian in
the case of linear posets. That will allow us to prove our main result on the eigenvalues of

those Laplacians.

2.1 Simplification

Recall the Lie algebra boundary map:

∂(zx1,y1 ∧ . . . ∧ zxk,yk)
=

∑
i<j

(−1)i+j−1[zxi,yi, zxj ,yj ] ∧ zx1,y1 ∧ . . . ∧�zxi,yi ∧ . . . ∧�zxj ,yj ∧ . . . ∧ zxk,yk

The transpose, ∂t, is given by the following formula:

∂tr(zx1,y1 ∧ zx2,y2 ∧ . . . ∧ zxr ,yr)

=
r∑

s=1

(−1)s−1
∑

xs<l<ys

zx1,y1 ∧ . . . ∧ zxs,l ∧ zl,ys ∧ . . . ∧ zxr,yr

=
∑
m

∑
xm<l<ym

(zxm,l ∧ zx1,y1 ∧ · · · ∧ zl,ym ∧ · · · ∧ zxk,yk)

To compute the action of L on a basis vector zx1,y1 ∧ · · · ∧ zxk,yk of Γk(LP ) we begin
with the action of ∂∂t. We have,

∂∂t(zx1,y1 ∧ · · · ∧ zxk,yk)
=

∑
m

∑
xm<l<ym

∂(zxm,l ∧ zx1,y1
∧ · · · ∧ zl,ym ∧ · · · ∧ zxk,yk)

=
∑
i<j

∑
m6=i,j

∑
xm<l<ym

(−1)i+1+j([zxi,yi, zxj ,yj ] ∧ zxm,l ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧ zl,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)
+

∑
m

∑
j 6=m

∑
xm<l<ym

(−1)1+j+1−1([zxm,l, zxj ,yj ] ∧ zx1,y1 ∧ . . .

. . . ∧�zxj ,yj ∧ · · · ∧ zl,ym ∧ · · · ∧ zxk,yk)
+

∑
i<m

∑
xm<l<ym

(−1)i+1+m+1−1([zxi,yi , zl,ym ] ∧ zxm,l ∧ zx1,y1
∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧�zxm,ym ∧ · · · ∧ zxk,yk)
+

∑
m<j

∑
xm<l<ym

(−1)m+1+j+1−1([zl,ym , zxj ,yj ] ∧ zxm,l ∧ zx1,y1
∧ . . .

. . . ∧�zxm,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)

+
k∑

m=1

|(xm, ym)|(zx1,y1 ∧ · · · ∧ zxk,yk)
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which is equal to:

=
∑
i<j

∑
m6=i,j

∑
xm<l<ym

(−1)i+j−1([zxi,yi, zxj ,yj ] ∧ zxm,l ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧ zl,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)
+
∑
i<m

∑
xm<l<ym

(−1)i+1([zxm,l, zxi,yi] ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧ zl,ym ∧ · · · ∧ zxk,yk)
+

∑
m<j

∑
xm<l<ym

(−1)j+1([zxm,l, zxj ,yj ] ∧ zx1,y1 ∧ . . .

. . . ∧ zl,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)
+
∑
i<m

∑
xm<l<ym

(−1)i+m+1([zxi,yi, zl,ym] ∧ zxm,l ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧�zxm,ym ∧ · · · ∧ zxk,yk)
+

∑
m<j

∑
xm<l<ym

(−1)m+j+1([zl,ym, zxj ,yj ] ∧ zxm,l ∧ zx1,y1 ∧ . . .

. . . ∧�zxm,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)

+

k∑
m=1

|(xm, ym)|(zx1,y1 ∧ · · · ∧ zxk,yk)

Now use the definition of bracket in this Lie algebra:

[zxi,yi , zxj ,yj ] = δyi,xjzxi,yj − δxi,yjzxj ,yi
and we have the following:

∂∂t(zx1,y1 ∧ · · · ∧ zxk,yk)
=
∑
i<j

∑
m6=i,j

∑
xm<l<ym

(−1)i+j−1([zxi,yi, zxj ,yj ] ∧ zxm,l ∧ zx1,y1 ∧ · · · ∧�zxi,yi ∧ . . .

. . . ∧ zl,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)
+
∑
i<m

∑
xm<l<ym

δl,xi(zx1,y1 ∧ · · · ∧ zxm,yi ∧ · · · ∧ zl,ym ∧ · · · ∧ zxk,yk)

− δxm,yi(zx1,y1 ∧ · · · ∧ zxi,l ∧ · · · ∧ zl,ym ∧ · · · ∧ zxk,yk)
+

∑
m<j

∑
xm<l<ym

δl,xj(zx1,y1 ∧ · · · ∧ zl,ym ∧ · · · ∧ zxm,yj ∧ · · · ∧ zxk,yk)

− δxm,yj (zx1,y1 ∧ · · · ∧ zl,ym ∧ · · · ∧ zxj ,l ∧ · · · ∧ zxk,yk)
+
∑
i<m

∑
xm<l<ym

δl,yi(zx1,y1
∧ · · · ∧ zxi,yj ∧ · · · ∧ zxm,l ∧ · · · ∧ zxk,yk)

− δxi,ym(zx1,y1 ∧ · · · ∧ zl,yi ∧ · · · ∧ zxm,l ∧ · · · ∧ zxk,yk)
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+
∑
m<j

∑
xm<l<ym

δl,yj (zx1,y1 ∧ · · · ∧ zxm,l ∧ · · · ∧ zxj ,ym ∧ · · · ∧ zxk,yk)

− δxj ,ym(zx1,y1 ∧ · · · ∧ zxm,l ∧ · · · ∧ zl,yj ∧ · · · ∧ zxk,yk)

+
k∑

m=1

|(xm, ym)|(zx1,y1 ∧ · · · ∧ zxk,yk)

Note that every sum over xm < l < ym which has an occurrence of δl,∗ has only one
summand if ∗ really is between xm and ym, and is zero otherwise. We will use the symbol

χ for denoting the truth of some statement, i.e.,

χ(∗) =

{
1, if ∗ is true
0, if ∗ is false

We label some of the resulting sums:

∂∂t(zx1,y1 ∧ · · · ∧ zxk,yk) (2)

=
∑
i<j

∑
m6=i,j

∑
xm<l<ym

(−1)i+j−1([zxi,yi, zxj ,yj ] ∧ zxm,l ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧ zl,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk) (3)

−
∑
i<j

χ(xj < xi < yj)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

−
∑
i<j

∑
xj<l<yj

δxj ,yi(zx1,y1 ∧ · · · ∧ zxi,l ∧ · · · ∧ zl,yj ∧ · · · ∧ zxk,yk) (4)

−
∑
i<j

χ(xi < xj < yi)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

−
∑
i<j

∑
xi<l<yi

δxi,yj (zx1,y1 ∧ · · · ∧ zl,yi ∧ · · · ∧ zxj ,l ∧ · · · ∧ zxk,yk) (5)

+
∑
i<j

χ(xj < yi < yj)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

−
∑
i<j

∑
xj<l<yj

δxi,yj (zx1,y1 ∧ · · · ∧ zl,yi ∧ · · · ∧ zxj ,l ∧ · · · ∧ zxk,yk) (6)

−
∑
i<j

∑
xi<l<yi

δxj ,yi(zx1,y1 ∧ · · · ∧ zxi,l ∧ · · · ∧ zl,yj ∧ · · · ∧ zxk,yk) (7)

+
∑
i<j

χ(xi < yj < yi)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

+
k∑

m=1

|(xm, ym)|(zx1,y1 ∧ · · · ∧ zxk,yk)

On the other hand:
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∂t∂(zx1,y1 ∧ · · · ∧ zxk,yk)
=

∑
i<j

(−1)i+j−1∂t([zxi,yi, zxj ,yj ] ∧ zx1,y1 . . . ∧�zxi,yi ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)

=
∑
i<j

∑
m 6=i,j

∑
xm<l<ym

(−1)i+j−1(zxm,l ∧ [zxi,yi , zxj ,yj ] ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧ zl,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)
+

∑
i<j

∑
xm<l<ym

(−1)i+j−1δxj ,yi(zxi,l ∧ zl,yj ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)
−

∑
i<j

∑
xm<l<ym

(−1)i+j−1δxi,yj(zxj ,l ∧ zl,yi ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk)

Now use the fact that we are dealing with a linear poset. This implies that for every
interval (xm, ym) and every l , xm < l < ym we have

(xm, ym) = (xm, l) ∪ {l} ∪ (l, ym)

Hence

∂t∂(zx1,y1 ∧ · · · ∧ zxk,yk) (8)

=
∑
i<j

∑
m6=i,j

∑
xm<l<ym

(−1)i+j−1(zxm,l ∧ [zxi,yi, zxj ,yj ] ∧ zx1,y1 ∧ . . .

. . . ∧�zxi,yi ∧ · · · ∧ zl,ym ∧ · · · ∧�zxj ,yj ∧ · · · ∧ zxk,yk) (9)

+
∑
i<j

∑
xi<l<yi

δxj ,yi(zx1,y1 ∧ · · · ∧ zxi,l ∧ · · · ∧ zl,yj ∧ · · · ∧ zxk,yk) (10)

+
∑
i<j

∑
l=xj=yi

δxj ,yi(zx1,y1 ∧ · · · ∧ zxi,l ∧ · · · ∧ zl,yj ∧ · · · ∧ zxk,yk)

+
∑
i<j

∑
xj<l<yj

δxj ,yi(zx1,y1 ∧ · · · ∧ zxi,l ∧ · · · ∧ zl,yj ∧ · · · ∧ zxk,yk) (11)

+
∑
i<j

∑
xj<l<yj

δxi,yj(zx1,y1 ∧ · · · ∧ zl,yi ∧ · · · ∧ zxj ,l ∧ · · · ∧ zxk,yk) (12)

+
∑
i<j

∑
l=xi=yj

δxi,yj (zx1,y1 ∧ · · · ∧ zl,yi ∧ · · · ∧ zxj ,l ∧ · · · ∧ zxk,yk)

+
∑
i<j

∑
xi<l<yi

δxi,yj (zx1,y1 ∧ · · · ∧ zl,yi ∧ · · · ∧ zxj ,l ∧ · · · ∧ zxk,yk) (13)

Then we have :
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(9) + (3) = 0

(10) + (7) = 0

(11) + (4) = 0

(12) + (6) = 0

(13) + (5) = 0

After these cancellations we obtain the following expression for the action of the Lapla-

cian L:

L(zx1,y1 ∧ · · · ∧ zxk ,yk) = (∂∂t + ∂t∂)(zx1,y1 ∧ · · · ∧ zxk,yk)

=
k∑

m=1

|(xm, ym)|(zx1,y1 ∧ · · · ∧ zxk,yk)

+
∑
i<j

(δxi,yj + δxj ,yi)(zx1,y1 ∧ · · · ∧ zxk ,yk)

+
∑
i<j

χ(xi < yj < yi)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

+
∑
i<j

χ(xj < yi < yj)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

−
∑
i<j

χ(xj < xi < yj)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

−
∑
i<j

χ(xi < xj < yi)(zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk)

2.2 The Formula

To further simplify our expressions we will introduce some notation. Define

ζ = zx1,y1 ∧ · · · ∧ zxk,yk
ζi,j = zx1,y1 ∧ · · · ∧ zxi,yj ∧ · · · ∧ zxj ,yi ∧ · · · ∧ zxk,yk

w(ζ) =
k∑

m=1

|(xm, ym)|

∆(ζ) =
∑
i<j

(δxi,yj + δxj ,yi) =
∑
i,j

δxi,yj

Thus, we can reformulate the calculations from the previous section into:

Theorem 8 (The Formula) Let P be a linear poset and let LP be the corresponding Lie
algebra. The action of the Laplacian L on an element

ζ = zx1,y1 ∧ zx2,y2 ∧ · · · ∧ zxk,yk
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is given by the following formula:

L(ζ) = (w(ζ) + ∆(ζ))ζ

+
∑
i<j

(χ(xi < yj < yi) + χ(xj < yi < yj)− χ(xj < xi < yj)− χ(xi < xj < yi))ζi,j

Note that ζi,j is obtained from ζ by transposing a comparable pair of y’s or a comparable
pair of x’s.

3 Linear poset with a 0̂

Suppose now that the poset P has a 0̂, the minimum element. That is the assumption

under which we will work in the future. In that case, we can further simplify our notation:

Lemma 9

L(ζ) = (w(ζ) + ∆(ζ))ζ

+
∑
i<j

(χ(xi < yj < yi) + χ(xj < yi < yj)− χ(xj < xi < yj)− χ(xi < xj < yi))ζi,j

= (w(ζ) + ∆(ζ))ζ +
∑

yi<P yj

ζi,j −
∑

xi<P xj

ζi,j

Proof: We need to prove that we can write

χ(yi < yj) + χ(yj < yi)− χ(xi < xj)− χ(xj < xi)

instead of

χ(xi < yj < yi) + χ(xj < yi < yj)− χ(xj < xi < yj)− χ(xi < xj < yi)

in the expression for the Laplacian above.
Let yi and yj be two comparable distinct y’s. Without loss of generality, assume that

yi < yj. Thus xi < yi < yj . The existence of 0̂ and linearity of the poset implies that the
interval [0̂, yj] must be a chain, and since xi, xj ∈ [0̂, yj ], xi and xj must be comparable.
There are several possibilities:

1. xj < xi < yi < yj

2. xi < xj < yi < yj

3. xi < yi < xj < yj

In all three possibilities,

χ(xi < yj < yi) + χ(xj < yi < yj) − χ(xj < xi < yj)− χ(xi < xj < yi) = 0,

and at the same time

χ(yi < yj) + χ(yj < yi)− χ(xi < xj)− χ(xj < xi) = 0.

On the other hand, if yi and yj are incomparable, then we have one of:
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1. xj < xi < yi, yj

2. xi < xj < yi, yj

3. xi < yi, xj < yj , xi and xj are incomparable.

Now in the first two cases

χ(xi < yj < yi) + χ(xj < yi < yj)− χ(xj < xi < yj)− χ(xi < xj < yi) = −1,

with
χ(yi < yj) + χ(yj < yi)− χ(xi < xj)− χ(xj < xi) = −1

too. In the last remaining case both expressions are zero.

Hence, the expression for the Laplacian above can be rewritten in the following form:

L(ζ) = (w(ζ) + ∆(ζ))ζ +
∑

yi<P yj

ζi,j −
∑

xi<P xj

ζi,j .

In other words, the meaning of the theorem above is that the Laplacian only transposes
comparable labels of the element zx1,y1

∧ zx2,y2
∧ · · · ∧ zxk,yk , without introducing any new

indices. This is the key observation for next section.

Lemma 10 Let ζ = zx1,y1 ∧ · · · ∧ zxn,yn, and let ζσ = zx1,yσ(1)
∧ zx2,yσ(2)

∧ · · · ∧ zxn,yσ(n)
. If

ζσ 6= 0, i.e., if xi <P yσ(i) for all i, then

1. w does not depend on σ, i.e.,
w(ζ) = w(ζσ)

2. ∆ does not depend on σ, i.e.,

∆(ζ) = ∆(ζσ)

This lemma actually proves that w and ∆ are dependent only on the choice of the
(multi–)sets X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk} (and a poset P ), and not on the
specific pure wedge constructed from those sets.

Proof: First we will check the claim for w.

w(ζ) =
∑
i

|(xi, yi)| =
∑
i

ht(yi)− ht(xi)− 1,

where the ht(v) is the size of the interval [0̂, v]. The sum on the right does not depend on
σ, so we can write w(X, Y ) instead of w(ζ).

Now we will check the claim for ∆.

∆(ζ) =
∑
i<j

(δxi,yj + δxj ,yi)

=
∑
i

( multiplicity of xi in the set Y )

=
∑
j

( multiplicity of yj in the set X)

=
∑
i,j

δxi,yj
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which also does not depend on σ. Thus we can write ∆(X, Y ) instead of ∆(ζ) too.
We will use both notations, depending whether we want to stress ζ or the sets (X, Y ).

Note that while ∆ is completely determined by the sets (X, Y ), w also depends on the
poset P globally, i.e., it counts the sizes of intervals (xi, yi) not relative to the sets X and
Y , but with respect to the whole poset P .

The simplicity of this formula is in the way the elements to which we are restricting the

Laplacian, are obtained one from another, by simply transposing the labels. In general,
this example shows that the Laplacian L can be broken down into diagonal blocks, which
are generated by a pure wedge ζ, and all pure wedges obtained by permutations of the

labels of ζ. Furthermore, since a ∧ b = −b ∧ a, we can always keep the x-labels in order,

i.e, we will always put the element zxi,∗ at the ith position of the pure wedge.

4 The eigenvalues of the Laplacian

Let ζ = zx1,y1 ∧ zx2,y2 ∧ · · · ∧ zxn,yn be an element of the exterior algebra of the Lie algebra
of P . In the last section we saw that the Laplacian acts on pure wedges of Lie algebra
elements zx1,y1

∧zx2,y2
∧· · ·∧zxn,yn by summing the action of switching pairs of comparable

x’s, and pairs of comparable y’s among themselves (plus a scalar).
That fact gives us the opportunity to divide our Laplacian into diagonal blocks where

each block corresponds to all possible permutations of the x’s and y’s for a fixed choice
of the element zx1,y1

∧ zx2,y2
∧ · · · ∧ zxn,yn, i.e., for the fixed choice of the multisets X =

{x1, x2, . . . , xn}, and Y = {y1, y2, . . . , yn}. In other words each block represents the “action”
of the Laplacian on the subspace of the n th exterior power of our Lie algebra spanned by
the elements {zx1,yσ(1)

∧zx2,yσ(2)
∧· · ·∧zxn,yσ(n)

: σ ∈ Sn}. Here the element zx1,yσ(1)
∧zx2,yσ(2)

∧
· · · ∧ zxn,yσ(n)

is defined if and only if xi <P yσ(i) for every i = 1, 2, . . . , n. Thus each block
is of size n!, if all the elements are defined, or less, if some of the elements are not defined
which is the case in general. The size of the block depends on the structure of the poset,
and in particular, it depends on the relations in the subposet of P spanned by the sets X

and Y . More formally :

Definition 4.1 The L-block V spanned by the (multi)-sets (X, Y )P , subsets of a

poset P , is the vector space with basis

{zx1,yσ(1)
∧ zx2,yσ(2)

∧ · · · ∧ zxn,yσ(n)
: σ ∈ Sn}

where n = |X | = |Y |, σ is a permutation in Sn, and the element

zx1,yσ(1)
∧ zx2,yσ(2)

∧ · · · ∧ zxn,yσ(n)

is zero unless xi <P yσ(i) for all i = 1, . . . , n.
If we want to stress the dependence of the L-block V of the sets X and Y and the poset

P , we write V (X, Y )P .

The sets X and Y may be multisets since some of the x’s or y’s might appear more than

once as a label. In that case the sizes |X| and |Y | are counting multiplicities as well.
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Using this division of the chain space into L-blocks, we can use the results of the previous
section, and state the theorem:

Theorem 11 Let LP be the Lie algebra corresponding to a linear poset P , and let Cn(LP )
be the n th chain space. Then

Cn(LP ) =
⊕

(X,Y )

V (X, Y )P

where the direct sum is over all possible choices of (multi)-sets X and Y of equal cardinality,

and each summand V (X,Y )P is invariant under the action of the Laplacian.

Thus we can now concentrate on the action of the Laplacian on each of these blocks.

4.1 Embedding of the L-block in �Sn

Write the multisets X and Y as X = ∪i∈A1{xi} ∪ . . . ∪i∈Al {xi}, and Y = ∪j∈B1{yj} ∪
. . .∪j∈Bm {yj}, where the Ai’s contain the sets of indices of equal x’s, and Bi’s contain the
sets of indices of equal y’s.

For example, if X = {x1, x2, x3, x4, x5}, where x1 = x2, x3 = x4, then A1 = {1, 2},
A2 = {3, 4} and A3 = {5}.

Switching two of the x’s will displace xi from its original position. To take into account
the fact that we have to bring it back (by the choice of our basis) into the i th place, we

need a minus sign.
Let

Πx =
∑

σ1∈Sym(A1),σ2∈Sym(A2)...

(
∏
i

sgn(σi))σ1σ2 · · ·σl

and
Πy =

∑
σ1∈Sym(B1),σ2∈Sym(B2)...

σ1σ2 · · ·σm.

Then the L-block V can be identified with a subspace of Πx�SnΠy. So Πy symmetrizes

over equal y’s and Πx anti-symmetrizes over equal x’s. In other words, Πx permutes the
positions, while Πy permutes indices.

4.2 The Laplacian LY

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two fixed (multi-)sets of vertices of the poset
P , and consider the restriction of the Laplacian L to L-block V (X, Y ).

To simplify the notation, we will write the Laplacian L as:

L(ζ) =

(w(X,Y ) + ∆(X, Y ))Id +
∑

xi<P xj

(xi, xj) +
∑

yi<P yj

(yi, yj)

 · ζ,
where the “action” of (yi, yj) or (xi, xj) on zx1,y1 ∧ zx2,y2 ∧ · · · ∧ zxn,yn means switching the

corresponding pairs of y’s, or x’s.
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To simplify our examination, we will split it into these three parts:

L = LD + LX + LY ,

where

• LD is the scalar matrix, LD = w(X,Y ) + ∆(X, Y )

• LX is the “action” of the Laplacian on the set of the x’s, i.e.

LX =
∑

xi<Pxj

(xi, xj)

• LY is the “action” of the Laplacian on the set of the y’s

LY =
∑

yi<P yj

(yi, yj)

on our L-block V (X, Y ).
In the embedding of this L-block into �Sn, the notation for the Laplacian LY would

be LY =
∑

i<j:yi<P yj
(i, j), where the actual multiplication is from the right. The proper

notation for LX in the Πx�SnΠy is LX =
∑

i<j:xi<Pxj
(i, j), but the multiplication in this

case is from the left.

Lemma 12 LY and Πy commute, i.e.,

LY · Πy = Πy · LY .

Proof: It is sufficient to prove that the Laplacian LY commutes with every transposition
of the form (i, k), where yi = yk, because every permutation in Πy can be written as a
product of those permutations. So, let yi = yk. That means that Πy has transposition

(i, k) as one of its summands. Let yj ∈ Y be comparable to yi (thus it is comparable to
yk). In that case, the Laplacian LY contains both transpositions, (i, j), and (k, j), i.e.,
LY = · · ·+ (i, j) + (k, j) + · · ·.

But, (i, k) · (i, j) = (k, j) · (i, k), which shows that Πy · LY = LY · Πy.

Using exactly same argument we see that LX and Πx also commute.
We know from section 2 that LD is a scalar matrix on each block, and thus it commutes

with LX and LY .
As for the LX and LY , we have the following Lemma:

Lemma 13

LX · LY · (zx1,y1 ∧ zx2,y2 ∧ · · · ∧ zxn,yn) = LY · LX · (zx1,y1 ∧ zx2,y2 ∧ · · · ∧ zxn,yn)



the electronic journal of combinatorics 2 (1995), #R14 17

Proof:
The absence of certain relations in the poset may cause terms in the Laplacian to be

missing. That is why this lemma is not obvious, and needs to be proved.
Let ζ = zx1,y1 ∧ zx2,y2 ∧ · · · ∧ zxn,yn. Without loss of generality we can assume that all of

the x’s and all of the y’s are distinct, because if they were not, we would just apply the same
reasoning to each appearance of an observed element. Let (xi, xj) be a transposition of the

operator LX , and let (yk, yl) be a transposition of the operator LY . If all of the numbers
i, j, k, l are distinct, we have nothing to prove since it would not make any difference which
transposition was applied first. On the other hand, if i = k and j = l, again there is nothing

to prove, since their combined action would amount to multiplying with -1 no matter in
which order they are applied.

Therefore assume that i 6= k but j = l, i.e., we have two transpositions, (xi, xj) and
(yj, yk) in LX and LY respectively, which overlap at one position. Without loss of generality

assume that n = 3. There are only three elements of the pure wedge, call them zx1,y1 ∧
zx2,y2 ∧ zx3,y3, i.e., i = 1, j = 2, n = k = 3.

Let

A = (x1, x2) · (y2, y3) · (zx1,y1 ∧ zx2,y2 ∧ zx3,y3)

= (x1, x2) · (zx1,y1 ∧ zx2,y3 ∧ zx3,y2)

= −(zx1,y3 ∧ zx2,y1 ∧ zx3,y2)

and

B = (y2, y3) · (x1, x2) · (zx1,y1 ∧ zx2,y2 ∧ zx3,y3)

= −(y2, y3) · (zx1,y2 ∧ zx2,y1 ∧ zx3,y3)

= −(zx1,y3 ∧ zx2,y1 ∧ zx3,y2).

Thus

LX · LY · (zx1,y1 ∧ zx2,y2 ∧ zx3,y3) = LY · LX · (zx1,y1 ∧ zx2,y2 ∧ zx3,y3),

whenever all of the relations used above are present, i.e., whenever every xi is beneath each
yj. That can be explained by the fact that LX is acting on the x-indices and LY is acting

on the y-indices.
The question remains whether the answer would be the same if some of the relations

needed above were missing, and only one of the expressions above gets annulled. The final
expressions in both A and B are 0 unless:

x1 < y3, x2 < y1, x3 < y2.

Suppose (without loss of generality) that B above survives the procedure, i.e., we have the
relation x1 < y2. On the other hand if A is annulled in the middle step, the only possible
conflict left is x2 6< y3. We have that y2 and y3 are comparable, otherwise the transposition

(y2, y3) wouldn’t be a summand of LY . If y2 < y3, then x2 < y2 < y3, which is contrary to
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the just stated assumption. Thus, we must have y3 < y2. Also x1 < y3 by our assumption
above, and (x1, x2) is a transposition in LX , so they must also be comparable. By the same

argument as above, x2 must be larger than x1. Hence in the interval (x1, y2) there are two
elements x2 and y3. Since the poset is linear – those two elements must be comparable,
and since we assumed that x2 6< y3, it must be that x2 > y3.

All together, the relations are:

y2

y1
> x2 > y3 >

x3

x1

So in this case we have y1 > y3, and x2 > x3. Let

C = (x2, x3) · (y1, y3) · (zx1,y1 ∧ zx2,y2 ∧ zx3,y3)

= (x2, x3) · (zx1,y3 ∧ zx2,y2 ∧ zx3,y1)

= −(zx1,y3
∧ zx2,y1

∧ zx3,y2
)

and

D = (y1, y3) · (x2, x3) · (zx1,y1 ∧ zx2,y2 ∧ zx3,y3)

= −(y1, y3) · (zx1,y1 ∧ zx2,y3 ∧ zx3,y2)

= 0

since x2 > y3.

The expressions A and C are two summands of the product LXLY , while B and D are
two summands of the product LYLX . As we can see, A+C = B+D. Thus LX ·LY = LY ·LX .

In view of Lemma 13, LX , LY and LD are commuting linear transformations. So, to
analyze the spectrum of their sum, we can compute the eigenvalues and eigenspaces of each

separately. We will begin with LY .

4.3 A poset tableau of type (X,Y )P
Definition 4.2 The diagram of the L-block, P [X, Y ], spanned by the sets (X,Y )P , is

the Hasse diagram of the subposet X∪Y with order inherited from the poset P . Furthermore
every vertex of P , which is in the intersection X∩Y is split into two nodes, with the x-node
above the y-node.

Definition 4.3 Given a node v in P [X, Y ] define the repetition number of v , k(v), to
be the number of times that v appears in the multiset X if v is an x-node of P [X, Y ], or

the multiset Y if v is a y-node of P [X, Y ].

Let C(v) be the set of covers of node v in P [X, Y ]. If v is a maximal node, than

C(v) = ∅.
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Definition 4.4 A poset tableau of type (X,Y )P (or just of type (X, Y )) is any label-
ing Λ of the diagram, P [X, Y ], of the L-block V spanned by (X, Y ), where the labels are

partitions Λ(v), such that Λ(v) is a partition of the number
∑

w≥v ε(w)k(w), where

ε(w) =

{
+1 if w is a y-node
−1 if w is an x-node.

Given a poset tableau Λ we will define the multiplicity of Λ, m(Λ), and the eigen-
values of Λ, e(Λ).

Definition 4.5 • Let v be a y-node of the diagram P [X, Y ], labeled with the partition
Λ(v) and with repetition number k(v). Let C(v) = {v1, v2, . . . , vl} be the set of covers
of v. Let λi denote Λ(vi), and let ki denote the repetition numbers, k(vi). The
multiplicity of Λ at v is defined to be

mv(Λ) = c
Λ(v)
λ1,...,λl,k(v)

• Let v be an x-node of the diagram P [X, Y ], labeled with the partition Λ(v) and with

repetition number k(v). Let C(v) = {v1, v2, . . . , vl} be the set of covers of v. Let λi
denote Λ(vi), and let ki denote the repetition numbers, k(vi). The multiplicity of Λ
at v is defined to be

mv(Λ) =
∑
µ

cµλ1,...,λl
cµ

Λ(v),1k(v).

If the multiplicity mv(Λ) = 0 then we know that that particular labeling is not valid.
Now, we will define the y-eigenvalues for each y-node v of the diagram P [X,Y ]. We

want to have as many y-eigenvalues as the value of multiplicity. From the representation
theory of the symmetric group, we know that

cΛ(v)
λ1,...,λl,k(v) =

∑
Λ(v)/µ = k(v)–horizontal strip

cµλ1,...,λl
. (14)

The node–eigenvalue, ev(Λ), for each node v, is the set of the sums of the content over
all squares in Λ(v)/µ for all possible µ for which Λ(v)/µ is a k(v)–horizontal strip minus

the binomial coefficient

(
k(v)

2

)
.

Recall that the content of a square is given by c(i, k) = k− i if the square is at position
(i, k) in a partition (i th row and k th column).

This gives mv(Λ) eigenvalues at each y-node v. We now define y-eigenvalue of Λ,
ey(Λ), to be the set of numbers obtained by taking a sum of one element of ev(Λ) for each
y-node v. So |ey(Λ)| =

∏
y-nodes v mv(Λ).

4.4 Example

Let the poset P = {1, 2, 3, 4, 5} with the relations 1 <P 2, 2 <P 3, 3 <P 4 and 4 <P 5. The
Hasse diagram of this poset is given in figure 1.



the electronic journal of combinatorics 2 (1995), #R14 20

1

2

3

4

5

r
r
r
r
r

Figure 1: Example: poset P

Let X and Y be the sets X = {1, 2, 3} and Y = {4, 4, 5}. So the node 4, is a node with
non-trivial repetition number k(4) = 2. The L-block V is spanned by the following pure
wedges:

ζ = z1,4 ∧ z2,4 ∧ z3,5

τ = z1,4 ∧ z2,5 ∧ z3,4

η = z1,5 ∧ z2,4 ∧ z3,4.

Thus the L-block V is 3-dimensional. We calculate the Laplacian LY on these three el-
ements. Note that the Laplacian LY is in fact LY = (4, 5), since those are the only two
comparable y’s.

L(ζ) = τ + η

L(τ ) = ζ + η

L(η) = ζ + τ

The matrix representation of LY with respect to the basis < ζ, τ, η > is thus

LY =

 0 1 1
1 0 1
1 1 0


So the eigenvalues of the Laplacian are −1,−1,+2.
Now we will evaluate the y–eigenvalue for each of the poset tableaux for this L-block.

The only nontrivial node is node 4. Thus, the y–eigenvalue, ey(Λ), is the node-eigenvalue,

e4(Λ) = c(1, 2) + c(1, 3)−
(

2
2

)
. The result is given in figure 2.

Note that the y–eigenvalues of this labeling give exactly the same numbers as the eigen-
values of the Laplacian LY . In the next section we will show that this is not coincidental.



the electronic journal of combinatorics 2 (1995), #R14 21

∅r
r
r
r
r

ey(Λ) = 2

∅r
r
r
r
r

ey(Λ) = −1

∅r
r
r
r
r

ey(Λ) = −1

Figure 2: Example: the y-eigenvalues

5 Centerpiece Theorem for LY
Theorem 14 (LY -Centerpiece) Let P be a linear poset with a minimum element, 0̂. Let
X and Y be two (multi-)sets, subsets of P . For every labeling Λ of positive multiplicity,
each element in ey(Λ) is an eigenvalue of LY with multiplicity

∏
x-nodes v mv(Λ).

Proof:

The proof of this theorem will be by induction on the sizes of the (multi)-sets X and
Y . So let n = |X | = |Y | (counting multiplicities).

If n = 1 — there is nothing to prove as the Laplacian LY has no pairs to switch, and
the only y-node is the maximal element for the diagram of the L-block. The Laplacian LY
is the one-by-one zero matrix and the eigenvalue of this unique pair is zero.

Suppose n = 2. There are several different possible combinations of relations between
sets X = {x1, x2} and Y = {y1, y2}.

• The most obvious one is x1 < x2 < y1 < y2. In that case the Laplacian LY = (y1, y2),
and the two possible elements are ζ1 = zx1,y1∧zx2,y2 , ζ2 = zx1,y2∧zx2,y1 . The Laplacian
LY has the following matrix representation with respect to the basis 〈ζ1, ζ2〉:

LY =

(
0 1
1 0

)
The eigenvalues of LY are +1 and −1. The eigenvalue of the poset tableau of type
(X,Y )P is given in figure 3. It also gives values +1 and −1, so the claim of the
theorem holds.
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Figure 3: poset tableaux
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Figure 4: poset tableaux

• The second case is when

x1 < x2 <
y1

y2

In that case the Laplacian LY does nothing (since y1 and y2 are not comparable),
thus the eigenvalues of LY are 0. The dimension of the L-block spanned by (X, Y )
is two. The eigenvalues of the poset tableaux give the same values (figure 4), where
the ”·” in a box denotes which square was deleted in that step.

Thus in this case the theorem checks too.

• x1 < y1 < x2 < y2 or equivalently (for our purpose) x1 < y1 = x2 < y2.
There is only one poset tableau spanned by these sets X and Y , namely the one

shown on the figure 5.

The y-eigenvalue for the poset tableau is zero in both cases.

The Laplacian LY can not switch the y’s, since that would produce the element zx2,y1

which doesn’t exist. So the Laplacian LY also acts as zero.
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Figure 5: poset tableau
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Figure 6: poset tableau

• x1 < x2 < y1 = y2.
There is only one poset tableau spanned by these sets X and Y , namely the one
shown on the figure 6.

The y-eigenvalue is again zero (contents of the partition (2) minus the binomial

coefficient

(
2
2

)
). The Laplacian LY doesn’t have two distinct y’s to switch, thus, it

is zero.

• x’s are the same.

x1 = x2 <
y1

y2

There is only one poset tableau spanned by these sets X and Y , namely the one
shown on the figure 7.

The y-eigenvalue is zero. The Laplacian LY has no comparable y’s to switch - thus
LY = 0.

• x1 = x2 < y1 < y2. There is only one poset tableau spanned by these sets X and Y ,

namely the one shown on the figure 8.

The y-eigenvalue is equal to 1. The Laplacian LY can switch y1 and y2 but the result
would be the same element, since the x’s are indistinguishable. Thus the Laplacian
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Figure 8: poset tableau

LY = Id, with the eigenvalue 1.

• In the trivial case when the x’s are not comparable the y’s are not comparable because
of linearity and the existence of a minimal element. So we have

x1 < y1

x2 < y2
.

The poset tableau again gives zero as the y-eigenvalue, and since the y’s are not
comparable, the Laplacian LY is also zero.

So the theorem holds for the case n = 2.

Now, we will treat the general case n > 2.

• Label the y-nodes of the diagram of the L-block using the depth-first algorithm:

1. Start with a leftmost minimal y-element v.

2. If v is not the maximal unlabeled y-node go to the leftmost unlabeled cover of
v, and repeat this step. Otherwise label v with next available number from the
set {1, 2, . . . , |Y |}.

From this labeling we see that, yi > yj ⇒ i < j.

• Let P [X1, Y1], P [X2, Y2], . . . , P [Xc, Yc] be the connected components of P [X, Y ]. In
that case the L-block V is the tensor product of the L-blocks of the P [Xi, Yi]. The
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Laplacian LY switches only comparable y’s, and two y’s from different connected
components are not comparable. Thus

LY (v1 ⊗ · · · ⊗ vc) =

c∑
i=1

v1 ⊗ · · · ⊗ (LYivi)⊗ · · · ⊗ vc.

So if v1, . . . , vc are eigenvectors of LY with the eigenvalues e1, . . . , ec, then v1⊗· · ·⊗vc
is an eigenvector with eigenvalue e1 + · · ·+ ec. Thus, by induction, we can label each
of the components of P [X, Y ] to get the eigenvalues of LY on the total L-block V .

• Suppose that P [X,Y ] is connected. In that case, there must be a minimal element
in P [X, Y ], which must be an x-node.

Call the minimal element xn. Then define xn−1, xn−2, . . . , xa by:

1. xa > xa+1 > · · · > xn, where all > are covering relations.

2. Either

Case 1: There is more than one element covering xa.

Case 2: xa has unique cover in P [X, Y ] but it is a y-element.

Let B = {xa, . . . , xn}, and let G =Sym(B).

Lemma 15 Let σ ∈ G, and let ζ = zxi1 ,y1 ∧ zxi2 ,y2 ∧ · · · ∧ zxin ,yn be non-zero. Then

ζσ = zσ(xi1),y1 ∧ zσ(xi2),y2 ∧ · · · ∧ zσ(xin),yn

is also non-zero.

Proof: It is sufficient to prove the lemma for the transposition (xik , xil) ∈ G.

ζ(xik ,xil) = zxi1 ,y1 ∧ · · · ∧ zxil ,yl ∧ · · · ∧ zxik ,yk ∧ · · · ∧ zxin ,yn .

Now, since (xik , xil) ∈ B, i.e., xik , xil are both less or equal to xa, which is below all
of the y’s – the lemma is clear.

Lemma 16 This action of G commutes with LY .

Proof: Let ζ = zxi1 ,y1 ∧ zxi2 ,y2 ∧ · · · ∧ zxin ,yn be in our L-block, V , let yk <P yl and let
σ ∈ G. Then

σ · (yk, yl) · ζ = zσ(xi1),y1
∧ · · · ∧ zσ(xik ),yl ∧ · · · ∧ zσ(xil),yk

∧ · · · ∧ zσ(xin),yn

and

(yk, yl) · σ · ζ = zσ(xi1 ),y1 ∧ · · · ∧ zσ(xik ),yl ∧ · · · ∧ zσ(xil),yk
∧ · · · ∧ zσ(xin),yn .
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Figure 9: Case 1

So they are equal unless one of the expressions above is zero, and the other is not. The
only way for that to happen is in the middle step, i.e., either σ ·ζ = 0 or (yk, yl)·ζ = 0.
But we assumed the ζ 6= 0, and by our lemma above σ · ζ 6= 0. So the only possible
conflict is (yk, yl) · ζ = 0, and (yk, yl) · σ · ζ 6= 0. But since σ ∈ G, it only moves

elements of B which are allowed to be paired with any yk.

Let C(xa) = {v1, v2, . . . , vl} be the set of covers of xa. We will prove the following
generalization of the Centerpiece Theorem:

Theorem 17 Let Λ be a poset tableau of positive multiplicity, and let λi be the label
of vi in Λ. Let λ be a partition such that

cλλ1,...,λl
cλΛ(xa),1k(xa) 6= 0.

Then the occurrences of G-irreducibles Sλ in V can be indexed by such poset tableaux
Λ, and the Laplacian LY acts on Sλ as one of the scalars in eY (Λ).

5.0.1 Case 1

Suppose there are two or more subtrees above the node xa, in our poset P (as in
figure 9). Label the subtrees above the xa by T1, T2, . . . , Tr. Let Y = Y1∪Y2∪· · ·∪Yr
(Yi ⊂ Ti), where Yi ∩ Yj = ∅. Let ki = |Yi|, and let

Yi = {yk1+k2+···+ki−1+1, . . . , yk1+···+ki−1+ki}.

Because of our labeling, we know that all relations between y’s are contained within
the sets Yi, i.e., yi <P yj implies that both yi, yj are in the same Yk.

Let bi be the number of yj’s in Ti minus the number of xj’s in Ti (note that in general
Ti will have more yj’s than xj’s). In other words, bi = |Yi| − |X ∩ Ti|.
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Consider element ζ = zxi1 ,y1 ∧ zxi2 ,y2 ∧ · · · ∧ zxin ,yn . If we want ζ to be non-zero, there
will be exactly bi xj ’s from B in ζ paired up with the yj’s of Ti.

Split the L-block
V = ⊕(S1,S2,...,Sr)V [S1, S2, . . . , Sr], (15)

where S1 ∪ S2 ∪ · · · ∪ Sr = B, |Si| = bi, and V [S1, . . . , Sr] is the span of all ζ with

exactly the elements of Si paired with the y’s from Ti.

Lemma 18 1. As a vector space

V [S1, . . . , Sr] ∼= V (X1 ∪ S1, Y1)⊗ V (X2 ∪ S2, Y2)⊗ · · · ⊗ V (Xr ∪ Sr, Yr),

where Xi and Yi are the multisets of the x and y elements of the subtree Ti.

2. With respect to the decomposition in 1., the Laplacian LY acts as:

LY (v1 ⊗ · · · ⊗ vr) =
∑
i

v1 ⊗ · · · ⊗ (LYivi)⊗ · · · ⊗ vr.

Proof: Statement 1. is clear by the definition of V [S1, . . . , Sr]. To prove statement
2., we only need to recall that the Laplacian LY switches comparable y’s, and that
y’s in different subtrees can not be comparable because of linearity of the poset. LY
can switch only y’s in the same subtree Ti.

Let Gi = Sym(Si). Note that G1 ×G2 × . . .×Gr acts on V [S1, S2, . . . , Sr]. Let si be
the minimal node of subtree Ti.

Now apply the induction hypothesis to L-blocks, Vi = V (Xi ∪ Si, Yi). According to
our theorem this gives the decomposition of the L-block Vi as Gi-module, and the
eigenvalues of LYi are indexed by poset tableau of shape µi ` |Si|. Moreover each

poset tableau of shape µi with eigenvalue ei represents a copy of the irreducible Sµi

in the ei-eigenspace.

Now, as a G1 × . . . × Gr module we know the eigenspaces of LY are given by our
labeling up to the points si where the partitions µi come together at xa.

Lemma 19 As a G =Sym(B)-module, the space V is

V ∼= indSym(B)

(Sym(S0
1) × · · · × Sym(S0

r ) )
(V [S0

1 , . . . , S0
r ]),

where (S0
1 , . . . , S0

r ) is any fixed ordered partition of B.

Proof: Choose S0
i = {xa+b1+···+bi−1

, xa+b1+···+bi−1+1, . . . , xa+b1+···+bi−1}. Let Sh denote
the set of permutations σ ∈ Sym(B) such that σ(u) < σ(v) whenever u, v are in the

same set S0
i for some i. There is 1–1 correspondence between the σ ∈ Sh and the

sequences indexing the summands in the 15, namely

σ ↔ (Sσ1 , . . . , Sσr )
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where Sσi = {σ(u) : u ∈ S0
i }. Also Sh is a collection of coset representatives for

Sym(S0
1)×· · ·×Sym(S0

r ) in Sym(B). Thus we have a natural vector space isomorphism

between V and
V [S0

1 , . . . , S0
r ]⊗(Sym(S0

1) ×· · · × Sym(S0
r )) Sym(B).

It is straightforward to check that this isomorphism commutes with the action of

Sym(B).

Let Λi be a poset tableau of type (Xi∪Si, Yi) , where µi ` bi is the label of the vertex

si. By our inductive hypothesis the Laplacian LY acts as a scalar on the irreducible
Sµi, i.e., LY |Sµi = eY (Λi). Applying Lemma 18 part 2., we have

LY (v1 ⊗ · · · ⊗ vr) =
∑
i

v1 ⊗ · · · ⊗ (LYivi)⊗ · · · ⊗ vr

=
∑
i

v1 ⊗ · · · ⊗ eY (Λi)vi ⊗ · · · ⊗ vr

= (
∑
i

eY (Λi))(v1 ⊗ · · · ⊗ vr).

Now, we will use the fact ([16, 17, 24]) that

(Sµ1 ⊗ · · · ⊗ Sµr) ↑GG1×···×Gr= ⊕λ`|B|c
λ
µ1,µ2,...,µr

Sλ.

Thus we have cλµ1,µ2,...,µr copies of the G-module Sλ which explains why this is the
multiplicity of the label λ on node xa in our labeling.

• Now we have to decide what is the dimension of each eigenspace. But that is some-
thing we will have to do in the second case too - so we will do it for both cases at the
end.

5.0.2 Case 2

Let A = {yn−k+1, . . . , yn} be the largest possible set so that

xa ≤P yn ≤P yn−1 ≤P · · · ≤P yn−k+1

and there are no xi’s with yn ≤P xi < yn−k+1. Call A the ”terminal Y -set of V ”
(figure 10). Note that |B| ≥ |A|. Split the L-block

V = ⊕(a1,...,ak)V (a1, . . . , ak)

for (a1, . . . ak), a sequence of distinct elements of length k from B, and the vector
space V (a1, a2, . . . , ak) represents the span of all ζ which are of the form

ζ = zx1,y1 ∧ · · · ∧ zxn−k,yn−k ∧ za1,yn−k+1
∧ · · · ∧ zak,yn
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Figure 10: Case 2

For the moment assume that all of the elements xa, . . . , xn are distinct and all of
yn−k+1, . . . , yn are distinct. Then we will look back at how we must modify the
argument when some of the xi’s and yj’s are equal.

Fix the sequence (a1, . . . , ak), let B′ = B\{a1, . . . , ak} and let G′ be the subgroup
G′ = Sym(B′) ≤ G. Note that G′ acts on V (a1, . . . , ak).

Lemma 20 V (a1, . . . , ak) is isomorphic to the L-block V0 given by the following sets:

X ′ = X\{a1, a2, . . . , ak} and Y ′ = Y \{yn−k+1, . . . , yn}.

Proof: The isomorphism ψ : V (a1, . . . , ak)→ V0 is an obvious one

ψ(zx1,y1 ∧ · · · ∧ zxn−k,yn−k ∧ za1,yn−k+1
∧ · · · ∧ zak ,yn) = zx1,y1 ∧ · · · ∧ zxn−k,yn−k .

It is clearly a bijective linear map.

• Now let’s examine the L-block given by X ′ and Y ′. Let Â be the terminal Y -set for

X ′, Y ′. Let B̂ = B′∪{new xi’s} be the xi’s below Â. Let NB denote the set of those
new xi’s. Let Ĝ = Sym(B̂). Note that G′ ≤ Ĝ.

If Â = ∅ then there are no y’s in the interval (yn−k+1, v0]. In that case the group Ĝ is
the group described in the case 1., i.e., Ĝ = G1 ×G2 × · · · ×Gr, where Gi is acting
on the subtree Ti above xa.

Now apply the induction hypothesis to X ′, Y ′. This gives the decomposition of the
L-block as a Ĝ-module. The theorem says that the irreducible summands are indexed
by the (X ′, Y ′) poset tableaux Λ̂ of shape λ′ (where λ′ ` |B̂|), and ”shape” means
that the minimal element s of Â is labeled with λ′. Also the theorem tells us that the

Y -Laplacian LY for (X ′, Y ′) acts like the scalar eY (Λ̂) on this copy of the irreducible
Sλ
′
. From this we can deduce by restriction from Ĝ to G′ the following
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Lemma 21 As a G′-module, the space V (a1, . . . , ak) decomposes as a sum over all
(X ′, Y ′) tableaux Λ̂ of shape λ′ of the module

Sλ
′ ↓ĜG′

Moreover the Laplacian LY for (X ′, Y ′) acts like the scalar eY (Λ̂) on this entire re-
striction.

Let Ch(λ′, µ′) be the set of chains λ′ ≥ λ1 ≥ · · · ≥ µ′ where the steps in the chain of

the partitions are all of size 1.

Now using the fact [16] that

(Sλ
′
) ↓ĜG′= ⊕µ′`|B′|Sµ

′|Ch(λ′, µ′)|,

we can rewrite this lemma to say that the sum is over all extensions of Λ̂ to a labeling
of the new xi’s of Sµ

′
where the extension gives the label µ′ to t, the minimal element

of the set NB.

• Now we need one last lemma.

Lemma 22 As a G-module V ∼= indGG′(V (xn−k+1, . . . , xn)).

Proof: For each sequence α = (a1, . . . , ak) let πα be the permutation in G which maps
ai to xn−k+i and which leaves the elements of B\{a1, . . . , ak} in increasing order. Then
πα is a set of coset representatives for G\G′. Since there is one for every α this shows
that as vector spaces

V ∼= V (xn−k+1, . . . , xn)⊗G′ �(G).

Let g ∈ G, let (a1, . . . , ak) = α be a sequence, and let bi = g(ai), β = (b1, . . . , bk).

Then

g(zx1,y1 ∧ · · · ∧ zxn−k,yn−k ∧ za1,yn−k+1
∧ · · · ∧ zak,yn) =

= zg(x1),y1 ∧ · · · ∧ zg(xn−k),yn−k ∧ zb1,yn−k+1
∧ · · · ∧ zbk ,yn

= (π−1
β gπα)zx′1,y1

∧ · · · ∧ zx′n−k,yn−k ∧ zxn−k+1,yn−k+1
∧ · · · ∧ zxn,yn,

where x′i is obtained by replacing the elements of {xa, . . . , xn}\{a1, . . . , ak} by the

elements of the set {xa, . . . , xn−k} in order. This computation shows that the vector
space isomorphism above is a G-module isomorphism.

Now putting all the claims together with the fact([16]) that

indSym(B)

Sym(B′)(S
µ′) = ⊕Ch(λ,µ′)S

λ, (16)

shows that as a module for G, V decomposes as a sum, over all (X, Y ) poset tableaux

Λ of shape λ, of a copy of Sλ. In the expression 16 we know by induction that
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the Laplacian LY ′ involving all switches which do not involve the terminal set, i.e.,
LY ′ = LY − L0 (where L0 is the sum of the switches involving the terminal Y -set),

acts like the scalar eY (Λ′), where Λ′ is the labeling as far as the point t (the minimal
x above A). The switches involving the terminal Y -set A must be studied. But
those yi in A can either be switched with each other or with yj that are above an
xi ∈ B. By the choice of the terminal set A, yi is comparable to yj for all yi ∈ A. It

follows that L0 acts on V = ⊕V (a1, . . . , ak) by the sum of all transpositions (xi, xj)
for xi ∈ B, xj ∈ {a1, . . . , ak}. In terms of our induced module, L0 acts on

indGG′(S
µ′) = Sµ

′ ⊗�G′ �G

like left multiplication on �G by
∑

xi,xj∈B(xi, xj)−
∑

xi,xj∈B′(xi, xj).

But
∑

xi,xj∈B′(xi, xj) passes through ⊗�G′ to act on Sµ
′

like the scalar
∑

x∈µ′ cx [24].

And
∑

xi,xj∈B(xi, xj) acts on each G-irreducible Sλ in Sµ
′ ⊗�G′ �G like

∑
y∈λ cy. The

result is that L0 acts on each copy of Sλ in indGG′(S
µ′) like

∑
y∈λ/µ′ cy. This explains

the scalars eY (Λ) and their multiplicity.

In order to be able to add the eigenvalues of LY ′ and L0, we need the following lemma.

Lemma 23
L0 · LY ′ = LY ′ · L0

Proof: Let (xi, xj) be a transposition in Sym(B), where xi ∈ B′, and let (xi, xk) be a
transposition of LY ′. By the choice of B we know that (xj, xk) is also transposition
in LY ′ , and since

(xi, xj)(xi, xk) = (xj , xk)(xi, xj)

the lemma is clear.

• Now we want to consider the case where some of the elements of the sets A, B, and
NB = {new x’s} are equal. So let’s write

A = α1 ∪ α2 ∪ . . . ∪ αl,
B = β1 ∪ β2 ∪ . . . ∪ βm,

NB = γ1 ∪ γ2 ∪ . . . ∪ γn,

where |αi| = ai, |βi| = bi and |γi| = ci, and the y’s in each of the αi are equal, the x’s
in each of the βi are equal, and the x’s in each γi are equal.

Let

ΠA =
∑
σi∈Sαi

σ1 × σ2 × . . .× σl

ΠB =
∑
σi∈Sβi

(
∏

sgn(σi))σ1 × . . .× σm

ΠNB =
∑
σi∈Sγi

(
∏

sgn(σi))σ1 × . . .× σn.
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These projections commute with the Laplacian LY according to lemma 12.

Let Π be the projection Π = ΠA × ΠB × ΠNB , where the ΠA acts on the y’s while
the other two projections act on the set of the x’s. Then the projection Π projects

our original space (with all of the x’s and y’s distinct) examined in the previous
paragraph to the space where yi’s in each αi, x’s in each βi and γi are equal. Each of
the components of Π commutes with LY so we know that Π and LY commute.

Lemma 24 The projection Π maps the L-block V with all x’s and y’s distinct to the
L-block ΠV , where αi, βi and γi are sets of equal elements.

Proof: Let ζ = zx1,y1
∧ · · · ∧ za1,yi1

∧ · · · ∧ zak,yik ∧ · · ·∧ zxn,yn. Note that if yi = yj , the

element ζ(i,j) and ζ are the same. In general, if σi ∈ Sαi , then ζσi = ζ. So we need to
identify all equal elements. This is accomplished by projecting with a symmetrizer,
i.e., we identify the class of elements ∪σ∈Sαiζ

σ with the sum
∑

σ∈Sαi
ζσ. But ΠA does

exactly this identification, ΠA =
∑

σ∈Sαi
ζσ. The same is true for ΠB and ΠNB.

NOTE: When we deal with the projection ΠA there is one important point we have

to make. The Laplacian LY switches all comparable pairs of y’s. If two of the y’s are
the same – they would not get switched.

Therefore, when we observed the Laplacian L0, we have to subtract all switches
involving two y’s from the same αk. Each of these transpositions doesn’t move any

of the y’s (or x’s), and there are exactly

(
ak
2

)
of them. Thus, we have to subtract(

ak
2

)
from the eigenvalue

∑
y∈λ/µ′ cy of L0.

Thus we can write our space V as a direct sum of the eigenspaces

V = ⊕wVw,

where the sum is over all eigenvalues w of LY .

We want to know the eigenvalues of LY on the image ΠV . We will use that fact that
the multiplicity of w as an eigenvalue on ΠV is the dimension of ΠVw.

So we need to compute the dimension of ΠVw. At present we have Vw written in
terms of labellings of poset tableaux. So pick such a labeling which at the end has

a λ′ at vertex s coming down to a µ′ at vertex t then back up to a λ at vertex yn
(using the notation of this proof). This represents a piece of the eigenspace of the
corresponding eigenvalue w where Ĝ = Sym(B̂) acts like Sλ

′
and G′ = Sym(B′) acts

like Sµ
′
. We need the following lemma.

Lemma 25 Let B′ ⊂ B̂, NB = B̂\B′. Then the multiplicity of Sµ
′

in ΠNBSλ
′

is
equal to the number of ways to get µ′ from λ′ by successfully removing vertical strips
of lengths c1, c2, . . ..
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Note: As a consequence of this lemma, when we came to an x-node v of the repetition
number k(v) we have to remove a vertical strip of length k(v).

Proof of lemma: Recall that NB = γ1∪γ2∪. . .∪γn. The projection ΠNB projects onto
the sgnγ1

⊗ sgnγ2
⊗ · · ·⊗ sgnγn isotypic component of Sλ

′
considered as a Sγ1 × . . .Sγn

module. Thus, for µ′ a partition of |B′|,

〈ΠNBS
λ′ , Sµ

′〉SB′ = 〈Sλ′, Sµ′ ⊗ sgnγ1
⊗ · · · ⊗ sgnγn〉SB′×Sγ1×...×Sγn

= (# of ways to get µ′ from λ′ by successively removing
vertical strips of lengths c1, c2, . . .)

Now consider the next step of going up from µ′ to λ. At this point we have a piece
of the w-eigenspace on which B′ acts like Sµ

′
.

The multiplicity coming from this Sµ
′

is dim(ΠAindGG′(S
µ′)ΠB). We need to check

how ΠA acts on the induction indGG′(S
µ′) = Sµ

′ ⊗�G′ �G. The σ ∈ ΠA permutes the

y’s. We identified the induction by identifying the sequence of the xi’s that are paired
with the set A. So switching yi’s has the effect in Sym(B) of switching the positions
corresponding to B\B′. In other words, ΠA−ΠB has the effect of projecting onto the

(trivial ⊗ sgn) characters of (Sα1 × . . .×Sαl)× (Sβ1 × . . .×Sβm) ⊂ SB\B′ ×SB where
SB\B′ × SB is acting on Sµ

′ ⊗�G′ �G via left multiplication on �G by SB\B′ and right
multiplication on �G by SB . So to determine dim(ΠAindGG′(S

µ′)ΠB) it will be helpful
to know the decomposition of the induction indGG′(S

µ′) as a SB\B′ × SB-module.

Lemma 26 ([12]) Let µ′ ` m, G = Sr, G′ = Sm and H = Sr−m (acting on
{m + 1, . . . , r}). Then as a H × G module, the induced representation Sµ

′ ⊗�G′ �G
decomposes as

indGG′(S
µ′) = ⊕λ`r,µ⊂λSλ/µ ⊗ Sλ.

Now armed with that lemma, let us return to the dimension count.

dim(ΠAindGG′(S
µ′)ΠB) =

= 〈(indGG′(S
µ′)) ↓, (εα1 ⊗ · · · ⊗ εαl)⊗ (sgnβ1

⊗ · · · ⊗ sgnβm)〉
=

∑
λ`n,µ′⊂λ

〈(Sλ/µ′) ↓, (εα1 ⊗ · · · ⊗ εαl)〉〈Sλ ↓, sgnβ1
⊗ · · · ⊗ sgnβm〉

=
∑

µ′⊂λ`n
〈(Sλ/µ′ ⊗ Sλ) ↓, (εα1 ⊗ · · · ⊗ εαl)⊗ (sgnβ1

⊗ · · · ⊗ sgnβm)〉

=
∑
λ`n

(# of ways to get λ from µ′ by adding horizontal strips of lengths
α1, α2, . . . ) · (# of ways to get λ from ∅ by removing a vertical
strips of lengths β1, β2, . . . )
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= (# of poset tableaux labellings from µ′ up to λ then down to ∅, which
add a horizontal strip of length k for every y-vertex of repetition number
k and subtract a vertical strip of length k for every x-vertex of repetition
number k.)

This completes the proof of the theorem.

5.1 Adding the LX

Consider the Laplacian LX . Since we have identified the L-block V with a subspace of the
symmetric group algebra �Sn, by fixing the order on the x’s, every time the Laplacian LX
switches a pair of x’s, it is actually putting a minus sign in front of the corresponding basis

element, with the x’s ordered. Since LX acts as a sum of transpositions, every eigenvalue
we obtain from the LX , will have a minus sign.

Recall the multiplicity of the x-node. Let v be an x-node of the diagram P [X, Y ], labeled
with the partition Λ(v) and with repetition number k(v). Let C(v) = {v1, v2, . . . , vl} be

the set of covers of v. Let λi denote Λ(vi), and let ki denote the repetition numbers, k(vi).
The multiplicity of Λ at v is defined to be

mv(Λ) =
∑
µ

cµλ1,...,λl
cµ

Λ(v),1k(v).

The node–eigenvalue, ev(Λ), for each node v, is the set of sums of the content over

all squares in µ/Λ(v) above for a given µ minus the binomial coefficient

(
k(v)

2

)
.

This gives mv(Λ) eigenvalues at each x-node v. We now define the x-eigenvalue of Λ,
ex(Λ), to be the set of numbers obtained by taking a sum of one element of ev(Λ) for each
x-node v. So |ex(Λ)| =

∏
x-nodes v mv(Λ).

Theorem 27 (LX-Centerpiece) Let P be a linear poset with a minimum element, 0̂. Let
X and Y be two (multi-)sets, subsets of P . For every labeling Λ of positive multiplicity,

each element in ex(Λ) is an eigenvalue of LX.

Proof:
The proof of this theorem is similar to the proof of the LY -Centerpiece Theorem. We

will omit the details here.
Since LX and LY commute (as established in Lemma 13 ), the eigenvalues of LX +LY

will be the sum of the eigenvalues on the corresponding irreducibles of the eigenspaces.
Recall that the complete Laplacian L is the sum of three things (from the beginning of

this section):
L = LD + LX + LY

The LD component is the diagonal matrix, which on the L-block V spanned by the sets

(X, Y ), has value:

eD(X, Y ) = w(X, Y ) + ∆(X, Y )
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∅r
r

Figure 11: A diagram of the L-block

w(X, Y ) =

k∑
m=1

|(xm, ym)|

∆(X, Y ) =
∑
i,j

δxi,yj

The computer evidence strongly supports the following conjecture:

6 Complete Centerpiece Conjecture

Conjecture 28 Let P be a linear poset with a minimum element, 0̂. Let X and Y be
two multisets of vertices of P . Let eD(X, Y ) be defined as above. For every poset tableau

Λ of positive multiplicity, let τY (Λ) ∈ eY (Λ) and let τX(Λ) ∈ eX(Λ). Then the scalars
e(Λ) = τY (Λ)− τX(Λ) + eD(X, Y ) are the complete set of eigenvalues of the Laplacian L.

This conjecture claims that the same poset tableau will work simultaneously for both
Laplacians (LX and LY ),i.e., that the eigenvalues of the Laplacian L are the sum of the
eigenvalues of LY and the eigenvalues of LX evaluated simultaneously with the same poset

tableau.

7 Homology

The object of the paper is to get a step closer to evaluating the homology of any Lie algebra
corresponding to a linear poset, using only combinatorial properties of the poset. In these
two small cases (n=1 and n=2) we had no difficulty. For larger n, we need some extra

results.

7.1 H1

For example, if we want to evaluate the homology H1(LP ) of a Lie algebra LP corresponding
to a linear poset P , with 0̂, our construction gives an immediate answer.

An L-block V of size 1, is determined by the sets (X, Y ), X = {x}, and Y = {y}.
Obviously, if we want V to be non-zero, x <P y. So the corresponding diagram of this
L-block is given in figure 11.

Both indicators eY and eX are zero, so the eigenvalues are given by eD. But ∆(X, Y ) = 0

too, since X ∩ Y = ∅. Thus L(zx,y) = w(X, Y )zx,y = |(x, y)|zx,y. In other words, the
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e(Λ) = 0
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r

e(Λ) = 0

Figure 12: poset tableaux

eigenvectors of the Laplacian L1 are the basis vectors zx,y, and the corresponding eigenvalues
are |(x, y)|, i.e., the number of the vertices in the poset P , between x and y.

The dimension of the homology is the number of zero eigenvalues, i.e., the number of
the intervals zx,y, such that y covers x.

Thus
dim(H1(LP )) = (# of covering relations in P ).

7.2 H2

In this case the L-block V in question is spanned by the (multi–)sets (X, Y ), each of size
2, i.e., X = {x1, x2} and Y = {y1, y2}. There are several possibilities for the L-block.

1. All four elements are comparable, and x’s are below the y’s.

x1 < x2 < y1 < y2.

All possible poset tableaux are shown in figure 12.

As we can see, both eY and eX eigenvalues are zero. So we don’t have to worry how
to add them up - we will always get zero. ∆ is also zero, since the sets X and Y are

disjoint. Thus again, the Laplacian is L(zx1,y1 ∧ zx2,y2) = w(X, Y )(zx1,y1 ∧ zx2,y2). But
in this case, both intervals contain at least one element, so w(X, Y ) > 0. Thus in this
case we never get a zero eigenvalue, which might contribute to the homology H2.

2. y’s are not comparable.

x1 < x2 <
y1

y2
.

All possible poset tableaux are shown in figure 13.

The value of eY is zero, while the values of eX are +1 and -1. Since eD is always
non-negative, the value +1 cannot contribute to homology H2. The other value can,
but only if eD is +1. That means that all of the relations indicated: x1 < x2, x2 < y1

and x2 < y2 are covering relations in the poset P . Whenever we have a four-element



the electronic journal of combinatorics 2 (1995), #R14 37

∅r
r
r
r

e(Λ) = −1
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e(Λ) = +1

Figure 13: poset tableaux

∅

∅

r
r
r
r

e(Λ) = 0

Figure 14: poset tableau

subset of the poset P , with covering relations x1 < x2, x2 < y1 and x2 < y2, we will
call that a ”Y“-configuration. Thus in this case every occurrence of ”Y“-configuration

(described as above) in the Hasse diagram of the poset contributes to the homology
H2.

3. x1 < y1 < x2 < y2 or equivalently (for our purpose) x1 < y1 = x2 < y2.
There is only one poset tableau spanned by these sets X and Y , namely the one
shown in figure 14.

Since the space is one dimensional, we will add the eigenvalues in the only possible

way. In the first case, the eigenvalue will be zero, if and only if both relations, x1 < y1

and x2 < y2, are covering relations, i.e., every occurrence of a distinct (all vertices
are distinct) pair of covering relations contributes to the dimension of the homology
H2. If the second case occurs, i.e., if y1 = x2 then ∆ will contribute to the eigenvalue,

and it won’t be zero anymore.

4. x1 < x2 < y1 = y2.

There is only one poset tableau spanned by these sets X and Y , namely the one
shown on the figure 15.
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e(Λ) = −1

Figure 15: poset tableau
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e(Λ) = 0

Figure 16: poset tableau

Since the space is one dimensional, we will add the eigenvalues in the only possible
way. The eigenvalue will be zero, if and only if x2 covers x1, and both y1 and y2 cover

x2. Note that this is a degenerate letter ”Y“, with a joint top vertex. Every such
occurrence contributes to the homology H2.

5. x’s are the same.

x1 = x2 <
y1

y2
.

There is only one poset tableau spanned by these sets X and Y , namely the one
shown in figure 16.

Since the space is one dimensional, we will add the eigenvalues in the only possible
way. The eigenvalue will be zero, if and only if both y1 and y2 cover x1 = x2. Again,

it is a pair of distinct covering relations with joint vertex, this time the x-vertex.
Every such occurrence contributes to the homology H2.

6. x1 = x2 < y1 < y2. There is only one poset tableau spanned by these sets X and Y ,
namely the one shown on the figure 17.

Since the space is one dimensional, we will add the eigenvalues in the only possible
way. Since eD is always non-negative, the value +1 cannot contribute to homology

H2.

7. The trivial case when x’s are not comparable (so because of linearity and the minimum

element neither are y’s).
x1 < y1

x2 < y2
.
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e(Λ) = 1

Figure 17: poset tableau

This is equivalent to case 3. We have two distinct covering relations, so it contributes
to the homology H2.

All together, the dimension of the homology H2 is in fact the number of distinct pairs
of covering relations + the number of occurrences of letter “Y” in the poset P . In other
words, if H is a Hasse diagram of a poset P , with e edges, and γ letter “Y”’s (degenerate

or not), we have H1(LP ) = �
e and H2 = �

(
e
2

)
+γ

.

7.3 Examples

• For example, suppose that we are dealing with the chain poset on n vertices (1 < 2 <
· · · < n), Tn. The number of non-degenerate Y’s is zero. The number of degenerate
letters Y is (n-2). The number of edges in the Hasse diagram is (n-1). Hence

H1(Tn) = �
n−1,

and

H2(Tn) = �

n−2+

(
n− 1

2

)
= �

(n+1)(n−2)
2

• Let the poset P be given in figure 18, where the length of the chains are m and n.
This is in fact equivalent to having two disjoint chains, of length m and n. Thus the

corresponding homologies will be H1 = �
n−1+m−1, and H2(Tn) = �

(n+1)(n−2)
2

+
(m+1)(m−2)

2

8 Conclusion

These results have several interesting corollaries that are of a combinatorial nature. We
will state one. Let P be a rooted tree on n nodes and let Σ be the sum in the group algebra
of Sn of all transpositions (i, j) such that i is on the unique path from j to the root in P .

Then Σ acting on �Sn by left multiplication has non-negative integer eigenvalues and the
corresponding eigenspaces can be identified in representation-theoretic terms.

There is still a lot to do in this area. Although my work provides partial answers
and a conjecture for all rooted trees, the question is still open for other posets. What
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Figure 18: poset P

happens in those cases is very difficult to control, since the expression for the Laplacian
becomes more complicated. In the tree case I wish to examine a twisting of the Laplacian
by a parameter α which, my advisor has shown, is related to Jack polynomials and the

Krawtchouk polynomials in certain special cases. Lastly I would like to see if the more
algebraic consequences of Kostant’s theorem have sensible analogues in my case.
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