On the shadow of squashed families of k-sets
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Abstract: The shadow of a collection A of k-sets is defined as the collection of the
(k — 1)-sets which are contained in at least one k-set of A. Given |A|, the size of
the shadow is minimum when A is the family of the first k-sets in squashed order (by
definition, a k-set A is smaller than a k-set B in the squashed order if the largest
element of the symmetric difference of A and B is in B). We give a tight upper bound
and an asymptotic formula for the size of the shadow of squashed families of k-sets.
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1 Introduction

A hypergraph is a collection of subsets (called edges) of a finite set S. If a hypergraph
A is such that A;, A; € A implies A,  A;, then A is called an antichain. In other
words A is a collection of incomparable sets. Antichains are also known under the
names simple hypergraph or clutter.

The shadow of a collection A of k-sets (set of size k) is defined as the collection
of the (k — 1)-sets which are contained in at least one k-set of A. The shadow of A
is denoted by A(A).

In the following we assume that S is a set of integers. The squashed order is
defined on the the set of k-sets. Given two k-sets A and B, we say that A is smaller
than B in the squashed order if the largest element of the symmetric difference of A
and B is in B. The first 3-sets in the squashed order are

{1,2,3},{1,2,4},{1,3,4},{2.3,4},{1,2,5},{1,3,5},- - -

Let Fj,(x) denote the family of the first x k-sets in the squashed order. We will
prove the following.
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Theorem 1 [fz < (Z) then

|A(Fy(2))| < kz —x(x — 1) X g x where gnp =

Equality holds when x =0 or x = (Z)

Theorem 2 When z — oo, |A(Fy(z))| ~ = 2%

The squashed order is very useful when dealing with the size of the shadow of a
collection of k-sets. The main result is that if you want to minimize the shadow then
you have to take the first sets in the squashed order. This is a consequence of the
Kruskal-Katona theorem [4, 3]. Before stating their theorem, recall the definition of
the [-binomial representation of a number.

Theorem 3 Given positive integers x and L, there exists a unique representation of
x (called the l-binomial representation) in the form

)+l

where x; > 11 > -+ > x; > .
See [1] or [2] for more details.

Theorem 4 (Kruskal-Katona) Let A be a collection of l-sets, and suppose that
the l-binomial representation of | Al is

() () ()

where x; > x;_1 > -+ > x, > t. Then

AA)] = (l_ll>+<ll_‘12>+---+<t_fl>

There is equality when A is the collection of the first | A| l-sets in the squashed order.

Though the above theorem gives the exact values of the shadow when the an-
tichain is squashed, it is awkward to manipulate. Because of this, theorem 1 may be
more useful for some problems such as those of construction of completely separating
systems (see [5], for example).
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2 Proofs

2.1 Proof of theorem 1

We need a few lemmas before proving theorem 1.
Lemma 1 The inequality of theorem 1 holds when n < 6.

Proof of lemma 1: Done by computer check. Can be done by hand too. O

Lemma 2 The inequality of theorem 1 holds when k = 1.

Proof of lemma 2: We have ¢,; = 1/n. So the inequality to prove is;

AR <7 —ale—1) x -

The right hand side of the inequality can be rewritten as

T
A |
n(n r+1)
As |A(Fi(x))| is equal to 1 (because A(Fy(z)) = {0}), all we have to prove is that

ESn—x%—l

8

ie.
> —(n+1z+n<0

The zeroes of this polynomial are 1 and n. This implies that for x in the interval
1, (?)], the inequality holds.O

Lemma 3 The inequality of theorem 1 holds when k =n — 1.

Proof of lemma 3: We have ¢, ,,_1 = % So the inequality to prove is;

z—1

AR (@) < afn—1 = T

The value of z is in the range [1,n]. If £ = n then both sides of the inequality are
equal to (”) Now, assume that z is in the range [1,n — 1]. The (n — 1)-binomial

2
[ Ta- Tp—2 Tt
() () )

representation of x is:
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where x,,_1 > x,,_0 > -+ > x; > t. Asx < n—1, we have x,,_1 = n—1. And, therefore
Tp—i =n —ifor all i € [1,n —t]. Hence z = n — ¢. Because of the (n — 1)-binomial
representation of z, the size of the shadow of F,_;(x) is given by the formula:

A(F ()] = (Z:;) * (Z:;) L (tf 1)
A(F1 ()] = (n R 1) + (nf) T @

AF )| =D D L e

1.e.

Finally, we have

As x =n —t. By substituting n — x to ¢ in the right hand side, we find that

z—1
5

[A(Foa(2)] = 2[n =1 -

Which is what we wanted to prove. O

Lemma 4 The inequality of theorem 1 holds when k = n.

Proof of lemma 4: obvious. O

Lemma 5 The function n — g is decreasing on [k + 1,00].

Proof of lemma 5:

o k o ntl-k _k  n—k
Qn+1,k — dnk = (n+1) 1 n+2—k (”) -1 n+1-—k

k k

which has the same sign as

n

k(n+1—k)2><(<k>—1)—k(n—k)(n+2—k) x(<n2—1> —1)

which has the same sign as

n

(n+1—k)2x(<k>—1)—(n—k)(n+2—k)x(<z>+<kfl>—1)
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- (Z)—l—(n—k)(n—k+2)>< (kL)

n n\k(n—k)(n—Fk+2)
:<k>_1_<k> n—kr1 Y

To prove theorem 1, we use a double induction on k then n. The case k = 1
has been considered in lemma 2. If x < (”;1) then as the function n —— @, is
decreasing, using the induction hypothesis we are done. Thus, we can assume that

T = (”;1) +j with j < (Zj) It is a classical result (see [2] or [1]) that

A = () + a0

By induction hypothesis
A1) < J(k=1) =50 — 1) X G161
Combining these inequalities we get:

Claim 1

ARG < (7 ) #3061 =16~ Do

If theorem 1 is true then |A(Fy(x))| < kz — z(x — 1) X ¢, with equality when
] = (Zj) Hence, to prove theorem 1 it is sufficient to prove that we have:

(Z: D +J(k—=1) =30 — Dagn-1p—1 <kz —z(x — 1) X gup (%)

As k(“;l) =(n—k) (Zj) and x = (”;1) + 7, (%) is equivalent to
n—1

m(m—l)qn,kg(n—k—1)<k_1

) +7+70 = Dan-14—1

To simplify the expressions we introduce some new variables. Let gy = ¢,; and

G = Qn_1k-1- Let y = (Zj) We will use later the facts that (Z) = 7y, and that

(";1) = 2k With this notation (x) is equivalent to

v—1)gp<(n—-k-1y+jJ—-1a+J
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Asz = %y + j, we have

n—k o, n—k

) n—k )
z(r —1)q = qj* + q@(QTy —1)j + qo(

Y)Y
Therefore, (x) is equivalent to
0<% (@ —q)—j(-1+a —q@+2nk;kyq@) +(n—k—1)y— g~ ; ky)2+ ! ; L
Finally we have,
Claim 2 (%) is equivalent to
—k n—k

. . n—k n
0<i*(q1—q)—Jj(=14+aq —qo+2——yq)+(n—k—1)y+q

- - y(1— p y)

Let ®(5) = j*(q1 — @) = J (=1 +q1 —go+ 222y q0) + (n—k — Dy +qo 2y (1 — 2Ey).
We will prove that this polynomial in j is positive on the interval [0, (Zj)]v by proving
that ®” > 0, ®'(y) <0 and ®(y) = 0. Let’s prove that ®” = ¢; — qq is positive.

k k—1 n—=k

N ETEN G Etrer

1.e.

k _k—l] n—k
ry—1 y—-1n—-k+1

The sign of gy — ¢; is the same as the sign of

QO_le[

k(y—l)—(k—l)(%y—l):ky—k—ny+k+%y—1:y(k—n+%)—1

Notice that k —n 4 % is negative because k € [2,n —2]. Indeed, the sign of k —n +
is the same as the sign of k? — nk + n. It’s easy to check that this polynomial in % is
negative on [2,n — 1] as soon as n > 5. Hence, gy — ¢1 is negative.

Let’s check that (x) becomes an equality when j takes the value of y = (Zj)

By substituting (Z) to x in the right hand side of the inequality of theorem 1, we
k-1
we obtain also (kﬁl) (use the induction hypothesis that |A(Fi_1(y))| = (Z:;)) This

implies that (Zj) is a root of the polynomial ®(7).

get, ( " ) as expected. By substituting y = (Zj) to j in the inequality of claim 1,

n—1
k-1
of ®(7), by showing that at that point the derivative of ®(j) is negative. This will

sufficient as we already know that the second derivative is positive. We have

To finish the proof of theorem 1 we will prove that y = ( ) is the smaller root

, n—k
D'(y) =2y(gr —q) — (=1+q —q + 2Tycm)
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?’(y) < 0 is equivalent to

n—=k
2u(h — @) < —1+q —q+ 2qu@

which is equivalent to

Q(k—l k )n—k < q4q— +2n—k k n—=k
yy—l ry—1n—k+17 R k y%y—ln—k+1

which is equivalent to

k—1 k? n—k+1 n—k+1 2(n—kky
2 - < (qy —
y(y—l ny—k)+ " < (a1 —q) " + ny — k
L 2 (k — 1) k1 k+1 20k
G n—~K+ n— nKy
< _
y—1 * n—=k < (61 =) n—=k +ny—k
It is sufficient to prove that
2y(k—1)+§< 2nky
y—1 2 " ny—k

The left hand side is equal to 2k — 3+ 2(yk_—11_)_ The right hand side is equal to 2k + %
The function ¢ — _Tl 4+ 21

—— is negative as soon as t > 4(k — 1) +1. Asn > 7 and
k€ [2,n — 2], we have y = (Zj) > 4(k — 1) + 1. Therefore,

2y(k —1) L3/ < 2nky

— ny —k
This finishes the proof of theorem 1. O

2.2 Proof of theorem 2

Consider the k-binomial representation of x :

T = (ﬁ:)%—(;k__ll)%—---%—(?) where zp, > x> - > 1 >t

It is easy to prove that

when  — 00, T ~ (ﬁ:) and similarly , |A(Fg(z))| ~ (lggif 1)
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As x ~ (Ik’“), we have x ~ m]f—,k This implies that xj, ~ (z(k!))%. Therefore

AFE)] () 3

~ ~

T (mkk) v —k+1

1A (Fi(a))] .

~

@ (a(k) F

Hence
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