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Abstract. Let g(n) be the length of a longest binary string containing at
most n distinct squares (two identical adjacent substrings). Then g(0) = 3 (010
is such a string), g(1) = 7 (0001000) and g(2) = 18 (010011000111001101). How
does the sequence

{
g(n)

}
behave? We give a complete answer.

1. Introduction

A binary word (or string) containing no square (a pair of identical adjacent
subwords) has maximum length 3; in fact, the only squarefree words of length
3 are 010 and its 1-complement 101. A computer disclosed that a binary word
containing at most 1 square has maximum length 7: the only words of length 7
with only 1 square are

0001000, 0100010, 0111011

and their 1-complements and the reverse of 0111011 and its 1-complement. Fur-
ther, a binary word containing at most 2 distinct squares has maximum length 18;
the only words of length 18 which contain only 2 distinct squares are

010011000111001101

and its 1-complement (which is also its reverse).

In general, let g(k) denote the length of a longest binary word containing at
most k distinct squares. “Distinct” means that the squares are of different shape,
not just translates of each other. We have seen that g(0) = 3, g(1) = 7, g(2) = 18.
This data raises the following natural questions.
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1. Is the set of values of the sequence S =
{
g(k) : k = 0, 1, . . .

}
infinite or finite?

2. What’s the value of g(3)?

Regarding the first of these questions, Entringer, Jackson and Schatz [1974]
considered the conjecture that S is infinite, citing a reference “which. . . seems to
say that [this] conjecture. . . is true”. They then go on to show that S is finite, by
proving that g(5) = ∞, i.e., there exists an infinite binary sequence with only 5
squares!

It has been shown many times that there exist infinite squarefree ternary
sequences. See e.g., Thue [1912], Morse and Hedlund [1944], Hawkins and Mien-
tka [1956], Leech [1957], Novikov and Adjan [1968], Pleasants [1970], Burris and
Nelson [1971/72], del Junco [1977], Ehrenfeucht and Rozenberg [1983]. (Currie
[1993] wrote: “One reason for this sequence of rediscoveries is that nonrepetitive
sequences have been used to construct counterexamples in many areas of mathe-
matics: ergodic theory, formal language theory, universal algebra and group theory,
for example. . .”.) Actually, Thue [1912] showed more: there exists a doubly infi-
nite squarefree ternary sequence which also avoids the 2 triples a1a3a1 and a2a3a2.
See Berstel [1992, §4.2] for an exposition of the full result, and Berstel [≥ 1995]
for an English translation of Thue’s papers.

Roth [1991] has proved that given any alphabet Σ of more than 2 letters, any
given pattern, such as a square, is avoidable over Σ, if and only if there exists an
infinite binary word in which any morphism of that pattern is of bounded length.

Seen in this light, the result of Entringer et al. [1974] is not surprising. But
it brings into even sharper focus the second question, because it makes us wonder
about the values of g(3) and g(4).

We give a complete answer by showing that g(3) =∞. In §2, after establishing
some notation and definitions, we construct an infinite binary sequence, and in §3
we prove that it contains only the 3 squares 02, 12 and (01)2.

We also remark that questions regarding squares in sequences arise in molec-
ular biology, where they are known as repeats, or tandem repeats. In fact, the most
frequent repeat in the human genome seems to be the binary word GT, with high
copy number (the number of times GT is repeated). Trifonov [1989] argues that
the copy number influences the functions of DNA chains adjacent to the repeated
word, such as their binding power and gene expression; it can even cause certain
diseases if too high or too low; and it also influences the unwinding capability of
the DNA helix. Algorithms for identifying repeats and databases of repeats in the
human genome are maintained by Milosavljević [≥ 1995].

Since the copy number at a given site changes from one individual to another,
the copy number has also been used in DNA-fingerprinting. This application ap-
pears to have been originated by Alec Jeffreys’ group in Leicester. See e.g., Jeffreys,
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Wilson and Thein [1985] and Jeffreys, Turner and Debenham [1991]. Further elab-
orations on applications of DNA-fingerprinting to medicine and forensic medicine
are given in Raskó and Downes [1995, ch. 6, especially p. 156; and ch. 12, espe-
cially pp. 379–380], where it is also stated that the human genome contains some
500,000 repeated words. (Keywords for human genome applications are VNTR
(Variable Number Tandem Repeats) and mini- and microsatellite sequences for
the basic subwords that are repeated.)

2. Construction of the Binary Sequence

We begin with some notation.

Denote by Σ∗ the set of all words (finite or infinite strings, also called blocks)
over the finite alphabet Σ, whose elements are letters. Given a finite word σ =
σ1 · · ·σn ∈ Σ∗, σi ∈ Σ (i ∈ {1, . . . , n}), the length of σ is |σ| = n = number of
letters in σ, counting multiplicities. Below we use the binary, ternary and quinary
alphabets, denoted by B = {0, 1}, T = {a1, a2, a3}, Q = {a1, a2, a3, a4, a5},
respectively.

A prefix of a word is a subword at the beginning (left side) of the word; a
suffix is a subword at the end (right side) of the word. Given words x, y ∈ Σ∗, we
denote by xy the concatenation of these words, beginning with x and ending with
y. Thus x2 is the square xx. If x is a subword of y, we also write x ⊆ y.

A function C:Q∗ → B∗ is an encoding (a binary encoding of Q∗). Given a
finite or infinite quinary word q = q1q2 · · · ∈ Q∗, qi ∈ Q (i ∈ {1, 2, . . .}), C is de-
fined by the code C(q) = C(q1)C(q2) · · ·, where the C(ai) are the given codewords
(i ∈ {1, . . . , 5}). Thus the codeword C(ai) is also the code of ai. Decoding refers
to the inverse function C−1:B∗ → Q∗ if it exists. To parse any subword of a code
means to identify beginnings and ends of all the codewords contained entirely in
the subword.

We are now ready to describe the construction of the doubly infinite binary
word which has only 3 squares. Since the construction involves infinite processes,
we call it a procedure rather than an algorithm.

Procedure TQB. (1) Let t ∈ T ∗ be a doubly infinite squarefree ternary
word over T = {a1, a2, a3}, which avoids a1a3a1 and a2a3a2.

(2) Replace every occurrence of a2a3 in t by a2a4a3, and every occurrence of
a3a2 by a3a5a2. The result is a doubly infinite quinary word q ∈ Q∗.
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Table 1. Possible pairs of q.

a1a2 a2a1 a3a1 a4a3

a1a3 a2a4 a3a5 a5a2

Table 2. Possible triples of q.

a1a2a1 a2a1a2 a3a1a2 a4a3a1

a1a2a4 a2a1a3 a3a1a3 a5a2a1

a1a3a5 a2a4a3 a3a5a2 a5a2a4

(3) Define C(q) by

C(a1) = 011 000 111 001
C(a2) = 011 100 011 001
C(a3) = 011 001 110 001
C(a4) = 011 0001 0111 001
C(a5) = 011 1001 0110 001.

From this encoding we see that C(q) contains the squares 02, 12 and (01)2. In
the next section we show that C(q) contains no other squares. The main idea is to
establish an explicit bound on the length of the squares of C(q).

{
The name TQB

of the procedure of course reminds us that in step 1 we have a Ternary sequence,
in step 2 we create a Quinary sequence, and in step 3 a Binary sequence.

}
3. The Binary Sequence Contains Only 3 Squares

A single 0 sandwiched between 2 neighboring 1-bits will be called an isolated
0.

We begin by collecting some easily proved properties of the sequences q and
C(q) generated in Procedure TQB.

(i) All and only all the pairs and triples of q are listed in Tables 1 and 2
respectively.

(ii) The lengths of the C(ai) is 12 (i ∈ {1, 2, 3}) and 14 (i ∈ {4, 5}). Only
C(a4) and C(a5) contain isolated 0’s; the only other isolated 0’s are at the begin-
ning of every codeword C(ai), in every concatenation C(aj)C(ai). Hence the only
distances between consecutive isolated 0’s in C(q) are 7 or 12. The sequence of
these distances has the form

· · · 72 12r−2 72 12r−1 72 12r0 72 12r1 72 12r2 72 · · · ,
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where the ri are positive integers (since a4 and a5 cannot be adjacent).

(iii) The doubly infinite sequence C(q) can be parsed uniquely into codewords
C(ai) (i ∈ {1, . . . , 5}) by placing a comma in front of isolated 0’s at distances 12
and 14 (skipping those isolated 0’s which are at distance 7 from both of their
preceding and succeeding isolated 0). Thus C(q) can be decoded uniquely into q.

(iv) A codeword C(ai) is not a prefix or suffix of C(aj) for any j 6= i.

We show now that property (iii) can be strengthened: also certain finite, even
short subwords of C(q) can be parsed uniquely.

Proposition 1. Any subword w of C(q) which contains a codeword can be
parsed uniquely, and so any codeword in w can be decoded uniquely.

Proof. Suppose first that w contains no isolated 0. Then (ii) implies that
|w| = 12 or 13, and the 12 left bits constitute a unique codeword. If w contains 2
isolated 0’s at distance 12 then a unique codeword at length 12 can be identified,
which induces a unique parsing on w. Unique parsing also results if w contains 3
isolated 0’s at distances 7, 7, when a unique codeword of length 14 can be identified.
By (ii), the only remaining cases are 2 isolated 0’s, z1 and z2, at distance 7, say
with z1 to the left of z2, or else a single isolated 0, denoted by z.

If there are precisely 12 bits to the left of z1 (or z), then they constitute a
unique codeword. Similarly, if there are 11 or 12 bits to the right of z2 (or z),
then z2 (or z) and the first 11 bits to its right constitute a unique codeword. So
suppose that neither of these two cases holds. Then w must contain C(a4) or
C(a5). In fact, either there are precisely 7 bits to the left of z1 beginning in 01,
which constitute the beginning of C(a4) or C(a5); or else there are precisely 6 or
7 bits to the right of z2, the first 6 of which end in 01, which constitute the end
of C(a4) or C(a5). In the case of z, there must be precisely 7 bits to the left of
z beginning in 011 and precisely 6 or 7 bits to the right of z, the first 6 of which
end in 001, which identifies C(a4) or C(a5) uniquely.

In Table 3 the braces indicate illegal parsings; in fact, they violate the con-
ditions, given at the end of the proof, which the bits near z1, z2 and z have to
satisfy. By (i), Table 3 lists all the pairs containing a4 or a5.

We now come to the main result.

Proposition 2. Let C(q) be a doubly infinite binary word produced by
Procedure TQB. Then every square of C(q) is contained in some subword C(q′) ⊆
C(q) where q′ ⊆ q with |q′| ≤ 3.

Proof. Suppose b1 · · · b2m ⊆ C(q′) is a (binary) square which intersects the
code of |q′| ≥ 4 letters of q. Denote the words b1 · · · bm, bm+1 · · · b2m, b1 · · · b2m
by wL, wR, w = wLwR respectively. Observe that |q′| ≥ 4 implies that either wL
or wR contains a complete codeword, say c1. Assume c1 is contained in wL, say.
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Table 3. Encodings of the 4 pairs containing a4 and a5.

C(a2a4) = 011 10
︷ ︸︸ ︷
0 011 001 | 011 0001 0111 001

C(a3a5) = 011 00
︷ ︸︸ ︷
1 110 001 | 011 1001 0110 001

C(a4a3) = 011 0001
︷ ︸︸ ︷
0111 001 | 011 001 1 10 001

C(a5a2) = 011 1001
︷ ︸︸ ︷
0110 001 | 011 100 0 11 001

Suppose first that the leftmost bit of c1 is at b1. Since w is a square, the bits
of c1 appear also in wR, with the leftmost bit at bm+1. By (iv) and Proposition 1,
actually c1 appears in wR, left-justified, and the complement of of this left-justified
c1 with respect to wR is tiled uniquely with an integer number of codewords ci.
The same codewords then appear, shifted left by m places, in the complement of
the left-justified c1 of wL with respect to wL. Since the parsing is unique and
w contains no part-codewords, the decoding exists, and so q contained a square,
which is a contradiction. The same contradiction results if we assume that the
rightmost bit of c1 is at position bm.

We may thus assume that c1 is neither right- nor left-justified in wL. Without
loss of generality we may assume that c1 is the leftmost codeword contained entirely
in wL. Since w is a square, Proposition 1 implies that c1 also appears in wR, at a
unique location, namely right-shifted by m places from its location in wL. Thus
c1 begins at some location j+1 > m+1, and so at location j ≥ m+1, a codeword
c2 ends, which begins at some location k ≤ m.

Suppose first that at least 8 of the bits of the suffix of c2 are in wR. We then
use the following left-shift argument .

From the mapping C defined in Procedure TQB we see that a suffix of length
≥ 8 determines c2 uniquely, when also the location j of the end of c2 is given.
(Knowing this location is crucial: note that the suffix of length 13 of C(a4) is
identical to a subword of length 13 contained in the interior of C(a3a5).) Since w
is a square, it follows that at location j −m ≥ 1 there is the end of the codeword
c2, which begins at location k −m < 1.

Again using the fact that w is a square we now have, in particular, bi = bi+m
for i = k −m, . . . , k − 1, i.e., we have another square

w′ = bk−m · · · bk−1bk · · · bk+m−1 = w′Lw
′
R,

also of length 2m, shifted left of w by m− k bits, where w′L = bk−m · · · bk−1 and
w′R = bk · · · bk+m−1. Now w′R begins with a codeword and ends with one. As we
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saw above this implies that q has a square, which is a contradiction. This ends
the left-shift argument.

We end the proof by considering four cases for the length of the suffix of c2.

I. Assume that c2 has a suffix of precisely 7 bits in wR. The mapping C
reveals that then c2 is uniquely determined, except when c2 = C(a1) or C(a4).
When c2 is uniquely determined, then the left-shift argument applies as above.

So assume first that c2 = C(a1). If C(a1) intersects also the beginning of wL,
then the left-shift argument applies. Thus assume C(a4) intersects the beginning
of wL. By Table 1, C(a4) is followed by C(a3). Since w is a square, C(a3) must
follow C(a1) in wR. By Table 2, this C(a3) must be followed by C(a5). If this
C(a5) is contained in wR, then C(a5) must follow C(a3) in wL. Thus C(a4a3a5)
intersects wL. This is a contradiction, since the triple a4a3a5 doesn’t appear in
Table 2 (since t doesn’t contain a2a3a2). If C(a5) is not contained entirely in wR,
then the end of C(a3) and the beginning of C(a1) in wL are adjacent bits. Since
w is a square, the first 5 bits of C(a1) and C(a5) must then agree, but they don’t.

Secondly, assume that c2 = C(a4). If C(a4) also intersects the beginning of
wL, the left-shift argument applies. So assume that C(a1) intersects the beginning
of wL. By Table 2, C(a4) is followed by C(a3a1) (since a3a2 cannot appear in
q). Note that C(a3) must then be contained in both wR and wL. If C(a3a1)
is contained in wR, then C(a3a1) also appears after C(a1) in wL. But then q
and hence t contained a1a3a1, which is a contradiction. If C(a1) is not contained
entirely in wR, then the end of C(a3) and the beginning of C(a4) in wL must be
adjacent bits. This is impossible, since q doesn’t contain a3a4.

II. Assume that c2 has a suffix of precisely 6 bits in wR. Then case I applies a
fortiori, and the same proof is valid. But now, in addition, C(a3) and C(a5) have
the same suffix (of 6 bits).

Assume first that c2 = C(a3). The only case that needs to be considered
is when C(a5) intersects the beginning of wL. It is followed by C(a2) (Table 1).
Then C(a2) follows C(a3) in wR, which is a contradiction, since q doesn’t contain
a3a2.

Secondly, assume that c2 = C(a5). Then C(a5) has a prefix of length 8 in wL,
which is seen to be unique, so a right-shift argument, analogous to the left-shift
argument, applies.

III. Assume that c2 has a suffix of precisely 5 bits in wR. Then case II applies
a fortiori, but also C(a1), C(a2) and C(a4) have the same suffix (of 5 bits).

Suppose first that c2 = C(a1) and C(a2) intersects the beginning of wL. Now
Table 1 shows that C(a2) is followed by C(a1) or C(a4). The former is impossible
since then q contains the square a2

1, and the latter is impossible since then q
contains a1a4. So assume c2 = C(a2) and C(a1) intersects the beginning of wL.
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Now C(a1) is followed either by C(a2) or C(a3). The former is impossible, since
q doesn’t contain a square a2

2, and the latter is impossible since q doesn’t contain
a2a3.

Secondly, assume that c2 = C(a2) and C(a4) intersects the beginning of wL.
Now C(a4) is followed by C(a3), so C(a3) must follow C(a2) in wR, which is
impossible, since q doesn’t contain a2a3. If c2 = C(a4) and C(a2) intersects the
beginning of wL, we get the same contradiction.

IV. Assume that c2 has a suffix of ≤ 4 bits in wR. Then c2 has a prefix of
≥ 8 bits at the end of wL which determines c2 uniquely, so a right-shift argument
applies.

Thus the assumption |q′| ≥ 4 leads to a contradiction in all cases, hence
|q′| ≤ 3.

A computer program verified that for all the triples in Table 3, the only
squares in the code of these triples are the obvious ones: 02, 12 and (01)2. This
completes our proof that g(3) =∞.

Acknowledgment. We would like to thank Justin Carpenter for his in-
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