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��������� A set of positive integers is said to have the distinct divisor property
if there is an injective map that sends every integer in the set to one of its proper
divisors. In 1983, P. Erdős and C. Pomerance showed that for every c > 1, a largest
subset of [N, cN ] with the distinct divisor property has cardinality ∼ δ(c)N , for
some constant δ(c) > 0. They conjectured that δ(c) ∼ c/2 as c→∞. We prove their
conjecture. In fact we show that there exist positive absolute constants D1, D2 such
that D1 ≤ cβ(c/2− δ(c)) ≤ D2 where β = log 2/ log(3/2).

1. Introduction

Let S denote a set of positive integers and τ : S → � be defined so that τ(s) is a
proper divisor of s (that is, τ(s) divides s and τ (s) < s). The ensemble (S, τ ) is said
to have the ‘distinct divisor property’ if τ is injective, that is, if the τ (s) are different
for different values of s. We will also say that S has the distinct divisor property if
there exists a τ , as above, such that (S, τ) has the distinct divisor property.

Let c > 1 denote a real number and N a large natural number. Let S be a
subset of [N, cN ] with the distinct divisor property such that, of all subsets of
[N, cN ] having distinct divisors, S has maximal cardinality. If c is fixed and N
tends to infinity then P. Erdős and C. Pomerance, [1], have shown that

|S| = (δ(c) + o(1))N

where δ(c) is a continuous increasing function of c. As c tends to 1 they established
that

δ(c) = c− 1 + o(1).

In this note we are concerned with the behaviour of δ(c) as c tends to infinity.
Division by 2 clearly invests the set of even integers in [N, cN ] with the distinct
divisor property; hence δ(c) ≥ (c− 1)/2. Also, since a proper divisor of an integer
less than cN is less than cN/2 clearly δ(c) ≤ c/2. Erdős and Pomerance conjectured
that this latter upper bound is actually the truth for large c. In other words they
conjectured that as c tends to infinity

δ(c) =
c

2
+ o(1).
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We prove this and more by finding the exact order of magnitude for c/2− δ(c) as
c→∞.

Theorem 1. There exist positive absolute constants D1 and D2 such that

D1

cβ
≤ c

2
− δ(c) ≤ D2

cβ
,

where β = log 2/ log(3/2) = 1.7095 . . . .

We realise Theorem 1 as the sum of the following two Propositions, which are
proved by two very different arguments.

Proposition 2. Let k denote the greatest integer not exceeding log c/ log(3/2).
Suppose S is a subset of the integers in [N, cN ] and that (S, τ) satisfies the distinct
divisor property. Then

cN

2
− |S| ≥ N

2k+2
+O(k).

Proposition 3. Suppose c > 2. There exists a subset, S, of integers in [N, cN ]
and a map τ such that (S, τ) obeys the distinct divisor property and with

cN

2
− |S| ¿ N

cβ
.

All implied constants are absolute; that is they are independent of c and N . The
restriction to c > 2 in Proposition 3 is obviously harmless. The presence of the
constant β is best explained by noting that it is the minimum value of the function
log pi/ log(pi+1/pi) (where pi denotes the ith smallest prime).

We thank Professor A. Granville to whom our present exposition is largely due.
An earlier version of this note proved the weaker result δ(c) = c/2 + o(1). We
are grateful to the referee, Professor C. Pomerance, who, by simplifying our earlier
proof, helped clarify the situation and motivated us to strengthen our result.

2. Proof of Proposition 2

We partition the interval (N, cN ] into the sets B1 ∪ B2 ∪ · · · ∪ Bk+1 where
Bj = ((2/3)jcN, (2/3)j−1cN ] for j = 1, 2, . . . , k, and Bk+1 = (N, (2/3)kcN ].
Similarly we partition [1, cN/2], where the potential divisors lie, into intervals
A1 ∪A2 ∪ · · · ∪ Ak+2, where Ai = ((2/3)icN/2, (2/3)i−1cN/2] for i = 1, 2, . . . , k,
with Ak+1 = (N/2, (2/3)kcN/2] and Ak+2 = (1,N/2]. Note that if s ∈ Bj then
any proper divisor of s must lie in some interval Ai with i ≥ j; moreover, if that
divisor lies in Aj , then it must be s/2, since any other proper divisor is ≤ s/3 ≤
(2/3)j−1cN/3 = (2/3)jcN/2 and thus belongs to Ai for some i > j.

Now [cN/2] − |S| = [cN/2] − |τ(S)| counts the number of integers in [1, cN/2]
that do not belong to τ(S). We obtain a lower bound for this quantity by only
counting, for each i, those integers n ∈ Ai which do not belong to τ(S), and which
are divisible by 2i−1. Thus

[cN/2]− |S| ≥
k+2∑
i=1

(
#{n ∈ Ai : 2i−1|n} −#{s ∈ S : τ(s) ∈ Ai, 2i−1|τ (s)}

)
.
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As we saw above, if τ (s) ∈ Ai then s ∈ Bj for some j ≤ i. Suppose that 2i−1

divides τ (s). We claim that 2j divides s, which follows if j = i since 2j−1 divides
τ(s) = s/2; and which follows if j < i since then 2j divides 2i−1, which divides
τ(s), which divides s. Therefore

k+2∑
i=1

#{s ∈ S : τ(s) ∈ Ai, 2i−1|τ(s)} ≤
k+1∑
j=1

#{s ∈ Bj : 2j |s}

(noting that, since τ is injective, no value of s gets counted twice in the argument
above). Now #{n ∈ Ai : 2i−1|n} = #{n ∈ Bi : 2i|n} +O(1), so substituting this
into the two displays above, we get

[cN/2]− |S| ≥ #{n ∈ Ak+2 : 2k+1|n}+O(k) = N/2k+2 +O(k).

3. Proof of Proposition 3

We wish to construct a ‘big’ set S of integers s in [N, cN ] with the distinct divisors
τ(s); since τ is injective, this is equivalent to constructing a ‘big’ set R = τ(S) ⊂
[1, cN/2], such that for each n ∈ R, there exists some distinct proper multiple
τ−1(n), of n, in [N, cN ]. In fact we shall select τ−1(n) = np(n) for some prime
p(n), which we choose as follows: For n = [cN/2] let p([cN/2]) = 2. For n =
[cN/2]− 1, [cN/2]− 2, . . . , 1 we define p(n) to be the largest prime p for which

i) N < np ≤ cN , and
ii) np 6= n′p(n′) for any n′ > n, with n′ ≤ [cN/2],

provided such a prime p exists, otherwise we let p(n) = 0 (and then n 6∈ R). We
note that |S| = |R| is exactly the number of integers n ≤ cN/2 for which p(n) 6= 0;
and thus

[cN/2]− |S| = #{n ≤ cN/2 : p(n) = 0}. (1)

For each prime pk, we define the set of integers

Ik = {pα1
1 pα2

2 . . . pαkk : αk ≥ 1,
k∏
j=1

(pj+1/pj)αj > c/2}.

Lemma. If p(n) = 0 for some integer n ≤ cN/2, then there exists k such that
n ≤ N/pk, and Ik contains a divisor d of n.

We now complete the proof of Proposition 3, postponing the proof of the Lemma:

Proof of Proposition 3. Using the Lemma we have

#{n ≤ cN/2 : p(n) = 0} ≤
∑
k≥1

∑
d∈Ik

#{n ≤ N/pk : d|n} ≤
∑
k≥1

N

pk

∑
d∈Ik

1
d
. (2)

By definition, we have that∑
d∈Ik

1
d
≤
∑
αk≥1

1
pαkk

∑
αk−1≥0

1
p
αk−1
k−1

. . .
∑
α2≥0

1
pα2

2

∑
α1≥A1

1
2α1

, (3)
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where (3/2)A1 > (c/2)/
∏k
j=2(pj+1/pj)αj ≥ (c/2)/(5/3)(α2+α3+···+αk), from the

definition of the set Ik, since pj+1/pj ≤ 5/3 when j ≥ 2. Therefore, setting
γ = 2log(5/3)/ log(3/2) ≈ 2.39471, we get∑

α1≥A1

1
2α1
¿ 1

2A1
¿ c−βγα2+α3+···+αk .

Substituting this into (3) gives

∑
d∈Ik

1
d
¿ c−β

∑
αk≥1

(
γ

pk

)αk ∑
αk−1≥0

(
γ

pk−1

)αk−1

. . .
∑
α2≥0

(
γ

p2

)α2

= c−β
γ

pk

k∏
i=2

(
1− γ

pi

)−1

¿ c−β
1
pk

∏
3≤p≤pk

(
1− 1

p

)−γ
¿ c−β

(log pk)γ

pk
,

using Mertens’ theorem that
∏
p≤x(1− 1/p) ³ 1/ log x (see [2] for example). Sub-

stituting this estimate into (2), and that estimate back into (1), gives

cN/2− |S| = #{n ≤ N/2 : p(n) = 0} ¿ c−βN
∑
k≥1

(log pk)γ

p2
k

¿ N/cβ .

Finally we return to the

Proof of the Lemma. We must have n ≤ N/2 for, if cN/2 ≥ n > N/2 then p = 2
satisfies i) N < 2n ≤ cN , and ii) 2n 6= n′p(n′) for any n′ > n, since n′p(n′) ≥
2n′ > 2n, so that p(n) ≥ 2.

Let pk0 be the least prime exceeding N/n; by Bertrand’s postulate pk0 ≤ 2N/n <
cN/n (since c > 2), and so N < npk0 ≤ cN . However p(n) = 0, which means that
npk0 cannot satisfy (ii) above; in other words, there must exist an integer n1 > n
such that npk0 = n1pk1 (where we define k1 so that pk1 = p(n1)). We note that
pk0 > pk1 (since n1 > n and npk0 = n1pk1), so that pk1 ≤ N/n and thus n ≤ N/pk1.

We now construct a useful sequence of integers n1, n2, n3, . . . , nm ∈ R (for some
m); we show how to determine nj+1 from nj :

Let kj be defined by the relation pkj = p(nj).
• If njpkj+1 > cN then let m = j, and the sequence is terminated.
• If njpkj+1 ≤ cN then there must exist an integer nj+1 > nj for which

njpkj+1 = nj+1p(nj+1) (else p(nj) ≥ pkj+1 by definition).
Since nj+1pkj+1+1 > nj+1pkj+1 = njpkj+1, we see that n1pk1+1 < n2pk2+1 <

n3pk3+1 < . . . forms an increasing sequence of integers, and so we will eventually
find an integer m for which nmpkm+1 > cN .

We have seen that n < n1 < n2 < · · · < nm, and thus pk0 > pk1 ≥ pk2 ≥ pk3 ≥
· · · ≥ pkm (since nj+1 > nj and njpkj+1 = nj+1pkj+1 imply that pkj+1 > pkj+1, and
thus pkj ≥ pkj+1). Now nj+1 = (pkj+1/pkj+1)nj ; iterating this gives

nj =
(
pkj−1+1

pkj

)(
pkj−2+1

pkj−1

)
. . .

(
pk1+1

pk2

)(
pk0

pk1

)
n. (4)
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Define d = pα1
1 pα2

2 . . . pαkk = pkmpkm−1 . . . pk2pk1 where k = k1. We show that
d divides n by proving that pαii divides n for each i: Let j be the largest in-
teger for which kj = i. Then pkjpkj−1 . . . pk1 = pαii p

αi+1
i+1 . . . pαkk . Moreover i ≤

kj−1 < kj−1 + 1 ≤ kj−2 + 1 ≤ · · · ≤ k1 + 1 ≤ k0, and so pi is coprime with
pkj−1+1pkj−2+1 . . . pk1+1pk0 . Now, pαii divides pkjpkj−1 . . . pk1 , which is a divisor of
(pkj−1+1pkj−2+1 . . . pk1+1pk0)n by (4), since nj is an integer; and so pαii divides n.

To complete the proof of the Lemma we need to show that d ∈ Ik, which we do
by taking (4) with j = m, multiplying it by pkm+1 and rearranging, to get

k∏
i=1

(
pi+i
pi

)αi
=
(
pkm+1

pkm

)(
pkm−1+1

pkm−1

)
. . .

(
pk1+1

pk1

)
=
nmpkm+1

npk0

>
cN

2N
=
c

2
,

using the fact that pk0 ≤ 2N/n, by Bertrand’s postulate.
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