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Abstract: The shadow of a collection A of k-sets is defined as the collection of the
(k − 1)-sets which are contained in at least one k-set of A. Given |A|, the size of
the shadow is minimum when A is the family of the first k-sets in squashed order (by
definition, a k-set A is smaller than a k-set B in the squashed order if the largest
element of the symmetric difference of A and B is in B). We give a tight upper bound
and an asymptotic formula for the size of the shadow of squashed families of k-sets.
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1 Introduction

A hypergraph is a collection of subsets (called edges) of a finite set S. If a hypergraph
A is such that Ai, Aj ∈ A implies Ai 6⊆ Aj, then A is called an antichain. In other
words A is a collection of incomparable sets. Antichains are also known under the
names simple hypergraph or clutter.

The shadow of a collection A of k-sets (set of size k) is defined as the collection
of the (k − 1)-sets which are contained in at least one k-set of A. The shadow of A
is denoted by ∆(A).

In the following we assume that S is a set of integers. The squashed order is
defined on the the set of k-sets. Given two k-sets A and B, we say that A is smaller
than B in the squashed order if the largest element of the symmetric difference of A
and B is in B. The first 3-sets in the squashed order are

{1, 2, 3}, {1, 2, 4},{1, 3, 4}, {2, 3, 4},{1, 2, 5}, {1, 3, 5}, · · ·

Let Fk(x) denote the family of the first x k-sets in the squashed order. We will
prove the following.
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Theorem 1 If x ≤
(
n
k

)
then

|∆(Fk(x))| ≤ kx− x(x− 1)× qn,k where qn,k =
k(

n
k

)
− 1
× n− k
n − k + 1

Equality holds when x = 0 or x =
(
n
k

)
.

Theorem 2 When x→∞, |∆(Fk(x))| ∼ k
k√
k!
x1− 1

k

The squashed order is very useful when dealing with the size of the shadow of a
collection of k-sets. The main result is that if you want to minimize the shadow then
you have to take the first sets in the squashed order. This is a consequence of the
Kruskal-Katona theorem [4, 3]. Before stating their theorem, recall the definition of
the l-binomial representation of a number.

Theorem 3 Given positive integers x and l, there exists a unique representation of
x (called the l-binomial representation) in the form

x =

(
xl
l

)
+

(
xl−1

l − 1

)
+ · · ·+

(
xt
t

)

where xl > xl−1 > · · · > xt ≥ t.

See [1] or [2] for more details.

Theorem 4 (Kruskal-Katona) Let A be a collection of l-sets, and suppose that
the l-binomial representation of |A| is

|A| =
(
xl
l

)
+

(
xl−1

l − 1

)
+ · · ·+

(
xt
t

)

where xl > xl−1 > · · · > xt ≥ t. Then

|∆(A)| ≥
(
xl
l − 1

)
+

(
xl−1

l− 2

)
+ · · ·+

(
xt
t− 1

)

There is equality when A is the collection of the first |A| l-sets in the squashed order.

Though the above theorem gives the exact values of the shadow when the an-
tichain is squashed, it is awkward to manipulate. Because of this, theorem 1 may be
more useful for some problems such as those of construction of completely separating
systems (see [5], for example).
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2 Proofs

2.1 Proof of theorem 1

We need a few lemmas before proving theorem 1.

Lemma 1 The inequality of theorem 1 holds when n ≤ 6.

Proof of lemma 1: Done by computer check. Can be done by hand too. 2

Lemma 2 The inequality of theorem 1 holds when k = 1.

Proof of lemma 2: We have qn,1 = 1/n. So the inequality to prove is;

|∆(F1(x))| ≤ x− x(x− 1)× 1

n

The right hand side of the inequality can be rewritten as

x

n
(n − x+ 1)

As |∆(F1(x))| is equal to 1 (because ∆(F1(x)) = {∅}), all we have to prove is that

n

x
≤ n− x+ 1

i.e.
x2 − (n + 1)x+ n ≤ 0

The zeroes of this polynomial are 1 and n. This implies that for x in the interval
[1,
(
n
1

)
], the inequality holds.2

Lemma 3 The inequality of theorem 1 holds when k = n− 1.

Proof of lemma 3: We have qn,n−1 = 1
2
. So the inequality to prove is;

|∆(Fn−1(x))| ≤ x[n− 1− x− 1

2
]

The value of x is in the range [1, n]. If x = n then both sides of the inequality are

equal to
(
n
2

)
. Now, assume that x is in the range [1, n − 1]. The (n − 1)-binomial

representation of x is:

x =

(
xn−1

n− 1

)
+

(
xn−2

n− 2

)
+ · · ·+

(
xt
t

)
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where xn−1 > xn−2 > · · · > xt ≥ t. As x ≤ n−1, we have xn−1 = n−1. And, therefore
xn−i = n − i for all i ∈ [1, n − t]. Hence x = n− t. Because of the (n − 1)-binomial
representation of x, the size of the shadow of Fn−1(x) is given by the formula:

|∆(Fn−1(x))| =
(
n− 1

n− 2

)
+

(
n− 2

n− 3

)
+ · · ·+

(
t

t− 1

)

i.e.

|∆(Fn−1(x))| =
(
n − 1

1

)
+

(
n− 2

1

)
+ · · ·+

(
t

1

)
Finally, we have

|∆(Fn−1(x))| = n(n− 1)

2
− t(t− 1)

2
=

1

2
(n− t)(n+ t− 1)

As x = n − t. By substituting n− x to t in the right hand side, we find that

|∆(Fn−1(x))| = x[n− 1− x− 1

2
]

Which is what we wanted to prove. 2

Lemma 4 The inequality of theorem 1 holds when k = n.

Proof of lemma 4: obvious. 2

Lemma 5 The function n 7−→ qn,k is decreasing on [k + 1,∞].

Proof of lemma 5:

qn+1,k − qn,k =
k(

n+1
k

)
− 1
× n+ 1− k
n+ 2− k −

k(
n
k

)
− 1
× n− k
n+ 1− k

which has the same sign as

k(n+ 1− k)2 × (

(
n

k

)
− 1)− k(n− k)(n+ 2− k)× (

(
n+ 1

k

)
− 1)

which has the same sign as

(n+ 1− k)2 × (

(
n

k

)
− 1)− (n− k)(n+ 2− k)× (

(
n

k

)
+

(
n

k − 1

)
− 1)
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=

(
n

k

)
− 1− (n− k)(n− k + 2)×

(
n

k − 1

)

=

(
n

k

)
− 1−

(
n

k

)
k(n− k)(n− k + 2)

n− k + 1
< 0

2

To prove theorem 1, we use a double induction on k then n. The case k = 1
has been considered in lemma 2. If x ≤

(
n−1
k

)
then as the function n 7−→ qn,k is

decreasing, using the induction hypothesis we are done. Thus, we can assume that
x =

(
n−1
k

)
+ j with j ≤

(
n−1
k−1

)
. It is a classical result (see [2] or [1]) that

|∆(Fk(x))| =
(
n − 1

k − 1

)
+ |∆(Fk−1(j))|

By induction hypothesis

|∆(Fk−1(j))| ≤ j(k − 1)− j(j − 1)× qn−1,k−1

Combining these inequalities we get:

Claim 1

|∆(Fk(x))| ≤
(
n− 1

k − 1

)
+ j(k − 1)− j(j − 1)qn−1,k−1

If theorem 1 is true then |∆(Fk(x))| ≤ kx − x(x − 1) × qn,k with equality when

j =
(
n−1
k−1

)
. Hence, to prove theorem 1 it is sufficient to prove that we have:

(
n− 1

k − 1

)
+ j(k − 1)− j(j − 1)qn−1,k−1 ≤ kx− x(x− 1)× qn,k (?)

As k
(
n−1
k

)
= (n− k)

(
n−1
k−1

)
and x =

(
n−1
k

)
+ j, (?) is equivalent to

x(x− 1)qn,k ≤ (n− k − 1)

(
n− 1

k − 1

)
+ j + j(j − 1)qn−1,k−1

To simplify the expressions we introduce some new variables. Let q0 = qn,k and

q1 = qn−1,k−1. Let y =
(
n−1
k−1

)
. We will use later the facts that

(
n
k

)
= n

k
y, and that(

n−1
k

)
= n−k

k
y. With this notation (?) is equivalent to

x(x− 1)q0 ≤ (n − k − 1)y + j(j − 1)q1 + j
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As x = n−k
k
y + j, we have

x(x− 1)q0 = q0j
2 + q0(2

n− k
k

y − 1)j + q0(
n− k
k

y)2 − n − k
k

yq0

Therefore, (?) is equivalent to

0 ≤ j2(q1− q0)− j(−1+ q1− q0 + 2
n− k
k

yq0) + (n−k−1)y− q0(
n− k
k

y)2 +
n− k
k

yq0

Finally we have,

Claim 2 (?) is equivalent to

0 ≤ j2(q1− q0)− j(−1 + q1− q0 + 2
n− k
k

yq0) + (n− k− 1)y+ q0

n − k
k

y(1− n − k
k

y)

Let Φ(j) = j2(q1−q0)−j(−1+q1−q0 +2n−k
k
yq0)+(n−k−1)y+q0

n−k
k
y(1− n−k

k
y).

We will prove that this polynomial in j is positive on the interval [0,
(
n−1
k−1

)
], by proving

that Φ′′ ≥ 0, Φ′(y) ≤ 0 and Φ(y) = 0. Let’s prove that Φ′′ = q1 − q0 is positive.

q0 − q1 = [
k(

n
k

)
− 1
− k − 1(

n−1
k−1

)
− 1

]
n− k

n− k + 1

i.e.

q0 − q1 = [
k

n
k
y − 1

− k − 1

y − 1
]
n− k

n− k + 1

The sign of q0 − q1 is the same as the sign of

k(y − 1)− (k − 1)(
n

k
y − 1) = ky − k − ny + k +

n

k
y − 1 = y(k − n+

n

k
)− 1

Notice that k−n+ n
k

is negative because k ∈ [2, n− 2]. Indeed, the sign of k−n+ n
k

is the same as the sign of k2 − nk + n. It’s easy to check that this polynomial in k is
negative on [2, n− 1] as soon as n ≥ 5. Hence, q0 − q1 is negative.

Let’s check that (?) becomes an equality when j takes the value of y =
(
n−1
k−1

)
.

By substituting
(
n
k

)
to x in the right hand side of the inequality of theorem 1, we

get
(

n
k−1

)
as expected. By substituting y =

(
n−1
k−1

)
to j in the inequality of claim 1,

we obtain also
(

n
k−1

)
(use the induction hypothesis that |∆(Fk−1(y))| =

(
n−1
k−2

)
). This

implies that
(
n−1
k−1

)
is a root of the polynomial Φ(j).

To finish the proof of theorem 1 we will prove that y =
(
n−1
k−1

)
is the smaller root

of Φ(j), by showing that at that point the derivative of Φ(j) is negative. This will
sufficient as we already know that the second derivative is positive. We have

Φ′(y) = 2y(q1 − q0)− (−1 + q1 − q0 + 2
n− k
k

yq0)
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Φ′(y) ≤ 0 is equivalent to

2y(q1 − q0) ≤ −1 + q1 − q0 + 2
n− k
k

yq0

which is equivalent to

2y(
k − 1

y − 1
− k

n
k
y − 1

)
n− k

n− k + 1
≤ −1 + q1 − q0 + 2

n− k
k

y
k

n
k
y − 1

n− k
n− k + 1

which is equivalent to

2y(
k − 1

y − 1
− k2

ny − k ) +
n − k + 1

n− k ≤ (q1 − q0)
n− k + 1

n− k +
2(n− k)ky

ny − k

i.e.
2y(k − 1)

y − 1
+
n − k + 1

n− k ≤ (q1 − q0)
n− k + 1

n− k +
2nky

ny − k
It is sufficient to prove that

2y(k − 1)

y − 1
+

3

2
≤ 2nky

ny − k

The left hand side is equal to 2k− 1
2
+ 2(k−1)

y−1
. The right hand side is equal to 2k+ 2k2

ny−k .

The function t 7→ −1
2

+ 2(k−1)
t−1

is negative as soon as t ≥ 4(k − 1) + 1. As n ≥ 7 and

k ∈ [2, n− 2], we have y =
(
n−1
k−1

)
≥ 4(k − 1) + 1. Therefore,

2y(k − 1)

y − 1
+ 3/2 ≤ 2nky

ny − k

This finishes the proof of theorem 1. 2

2.2 Proof of theorem 2

Consider the k-binomial representation of x :

x =

(
xk
k

)
+

(
xk−1

k − 1

)
+ · · ·+

(
xt
t

)
where xk > xk−1 > · · · > xt ≥ t

It is easy to prove that

when x→∞, x ∼
(
xk
k

)
and similarly , |∆(Fk(x))| ∼

(
xk

k − 1

)
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As x ∼
(
xk
k

)
, we have x ∼ xk

k

k!
. This implies that xk ∼ (x(k!))

1
k . Therefore

|∆(Fk(x))|
x

∼

(
xk
k−1

)
(
xk
k

) ∼ k

xk − k + 1

Hence |∆(Fk(x))|
x

∼ k

(x(k!))
1
k

2
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