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Abstract

Let f(n) denote the munber of configurations of n? mutually non-attacking kings on
a 2n x 2n chessboard. We show that log f(n) grows like 2nlogn — 2nlog 2, with an error
term of 0(7')/4/ ®logn). The result depends on an estimate for the sumn of the entries of a
high power of a matrix with positive entries.

In chess, two kings can attack one another if their squares are horizontally, vertically,
or diagonally adjacent. Consider the problem of placing mutually non-attacking kings on
a chessboard with 2m rows and 27 colummns. Partitioning the chessboard into 2 x 2 cells,
we see that no cell can contain more than one king, so there can be no more than mn
kings:
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Figure 1

In this note, we estimate the number K(m,n) of configurations of mn kings. H. Wilf [5]
has obtained good estimates in the case that m is fixed and n > m. We consider the order
of growth when both m and n tend to infinity, and especially the case m = n. Our main
result is stated at the end of the paper.

Before proceeding with the problem of kings, it may be worth a brief look at the
analogous problem for other chess pieces. No more than n mutually non-attacking rooks
can fit on an n x n board; the legal configurations have one rook in each row and column
and are therefore given by the n! permutations. It is known that there exist configurations
of n mutually non-attacking queens as long as n > 4, and the number of such configurations
is conjecturally super-exponential in n [4]. For bishops, it is not too difficult to see that
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there are exactly 2" ways of placing 2n — 2 pieces on an n X n board, when n > 1 [3]. The

maximum number of knights on an n X n board is |_”22—+1J when n > 2. For n > 4, the
number of such configurations is 1 or 2 according to whether n is odd or even; this follows
from the existence of a knight’s tour (resp. a closed knight’s tour) [3].

All such problems can be reformulated in the language of statistical mechanics, but
from this point of view the problem of kings is certainly the most natural. Assign spin
at each vertex in a (region of a) square lattice according to whether there is or is not a
king in the corresponding square of the chessboard. The generating function )  a, 2" for
the number of configurations of n kings is closely related to the L = M = —oc¢ limit of
partition function of Baxter’s “hard square model” [1] §14.2. The only difference is that
in the hard square model, a king on a corner (resp. edge) of the board counts for only
one quarter (resp. one half). Of course, questions in statistical mechanics can be quite
sensitive to boundary conditions; see, e.g., [3]. In any case, the hard square model has been
solved in certain regions of the (L, M) plane, but not in the “unphysical” third quadrant.

Our approach to the problem of the kings is completely elementary. It depends on
estimates for the entries of powers of matrices. These depend, in turn, on eigenvalue
estimates. It is clear that for fixed M, the entries of M" grow like polynomial multiples
of R™, where R is the largest eigenvalue of n. The coefficients of this polynomial can be
bounded if the entries of M are bounded. Theorem 2 below gives the estimates we need,
which may be be of some independent interest.

I would like to thank Herb Wilf for introducing me to this problem and the referee
for suggesting the simplified proof of Theorem 2 which appears below.

To each configuration of mn kings on a 2m X 2n chessboard, we associate two diagrams.
Each diagram consists of an m X n array of squares, with an arrow in each square. Squares
are labelled by an ordered pair (i,7), 1 <i <mn, 1 < j < m, with the top row is labelled m
and the bottom row 1. A square in the vertical diagram contains a 1 if the corresponding
cell on the chessboard contains a king in one of its two upper squares; otherwise it contains
a J. Thus figure 1 has the following vertical diagram:

A A A A A A
A A A A A
\/
A A A
\/ \/ \/
A A
\/ \/ \/ \/
Figure 2

Likewise, each square in the horizontal diagram contains a < if the king in the corre-
spouding cell is in one of the two left squares of the cell; otherwise it contains a —. The
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horizontal diagram of figure 1 is

< < < < < <

< < < < > >

< < < > > >

< > > > > >
Figure 3

The condition that kings in vertically adjacent cells cannot attack each other amounts
to the condition that every 1 in a column of figure 2 must lie over every | in that column;
likewise, the condition that kings in horizontally adjacent cells cannot attack amounts to
the condition that every < in a row in figure 3 lies to the left of every —. Thus a vertical
(resp. horizontal) diagram is specified uniquely by the number of | (resp. ) symbols in
each column (resp. row). For a 2m x 2n board, this is a an ordered n-tuple (aq1,...,a,)
(resp. m-tuple (by,....by)) of integers in [0,m] (resp. [0,n]). Obviously a configuration
of kings is uniquely specified by its two diagrams. The question that remains is which
pairs of diagrams are compatible. The compatibility condition is dictated by the rule
that diagonally adjacent squares in diagonally adjacent cells should not contain attacking
kings. This actually amounts to two separate rules depending on whether the adjacency
is NE&SW or NW&SE. The first gives rise to the rule that we cannot have

a; < J < ip1 and bj <1< bj_|_1 (1)
for any ¢ and j. The second implies that we cannot have
a; > j > a1 and bj >0 > by, (2)

One way of visualizing the situation is to extend j — a; and 7 = b; to piecewise linear
functions, y = a(x) and © = b(y) respectively, view their graphs as oriented curves, and ask
that the curves not intersect with “positive” orientation. This is not quite right because
the two diagrams are incompatible only if (1) or (2) is sharp for some (7, j). Nevertheless,
this picture motivates the computations below.

Lemma 1. For all m and n,

K(m,n) > |n/2|"|m/2]".

Proof. Consider all vertical diagrams satisfying

0 c [0,m/2] ifi<n/2,
! [m/2,m] ifi>n/2,
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and all horizontal diagrams satisfying

b e n/2,n] if j <m/2,
J [0,n/2] if j > m/2.

There cannot be an incompatibility among two such diagrams. Indeed, if (1) holds for
some (i,7), we have

n

2

o om m ) n ) 7, ) M
$j>—ial‘+1>E$Z+1>§$bj+121r+1>§$j+1§?

T
< = = b, <
P T 2

and
i>n/2=j7>a;>m/2=1i<bjy1 <n/2,
a contradiction either way. If (2) holds for some (i, 7),
JE<m/2=a; >m/2=1>n/2=7>a,41 >m/2,
and
j>mf2=1<b; <n/2=>m[2>a;>].
again a contradiction. The lemma follows. O

From this and the trivial upper bound K(m,n) < (m + 1)™"(n + 1)™ we obtain

Theorem 1. For all positive integers m and n,
log K(m,n) =mlogn + nlogm+ O(m + n).
O

In order to improve the error term, we need a better upper bound for K. To get it,
we need to bound the size of entries of powers of matrices. Let X(M) denote the sum of
the entries of a matrix M.

Theorem 2. Let M be a k X k matrix with entries in [0,1]. For all n > k,
S(M™) < 35(15k) n* sup(r(M)™, 1)

where r(M) denotes the largest absolute value of an eigenvalue of M.

Proof. Note first that if M is nilpotent, X(M") = 0 for all n > k. We are therefore
justified in assuming henceforth that (M) > 0.
If v denotes the column vector of length £ with all entries 1, the sum of the entries of
M™ is
S, = foM™v.

By the Cayley-Hamilton theorem, the sequence S satisfies the linear recurrence

k
D ciSnsi=0 VYn>0. (3)

1=0
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where ). c;x' is the characteristic polynomial of M. Moreover, if I,, , denotes the p x ¢ ma-
trix with every entry equal to 1, then each entry of M" is dominated by the corresponding
entry of I}, so S, < E"t for all n. Setting

k

P(x) = chk_i, S(x) = i St
=0

=0

we conclude that P(x)S(x) is a polynomial Q(z) = >, g;z* of degree less than k. As the
absolute value of the determinant of a j x j matrix with entries in [0, 1] is bounded by j!,
we have 4

i <k(k—1)---(i4+1) < kM

and therefore 4
g < (i + 1)k1'+1.

By the residue theorem,

[ Qz)
Sp = Z"Tf’(z)d'z’

as long as the contour of integration is contained in an open disk about the origin of radius
1/r(M). We choose a counter-clockwise circle of radius e For every point 2 on

n
(n+k+1)r
this contour,

kE+1 A
P(2)] 2 (M = 1>r<M>>

and

Q) < (K51 (= IR (k= 252 4+ ) sup(r(M)1 =%, 1) < KM+ sup(r(M)1 5, 1),
Therefore, the integral is bounded above by

2w (M) M 2 sup(r(M)YF Dr(M)F(n + E+ D)k + D)7 Fr(M)" (0 4+ k4 1) Tt

and thus by
n+k+1
2 k% sup(r(M)"T* 1) (n 4+ & + 1)kuek+l.

T

Asn > k+1,sup(r(M)) <k, e* > k¢ > k2, 4me < 35, and 2¢? < 15, we obtain the desired
upper bound of

dmek?(2ek)n” sup(r(M)™, 1) < 35(15k)*n* sup(r(M)™, 1). a

Fix k& > 3 and assume that m’ = m/k and n’ = n/k are integers. We divide each
diagram, horizontal and vertical, into a k x k array of m' x n' blocks, indexed by ordered
pairs (p,q), 1 < p.q < k, and consisting of the cells with integral coordinates in the
rectangle [(p — 1)n' + 1,pn’] x [(¢ — 1)m’ + 1, gm']. We say that the (p, ¢) block is of type
1 if there exists i € [(p — 1)n' + 1,pn' — 2] such that a; < (¢ — 1)m’ < ¢gm' < a;41. In
effect, the graph of ¢ — «a; cuts entirely through the block from below. We define blocks
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of type |. <, and — analogously. For example, the figure below shows a vertical diagram,

its a-function, and its T and | blocks:

A

2

[HEERERERARERE RN RERE RN RN RERERERER!

[HEERERERA AR R R R RERE RN RN RERERERER!

I RERERE RN RERE R RERE RN RN AR REREE!

IR RERA AR RN R RERE RN RN RERERERER!

IR ERERA AR RN AR AR R R NN RERERERER!
PLLp bbb b bl
PLEPV bbbt bt

IR AR AR AR RN AR AEAR!

IR A AR AR AR AR
IR R A AR AR R AR R AR A R
IR I R A AR AR R AR AR AR

IR I RN I AR AR AR RN AR

Figure 4

Thanks to condition (1), a block cannot be both of type 1 and of type —, and thanks
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to condition (2), it cannot be both of type | and of type <. It turns out that we need to
use only the first of these conditions.

We consider the single column X? of blocks of the form {(p,i) | 1 < i < k}. Given a
subset U = U? of X?, we consider the number of sequences a;, j € [(p—1)n' + 1,pn’ —2],
for which the set of blocks of type 1 is contained in U. Such sequences are characterized
by the rule

a; < (i —1)ym' <im' <ajp = (p,i) € U (4)

The number of such sequences is (M {}/_2), where Mjs is the incidence matrix defined
by condition (4). More precisely, My is a {0, 1}-matrix whose (v + 1,v 4+ 1) entry is 1 if
and only if

v<(i—1)m' <im' <u= (pi)elU, 0<u,v<m

We extend the m + 1 x m 4 1 matrix My to a (k+ 1)m/ x (k+ 1)m/ matrix My by adding
m' — 1 zero-rows and m’ — 1 zero-colummns, on the top and left respectively. For example,
if m'"=2, k=3, and U is empty, we obtain

00 0O0O0UO0TO OO0
01 1 11111
01 1 1 11 11

- 00 1 1 11 1 1

Mo=1¢9 011111 1 (5)
000011 11
00001111
\00000011

Let Ny denote the (k+ 1)m' x (k+ 1)m’ {0, 1}-matrix whose (u,v) entry is 1 if and
only if

lo/m/ | <i—-1<i+1< |u/m'|= (pi)elU, 0<uv<m+m —1.
For example, under the same conditions as (5), we obtain

1

SO OO H K=
SO OO H K=
SO = = e
SO = = e
— e e e e e
e i e
e i e
— =

As i+ 1 < |u/m'| implies im' < u — (m’ — 1), each term in Ny is at least as great as
the corresponding term in My, and

SN %) = S(My ) > S(My ) (6)
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On the other hand,
NU — Im’vm’ ®PU7

where Py is the {0, 1}-matrix with (u + 1,v + 1) entry 1 if and only if
v<i—1<i+1<u= (pi)el.
Thus

BN %) = S, ) S(Py %) = (m) TSP ).

By Theorem 2,
S(Py %) < 35(15k)* (n')or(Pu)™

so we would like to estimate r(Pp).

(7)
(8)

Consider the equivalence relation on {1,2,...,k+1} generated by the relation ¢ ~ i+1
if (p,i) € U. Let ¢; be the cardinality of the it equivalence class, where the equivalence

classes are arranged by the increasing size of their elements. Thus

IC],7€1 101702 Ichc;; T ICl ,Cr

RCZacl 1027(32 I02763 T ICZ':CT‘

Py = 0 R(32703 I03763 T IC3',~CT‘
0 0 0 - L.

where I?,, , is the p X ¢ matrix whose first row consists of entries 1 but whose other entries

are zero. Letting )y denote the ¢ x ¢ matrix whose (j, k) entry is

2mi(j—1)(k—1)
7

€ )

and conjugating by

Qe, 0 - 0
0 Q. - 0
0 0 - Q.

we obtaln

C1 Echcl \V4 C1 C2Ecl,cz \V4 C1 C3E01 ,C3 T RV C1 C?‘Ec]wcr
V 01/02 Ccz,cl CZECQ,cz V€2 C?)Ecz,c’g T RV CZC"'ECQ,CT-
P(,J = 0 \% 62/63002703 C3EC3~,03 Y/ C3C7‘E0376r

0 O 0 T C'I“ECT,CT

N

where F; ; denotes the ¢ X j matrix with zero entries except for a one in the upper left
corner, and C} ; denotes the i X j matrix with zero entries except for ones in the first column.
It follows that the non-zero eigenvalues of Py coincide with the non-zero eigenvalues of

C1 4/ C1C2 4/ C1C3 4/ C1Cp
\/61/62 Co \/C2C3 -+  /C2C,
0 Vea/es 3 N

0 0 0 Cr
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The characteristic polynomial of this matrix is

€1 C2 Cr_1q
{1 - <(Cl - A)(Cz - )\) + ((52 — A)(Cg — )\) T ((;7,_1 — A)(Cr — )\))
= Cro2 - -
i <(Cl — A2 = A)(es — A) N (cre2 — MN)(cre1 — N (e — /\)> o } I_I(CZ A).

=1

Asdy . c;=k+1,
r(Py) <2vVEk+1+ sup ¢;.

On the other hand,
(supe;) — 1 < Z(C’ —-1)=U|+1.

We deduce that
r(Py) <2vVE+1+14+U|.

Combining this with » < k4 1, and the inequalities (6), (7), and (8), we conclude that
S(ME,2) < 35(m/ )" (150 (k + )+ (UP |+ 1+2VEk+1)" .
We fix an array of subsets U= (UL,...,U%), U* C X*, with a total of

h=|U'Y+ - +|U?|

blocks. The total number of vertical diagrams whose blocks of type 1 all lie in U'U- - -UU*,
is

T 350m")™ (150G + D)L (UP| + 14+ 2VE+1)" (m + 1)

p=1

. ory (B4 K+ 2V2hVE
S 35k(7n/)n(15nl(k+ 1))k +k ( + +kf \/7(7n+ 1)k>
= (35m + 35)’“711"(157/(# + 1))k2+k(hk_2 R 2\/5]6_1/2)".
Likewise, fixing an array L= (LY,...,L*), each L* a subset of the i*" row of blocks, the
number of horizontal diagrams whose blocks of type — are contained in L' U --- U L* is
bounded by
(35n + 35)Fn™ (15m/ (k + 1))k2+k(h'k_2 + k7 4 2V 2k

As there are only 2k’ ways of choosing U and 2¥° ways of choosing I_:7 the number of pairs
of compatible diagrams is less than

(35m + 35)k(357'L + 35)k’fI'Ln’l’Lm(QOOWLITLI(]C + 1)2)k2+k5,
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where

S = sup ((2'\/§/€_1/2 + k7Y + hlﬂ_Q{)n((?\/@ﬂ_l/2 + kTN 4 (L= hk™2)™.
0<h<k?

5th

If n is a perfect power, we set k = n2/°, and obtain

log K(m,n) < n2/5 (log(35m 4+ 35) 4 log(35n + 35)) + mlogn + nlogm
+ 0% 1log(1800mn) + n2/°1og(1800mn) + log S.

When m = n, by the arithmetic-geometric mean inequality,

log K (n,n) < 2n2/°log(35n 4 35) 4 2nlog n 4+ n*/° log(1800n?)
+ n?/%10g(1800n2) + 2nlog(1/2 + 2V2k /2 4 21~ 1)
=2nlogn — 2nlog2 + (4\/5 + 2)n4/5 log(n) + O(n4/5).

This result applies even when n is not a perfect 5** power. Indeed, K(m,n) is monotoni-
cally increasing in each variable, so setting NV = [nﬂ",

K(n,n) < K(N,N) <2Nlog N —2Nlog2 + O(N*/°log N)
= 2nlogn — 2nlog 2 + O(n4/5 log n).

Combining this upper bound with Lemma 1, we deduce

Theorem 3. For all positive integers n,

log K (n,n) = 2nlogn — 2nlog 2 + O(n*®log n).
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