
Exact Mixing in an Unknown Markov Chain
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Abstract

We give a simple stopping rule which will stop an unknown, irreducible n-state Markov
chain at a state whose probability distribution is exactly the stationary distribution of the
chain. The expected stopping time of the rule is bounded by a polynomial in the maximum
mean hitting time of the chain. Our stopping rule can be made deterministic unless the
chain itself has no random transitions.
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1 Introduction

Suppose a Markov process s0, s1, s2, . . . on the state space {1, 2, . . . , n} is observed, with no

knowledge either of the transition probabilities or the distribution of s0. Unless the process

is reducible (some states inaccessible from others) or periodic, the probability distribution of

the state sm will be approximately equal to the stationary distribution π of the process, for m

sufficiently large.

In fact, this approach to sampling from a state space according to the stationary distribu-

tion is the basis for numerous recent estimation algorithms (see, e.g., [1], [16], [17]). Typically

the initial state is fixed, the process is reversible (representable as a random walk on a graph)

and some bound is obtained for the “mixing time” m. The payoff has been polynomial time

randomized approximation algorithms for counting combinatorial objects such as matchings

[17, 10], linear extensions [18], and Eulerian orientations [20]; estimating the volume of a

convex body [16, 19]; and for Monte Carlo integration [6].

There is no a priori reason why a state must be sampled at a fixed number of steps. If the

transition probabilities are known, a stopping rule which “looks where it is going” is capable

of reaching the stationary distribution rapidly and exactly; in [5] a construction is given for

intelligent stopping rules that achieve any target distribution in both the minimum expected
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number of steps and the minimum maximum number of steps. Several formulas and bounds

are given for the number of steps Tmix required by an optimal stopping rule (starting from the

worst state).

When the transition probabilities are not known, an intelligent stopping rule can be used

to examine the process and then estimate how many steps must be taken to approximate the

stationary distribution. Using this approach Aldous [3] comes within total variation ε of the

stationary distribution in time polynomial in 1/ε and linear in the maximum hitting time of

the chain.

Since it is obviously impossible to compute the stationary distribution of an unknown

chain exactly, it seems a bit surprising that one can achieve it exactly. Nonetheless that is

what is done in Asmussen et al. [7]. However, the algorithm employed there is complex and

requires perfect generation of random variables with certain exponential distributions. The

expected number of steps required appears to be super-polynomial in the maximum hitting

time, although no bound or estimate is given in the paper.

It turns out, however, that there is a simple, combinatorial stopping rule which can reach

the stationary distribution exactly, in any irreducible, n-state Markov chain; the rule requires

only coin-flips for its randomization and can even be made deterministic unless the chain itself

is completely deterministic. The expected stopping time of the randomized rule is bounded

by a polynomial (namely, 6h4) in the maximum hitting time of the chain.

We point out that this time bound is not good enough for the randomized algorithms

mentioned above, since in them the approximately stationary distribution is achieved in a

time O(Tmix), which is typically polylogarithmic in h. But this shortcoming of our algorithm

cannot be fixed; we will show that mixing in an unknown Markov chain cannot be achieved in

time less than h.

2 Notation and Preliminaries

In what follows M = {pij} is the transition matrix for an irreducible Markov chain on the

state space S = {1, 2, . . . , n}. Let π = (π1, . . . , πn) be the stationary distribution of the chain,

so that πTM = πT.

Following the notation of Aldous (see e.g. [1]), we let Tj be the number of steps before first

arrival at state j, with EiTj being the expected value of Tj when the process is begun in state
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i. Then what we have been calling the “maximum hitting time” is maxi,j∈S EiTj and will be

denoted here by the letter h. The maximum hitting time is a lower bound on the cover time,

which is the expected number of steps before all states are visited, maximized over all starting

states.

We think of a stopping rule as a (possibly randomized) algorithm which, based on states

so far seen, decides at each step whether to stop the Markov chain. Since we are interested in

stopping rules that work for an unknown chain, the rule must decide when to stop based on the

pattern of the states visited. This implies that such a rule needs substantial time; for example,

we cannot rely on repetitions before n steps. (The “time” taken by a stopping rule is merely

the expected number of steps before stopping, and has nothing to do with the computational

complexity of the algorithm itself. However, our algorithm will only use polynomial time

computations.) In fact, we show that the cover time is a lower bound on the expected number

of steps. This follows immediately from the next observation.

Proposition 1 Let the number n of states be fixed. Consider any stopping rule that decides

when to stop based on the pattern of the states seen before, and assume that for every Markov

chain on n states, the distribution of the state where it stops is the stationary distribution.

Then it never stops without visiting all nodes.

Proof. Consider any Markov chain M on n states, and consider a walk (v0, . . . , vt) that is

stopped before seeing all states, and let j be state not visited. We replace j by a nearly

absorbing state as follows. Construct a new Markov chain M ′ by replacing pji by δpji for all

i 6= j and pii by 1− δ(1− pjj), where δ is very small. The stationary distribution of the new

chain is π′i = δπi/(πi + δ − δπi) for i 6= j and π′j = πj/(πj + δ − δπj). The walk (v0, . . . , vt)

has the same probability in the old chain as in the new, and hence it must not exceed π′(vt),

which tends to 0 as t→∞. This is a contradiction. 2

The same argument holds if we assume only that the probability of stopping at any state

is at most some constant times its stationary probability.
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3 Random Trees

Definition. Let j ∈ S. A j-assignment is a function Aj : S \ {j} −→ S. The weight w(Aj)

is defined by

w(Aj) :=
∏
i 6=j

p(i,Aj(i)) .

We may, for example, define a j-assignmentAtj by “first exit after time t”, that is, Atj(i) = wk+1

where k = min{t′ : t′ ≥ t andwt′ = j}. Then we can interpret w(Aj) as the probability

Pr(Atj = Aj) that a particular assignment Aj occurs in this construction, since all the exits

are independent.

A j-assignment Aj defines a directed graph on S by placing an arc from i to Aj(i) for each

i 6= j; we say that Aj is a j-tree if this graph is a tree, necessarily an in-directed tree rooted

at j. We denote by Υj the set of all j-trees on S. The following “random tree lemma” (which

can be verified by straightforward substitution) has been, according to Aldous [2], frequently

rediscovered; the earliest explicit reference we know of is [15], but it also follows easily from

Tutte’s matrix-tree theorem (see e.g [8]).

Lemma 1 For any state j ∈ S,

πj = w(Υj)/
∑
i∈S

w(Υi)

where w(Υi) :=
∑
A∈Υi

w(A).

Remark. It may be instructive to describe the following construction related to the lemma.

Run the Markov process given by M from−∞ to +∞ and for each time t, define a k-assignment

At by last prior exit, where k is the state of the chain at time t. In other words, for each i 6= k,

if ti is the last time before t at which the chain is in state i, then At(i) is defined to be the

state of the chain at time ti + 1. Note that At must be a tree, rooted at k, since all the arcs

are oriented forward in time. Furthermore, At+1 depends only on At and the state at time

t+ 1, so we now have a stationary Markov process on trees.

Suppose now that the probability distribution of the tree observed at time t is given by

Pr(At) = cw(At), where c is (necessarily) the reciprocal of the sum of the weights of all trees

on the state space S. If a certain fixed tree A rooted at k is to occur at time t+ 1, then its

predecessor, the tree At at time t, must be constructible from A by adding the arc k → i for
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some i, and then removing exactly the arc i → j where j = j(i) is the last state before k in

the path from i to k in A. For such an At the a priori probability of achieving A at the next

step is just pj,k, thus the total probability of seeing A at time t+ 1 is

∑
i∈S

[
pj(i),k

(
cw(A) · pk,i

pj(i),k

)]
= cw(A) .

It follows that cw(·) is the stationary distribution for our tree process, but of course the

stationary distribution for the roots is just π so we have that πi is proportional to w(Υi).

Aldous [2] and Broder [11] use a closely related construction to design an elegant algorithm

to generate a random spanning tree of a graph.

Lemma 1 already provides a stopping rule, described below, that attains the stationary

distribution. In contrast to the procedure described above, the stopping rule constructs a

random j-assignment by looking forward in time; then, as previously noted, the probability of

a given assignment is exactly its weight, independent of the starting state. The price we pay

is that the assignment is no longer necessarily a tree.

1. Choose a state j uniformly from S, and set current time equal to 0.

2. For each i ∈ S \{j} let ti be the least t ≥ 0 at which the chain is in state i, and set Aj(i)

to be the state of the chain at time ti + 1.

3. By the time every state i ∈ S \ {j} has been exited, we will know whether the resulting

assignment Aj is a tree. If it is, we continue until the chain reaches j and then stop; if

not, we repeat step 1.

Since the chain is irreducible, step 2 is finite with probability 1 and there must be some tree

assignment which is eventually reached, say at iteration k. Letting Ti be the tree assignment

constructed at that time, we have that Pr(the rule stops at j) = Pr(i = j) = Pr(Ti ∈ Υj | Ti is

a tree assignment) = πj . Unfortunately it may be the case that Pr(Aj is a tree) is exponentially

small in n, even when the Markov chain has no small positive transition probabilities. For

example, in a simple random walk on an n-cycle, where pi,i+1 = pi+1,i = 1/2 for i = 0, . . . , n−1

mod n, our stopping rule takes more than 2n steps on average while the maximum expected

time to hit a given state is only n2/4.

To speed up the stopping rule, we make use of the fact that for an independent stochastic

process (i.e. a Markov chain whose transition matrix has identical rows) the probability that
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a random assignment is a tree is fairly high—in fact, surprisingly, it depends only on n. The

following lemma has appeared in many guises and is deducible, for example, from Theorem 37

of Chapter XIV in Bollobás [9]; we give an independent proof.

Lemma 2 Let X1, . . . ,Xn be i.i.d. random variables with values in S. Define an assignment

Aj by choosing j ∈ S = {1, 2, . . . , n} uniformly at random, then setting Aj(i) = Xi for i 6= j.

Then Pr(Aj ∈ Υj) = 1/n.

Proof. Let m1, . . . ,mn be non-negative integers which sum to n − 1. We may build an in-

directed tree in which vertex i has in-degree mi as follows: assuming that the in-neighbor sets

N in(1), . . . ,N in(k − 1) have already been chosen, we select N in(k) from

S \ ∪k−1
i=1N

in(i) \ {j}

where j is the root (possibly k itself) of the component currently containing k. It follows that

the number of such trees is(
n− 1
m1

)
·
(
n−m1 − 1

m2

)
·
(
n−m1 −m2 − 1

m3

)
· · · · ·

(
mn

mn

)
=

(
n− 1

m1,m2, . . . , mn

)
.

Since the weight of such a tree is
∏n
i=1 p

mi
i where pi = Pr(X = i), we have that the sum of the

weights of all the in-directed trees is

∑
m1+···+mn=n−1

(
n− 1

m1,m2, . . . ,mn

)
n∏
i=1

pmii = (p1 + · · ·+ pn)n−1 = 1

and thus the desired probability is

1
n

n∑
j=1

Pr(Aj ∈ Υj) =
1
n
.

2

4 A Randomized Stopping Rule

To make use of Lemma 2 we need to replace the transition matrix M by a new matrix N

having the same stationary distribution but which represents a nearly independent process; in

other words, the rows of N should be similar to one another (and therefore to the stationary

vector π).
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An obvious candidate for N is M t, for t some polynomial in n and the maximum hitting

time h, and in fact this choice will suffice for reversible Markov chains. In general, however,

“mixing time” may be exponentially larger than both n and h. For example, suppose pi,i+1 = 1

for i = 1, . . . , n− 1, pn,1 = 1− 2−n, pn,n = 2−n and all other transitions are forbidden. Then

h is only about n but the state of the chain t steps after being at state j is j + t (mod n) with

high probability for fixed t < 2n.

Instead we takeN to be an average of the matricesMk for k between 1 and some sufficiently

large bound t.

Lemma 3 Let M be the transition matrix for an n-state irreducible Markov chain (v0, v1, . . .)

with stationary distribution π and maximum hitting time h, and let t ≥ 1. Let Z be chosen

uniformly from {1, . . . , t}. Then for every state j,

Pr(vZ = j) ≥ (1− h

t
)πj.

Proof. Let s be any positive integer, and let Y s
j be a random variable which counts the

number of hits of state j in the next s steps of the chain M . Again using Aldous’ notation,

we let EσY s
j be the expected value of Y s

j when the chain is begun in a state drawn from the

distribution σ; if σ is concentrated at i we just write EiY sj .

For any i and s, we have EiY s
j ≤ 1 + EjY s

j (by waiting for the first occurrence of j) and

thus in particular, πj = 1
sEπY s

j ≤ 1
s (1 + EjY sj ).

Fix i and j and let qs be the probability that, when started at state i, the first occurrence

of state j is at step s. By definition of N , we have

Pr(vZ = j) =
1
t
EiY t

j =
1
t

t∑
s=1

qs(1 + EjY t−s
j )

≥ 1
t

t∑
s=1

qs(πj(t− s))

= πj −
πj
t

t∑
s=1

sqs

≥ πj −
πj
t

EiTj

≥ πj −
πj
t
h

as desired. 2
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Below we shall need thatNij ≥ (1−(1/n))πj for all i and j. We can achieve this by choosing

t = dnhe. This is good enough if we are only interested in polynomiality, but the time bounds

we get this way are too pessimistic on two counts. We could apply the “multiplicativity

property” in Aldous [4] to show that the factor n could be replaced by logn, and results from

[5] to show that h can be replaced by the mixing time Tmix.

More exactly, let M = dlogne and s = 8dTmixe, and let Z be the sum of M independent

random variables Y1, . . . , YM , each distributed uniformly in {0, . . . , s− 1}. Then results from

[5] imply that for any starting point,

Pr(vZ = j) ≥
(

1− 1
n

)
πj.

To get around the difficulty that the maximum hitting time h is not known, we start with

t = 1 and double t until we are successful in constructing a tree; for each t we construct 3n

assignments (the proof below uses 3 > e). Altogether our randomized stopping rule Θ runs as

follows:

For t = 1, 2, 4, 8, . . . do

For k = 1, 2, 3, . . . , 3n do

Choose a state j uniformly from S

Put U = {j}

Do until U = S

Proceed until a state i 6∈ U is reached

Choose a random number m uniformly from 1, . . . , t

Proceed m steps and designate the current state as Aj(i)

Update U ← U ∪ {i}

End

If the assignment Aj is a tree, proceed to state j and STOP

Next k

Next t

Theorem 1 Stopping Rule Θ runs in expected number of steps polynomial in h, and stops at

state j with probability exactly πj.
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Remark. The proof below gives that the expected number of steps is O(n2h2) = O(h4).

Using the bounds mentioned after Lemma 3 we get the tighter bound O(hTmixn logn) =

O(h2n logn) = O(h3 logn) by the same argument.

Proof. For each fixed t and k, the expected number of steps taken by the assignment con-

struction is no more than 3nh(t + 1)/2, hence before t reaches nh the algorithm expects to

take fewer than 3n2h2 steps. Afterwards the probability of “success” (achieving a tree and

stopping) for given t and k is at least

1
n

(
1− 1

n

)n−1

>
1
en

on account of Lemmas 2 and 3, since each factor in the expression for the weight of any

assignment (in particular, any tree) is short by at most a factor of 1−1/n of the corresponding

stationary probability.

It follows that for fixed t ≥ nh the success probability is at least

1−
(

1− 1
en

)3n

> 1− e−3/e > 2/3 .

Setting t0 equal to the first value of t above nh, and letting m be such that the algorithm

stops at t = 2mt0, we have that the expected total number of steps is less than

3n2h2 +
∞∑
m=0

(2/3)(1/3)m2m(3nht0/2) < 6n2h2 .

It remains only to argue that Pr(the rule stops at state i) = πi, but this follows from

previous remarks plus the fact that the stationary distribution for N = 1
t

∑t
k=1M

k is the

same as for M . 2

As an example, suppose M has only two states a and b, with transition probabilities pa,b =

p > 0 and pb,a = q > 0. We may achieve the stationary distribution π = (q/(p+ q), p/(p+ q))

by the following procedure: flip a fair coin; if “heads” wait for the first exit from state a and if

“tails”, the first exit from b. If the exit is to the opposite state, stop right there; else flip again.

After 6 unsuccessful flips, repeat but take 1- or 2-step exits with equal probability; then 1-,

2-, 3- or 4-step etc.

This two-state algorithm can be generalized to an n-state stopping rule by recursion, giving

another solution to our problem (with about the same bound on expected number of steps).
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5 Derandomization

The randomization required for Stopping Rule Θ is easily accomplished by coin flips, since

we need only uniform choices between 1 to n and between 1 to t, with n and t both known.

But coin flips can be done using the Markov process itself as long as there is some transition

probability pi,j which lies in the open interval (0,1). (Otherwise there is no hope, as we cannot

reach a random state in a deterministic process without outside randomization.) The technique

is “von Neumann’s trick” for getting a fair decision from a bent coin.

To obtain from Θ a deterministic stopping rule ∆, we observe the process for a while and

make a list L of states i with corresponding sets Ui ⊂ S such that

πi

∑
j∈Ui

pi,j

1−
∑
j∈Ui

pi,j


is about as high as possible.

Then we proceed with Θ but when a coin flip is needed, we wait until some state in L

occurs. Suppose this happens at time t1 with state i; we then proceed to the next occurrence

of i, say at time t2, and we take one further step. We now check whether we were in Ui at

exactly one of the two times t1 + 1 and t2 + 1. If so we have made a successful coin flip, the

result being “heads” if our state at time t1 + 1 is in U1 and “tails” otherwise.

If we hit Ui both times or neither time we try again, waiting for another state in L to

occur.

For “most” Markov processes the time to consummate a coin flip will be negligible but if all

transition probabilities are close to 0 or 1, or if the only exceptional pi,j ’s correspond to states

i with very low stationary probability, then the derandomization may cost Θ its polynomiality

in h. The deterministic stopping rule ∆ will, however, be polynomial in h and r where 1/r is

the stationary frequency of the most common transition i→ j such that pi,j < pi,j′ for some

j′.

Remark.

A faster (randomized) algorithm for exact mixing in an unknown chain has now been

devised by J.G. Propp and D.B. Wilson, using the elegant notion of “coupling from the past.”

Their stopping rule runs in expected time bounded by a constant times the expected cover

time (thus best possible), and will appear in a paper entitled “How to get an exact sample

from a generic Markov chain.”
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