
Priority Queues and Multisets

M.D. Atkinson
S.A. Linton
L.A. Walker

Department of Mathematical and Computational Sciences
University of St. Andrews

North Haugh,
St. Andrews KY16 9SS, Scotland

{sal,mda,louise}@dcs.st-and.ac.uk

Submitted: February 14 1995; Accepted November 10 1995.

Abstract

A priority queue, a container data structure equipped with the operations
insert and delete-minimum, can re-order its input in various ways, depending
both on the input and on the sequence of operations used. If a given input σ
can produce a particular output τ then (σ, τ) is said to be an allowable pair. It
is shown that allowable pairs on a fixed multiset are in one-to-one correspon-
dence with certain k-way trees and, consequently, the allowable pairs can be
enumerated. Algorithms are presented for determining the number of allow-
able pairs with a fixed input component, or with a fixed output component.
Finally, generating functions are used to study the maximum number of output
components with a fixed input component, and a symmetry result is derived.

Mathematical Reviews Subject Classifications: 68R05,05A15,68P05

1 Introduction

Abstract data types (ADTs) are a fundamental design tool in modern software
systems. They are setting the direction of programming in the 1980’s and
1990’s as firmly as Structured Programming set it in the 1960’s and 1970’s. In
principle there is an infinity of possible ADTs since an ADT is defined once its
permitted set of operations has been specified, and there is no restriction on
this set except for common sense. In practice, a small number of ADTs occur
over and over again (stacks, arrays, queues, dictionaries etc.) suggesting that
some ADTs are more “natural” than others.

1

the electronic journal of combinatorics 2 (1995), #R24 2

Exactly the same phenomenon occurs in algebra and, significantly, the nat-
ural algebraic systems (groups, rings, modules etc.) have very rich theories.
Many of the commonly occurring ADTs are container data types: they are
holders for collections of data items and support an Insert operation and a
Delete operation (often restricted in some way).

Normally, a container data type is used in the following way. First it is
initialised as empty. Then some input sequence of data items is inserted into
it one by one (the Insert operation) and these items are removed (the Delete
operation) in some order and placed in an output sequence. The insertions
and deletions may be interleaved in any way (provided that the Delete opera-
tion is never used on the empty container). Thus, a container data type is a
mechanism for transforming an input sequence into an output sequence. The
functional behaviour of a container data type is essentially characterised by
the relationship between the input sequences and the output sequences. An
understanding of this relationship allows us to judge the capabilities of a data
type and to assess its potential applications. In general, if σ is an input se-
quence that gives rise to an output sequence τ then we shall say that (σ, τ)
is allowable (with respect to the data type). The statistics of the allowability
relation associated with a given data type are measures of the transformational
capability of that data type.

In the case of a queue (where the Delete operation always removes the
element which has been in the queue the longest) the allowability relation is
trivial since the output sequence is always the same as the input sequence;
in other words, the only allowable pairs are of the form (σ, σ). In the case
of stacks (where the Delete operation always removes the element which was
placed in the stack most recently) the relation is more complicated and there
are significant connections with a number of other combinatorial objects such
as trees [9] 2.3.4.4, ballot sequences [10] p531, Young tableaux [10] pp63,64,
and triangulations of polygons [6] pp320–324. For dictionaries (which have an
unrestricted Delete operation) the output can be any permutation of the input.

The allowability relation has also been considered for various types of de-
ques. For a general deque (where insertions and deletions are permitted at
both ends) Pratt [12] has characterised the allowable pairs in terms of forbid-
den subsequences. For input restricted deques (where insertion is permitted at
one end only) and output restricted deques, Knuth [9] 2.2.1 has given generat-
ing functions and recurrence relations for computing the number of allowable
pairs of a given length.

In this paper we shall consider the case of priority queues. Priority queues
are characterised by two main operations, Insert and Delete-Minimum. Sev-
eral efficient implementations of them are known in which O(logn) operations
suffice for each of Insert and Delete-Minimum, where n is the number of items
currently in the priority queue. A priority queue algorithm is defined to be a
sequence of Insert and Delete-Minimum operations which is well-formed in the
same sense as bracket sequences. In other words there are equal numbers of
each operation and (in order that a Delete-Minimum is only executed when the

the electronic journal of combinatorics 2 (1995), #R24 3

priority queue is non-empty) the tth Delete-Minimum operation must be pre-
ceded by at least t Insert operations. A priority queue algorithm with n Insert
and n Delete-Minimum operations transforms an input sequence of length n
into an output sequence of length n. In the terminology introduced above, the
pair (σ, τ) is allowable if and only if there is a priority queue algorithm which
transforms σ into τ .

Our focus here is on the allowability relation for priority queues. The case
of input and output sequences which are permutations of 1, 2, . . . , n was con-
sidered in [1, 2, 7] whilst binary sequences were considered in [3]. As was shown
in [2, 7] allowable pairs of permutations are in one-to-one correspondence with
labelled trees for which there is an extensive enumeration theory [11] beginning
with Cayley’s famous enumeration formula. Labelled trees are in one-to-one
correspondence with other combinatorial objects; for example, with the num-
ber of ways of expressing an n-cycle as a product of n−1 transpositions [5] p86.
We shall consider the general case in which the input and output sequences are
elements of a finite multiset S. From now on S will denote a fixed multiset of
size n whose elements are 1, 2, . . . , k with element i having multiplicity ai. Our
results unify those in [1, 2, 3, 7] and lead to some combinatorial results which
are peculiar to the general case.

In the next section we give a one-to-one correspondence between the set
of allowable pairs and a set of k-way trees. This correspondence permits us
to enumerate the set of allowable pairs. In section 3 we give polynomial time
algorithms for computing the number of outputs that can arise from a fixed
input, and for the number of inputs that can give rise to a fixed output. Finally,
in section 4, we consider the maximal number of outputs that a given input can
generate as a function of a1, . . . , ak. We derive recurrences and a multi-variate
generating function, and conclude with an unexpected symmetry result.

2 Allowable pairs

The main theorem in this section concerns the number of allowable pairs of
sequences in which the elements of the input (and output) sequences are per-
mutations of the fixed multiset S. Although in reality equal symbols of a
multiset cannot be distinguished we shall find it convenient, as an expositional
device only, to pretend that each symbol has a unique identity. The symbols
all equal to some fixed i will be distinguished from each other by their order of
occurrence in the input sequence σ. We further suppose, again as an exposi-
tional device only, that occurrences of multiple copies of the same symbol are
deleted from the priority queue in the same order as they are inserted; so the
order of occurrence of equal symbols in the output sequence τ is the same as
their order in σ.

We occasionally make this convention explicit by subscripting each symbol
of a given value with the order of its occurrence among the symbols of this

the electronic journal of combinatorics 2 (1995), #R24 4

value. For example, the allowable pair of Figure 1 below would be written:

(3121321112222333132414, 1121311222322313331424)

These two devices allow us to associate each input symbol with a unique
output symbol. This allows us to track a symbol’s progress as it goes into the
priority queue and eventually emerges as a member of the output sequence. In
practice, of course, when there are several equal minimal elements in the prior-
ity queue, any one of them might be deleted by a Delete-Minimum operation.
But each of them will produce the same value in the output sequence, so it
does no harm to suppose that it is the minimal value of longest residence in
the priority queue that is deleted.

Theorem 1 The number of allowable pairs (σ, τ) where σ (and τ) are permu-
tations of the multiset S is

1
n+ 1

k∏
i=1

(
n+ 1
ai

)
Corollary 1 The number of allowable pairs (σ, τ) where σ ranges over all the
kn sequences of length n with at most k distinct members is

1
n+ 1

(
kn+ k

n

)
Proof of Corollary. The number in question is

∑ 1
n+ 1

k∏
i=1

(
n+ 1
ai

)
where the summation is over all integer vectors (a1, a2, . . . , ak) with non-negative
components such that

∑
ai = n. This is clearly the coefficient of xn in

1
n+ 1

(1 + x)n+1(1 + x)n+1 . . . (1 + x)n+1 =
1

n+ 1
(1 + x)kn+k

from which the result follows.
In the case that all ai = 1 and k = n, Theorem 1 corresponds to sequences

which are permutations of {1, 2, . . . , n} and gives the main theorem of [1] while
the case k = 2 of the Corollary corresponds to binary sequences and gives one
of the results of [3].

Theorem 1 is proved by establishing a one-to-one correspondence between
allowable pairs and certain trees. We recall the definition of a k-way tree: a
k-way tree is either empty or it consists of a root node and a sequence of k
k-way subtrees. It is common to represent a k-way tree by a diagram in which
the root node is connected to its non-empty subtrees by edges which point in
one of k fixed directions.

the electronic journal of combinatorics 2 (1995), #R24 5

¡
¡

¡
¡

¡
¡¡

@
@
@
@
@
@@

@
@@

¡
¡¡

¡
¡¡
@
@@
¡
¡¡

s

s s s
s s
s s
s s
s s

¡
¡
¡
¡
¡
¡¡

@
@
@
@
@
@@

¡
¡¡
@
@
@
@@

¡
¡¡

s

s s s
s s
s s
s s
s s

∞

1 32

3

2

1

2

1 3

1 2

(3121321112222332132414, 1121311223332313331424)

Figure 1: a 3-way tree, its corresponding unambiguous tree and allowable pair

We also define an unambiguous tree. Such a tree is rooted, unordered, and
labelled; the root is labelled ∞ and the non-root nodes are labelled with the
elements of a multiset of integers subject to the condition that the children of
every node have distinct labels.

There is an obvious one-to-one correspondence between k-way trees and
unambiguous trees on multisets on {1, 2, . . . , k}. Given the diagram of a k-way
tree we can label the root node ∞, and label the lower node of any edge in
the ith direction with the label i; this gives an unambiguous tree. Conversely,
from any unambiguous tree we can use the labels to direct the edges in the
appropriate directions thereby obtaining a k-way tree. In this correspondence
the number of labels equal to i in an unambiguous tree is equal to the number of
edges pointing in the ith direction in the associated k-way tree. Figure 1 depicts
a 3-way tree and corresponding unambiguous tree. It also shows the allowable
pair associated with the unambiguous tree by the one-to-one correspondence
of Theorem 2.

Our first lemma gives a decomposition of an allowable pair which we use
as an inductive tool throughout this section and the next. In this lemma we
introduce the practice, continued in the proof of Theorem 2, of prefacing input
sequences by the symbol ∞. There are two reasons for this. The first is that
we often need to refer to the symbol that immediately precedes one of the
symbols k in σ; and if k happens to be the first symbol of σ, we can, by use
of the ∞ symbol, handle this in a uniform way. The second reason has to do
with Theorem 2, where we associate unambiguous trees on n + 1 nodes with
allowable pairs (σ, τ) of length n; we can then find a labeling of the tree nodes
with the symbols in ∞σ.

the electronic journal of combinatorics 2 (1995), #R24 6

Lemma 1 Let σ, τ be sequences of length n with ai occurrences of i (for i =
1, 2, . . . , k). Suppose that τ is expressed as τ = τ0kτ1 . . . kτak where none of the
τi contain k. The pair (σ, τ) is allowable if and only if there exist subsequences
σ0, σ1, . . . , σak of σ and elements x1, . . . , xak of ∞σ such that

(i) for each 0 ≤ i ≤ ak, (σi, τi) is allowable,

(ii) σ with all occurrences of k removed is the sequence σ0σ1 . . . σak ,

(iii) for each 1 ≤ j ≤ ak, xj is immediately before the jth k in ∞σ and the
position of xj in ∞σ is strictly to the left of the position of the jth k in
∞τ

Proof First assume that (σ, τ) is allowable and let G be a priority queue algo-
rithm which transforms σ into τ . We recall our convention that occurrences of
multiple copies of the same symbol are deleted from the priority queue by G in
the same order as they are inserted.

For each j = 1, 2, . . . , ak, the jth k must be deleted by G after all elements
appearing before it in σ have been deleted (because those elements are all less
than k or equal to and more senior than this k). Therefore, defining xj to be
the symbol of ∞σ immediately before the jth k, the position of xj in ∞σ is
strictly to the left of the position of the jth k in ∞τ ; this gives condition (iii).

Define, for every i = 0, . . . , ak, the sequence σi to be the subsequence of σ
which is mapped to τi under the action of G. Since (σ, τ) is allowable, (σi, τi)
is also allowable for all 0 ≤ i ≤ ak and so (i) holds.

To show (ii), it is enough to prove that for any i = 0, . . . , ak−1, if x appears
in τi and y appears in τi+1, then x precedes y in σ. Assume otherwise and argue
for a contradiction. Since y precedes x in σ and succeeds x in τ , it follows that
y > x. However the ith k in τ appears before y in τ and so this symbol k
appears before y in σ. Therefore when x is deleted from the priority queue
by G, y and k must be present in the priority queue; it follows that y will be
deleted before k since y < k. This is the required contradiction.

Conversely, assume there exist σ0, σ1, . . . , σak and x1, . . . , xak satisfying (i),
(ii), and (iii). For each i = 0, . . . , ak let Gi be a priority queue algorithm that
transforms σi to τi and let A be the sequence of Insert and Delete-Minimum
operations G0G1 . . .Gak . Form a new sequence obtained from A as follows: add
an extra Delete-Minimum operation at the end of each subsequence Gi of A
(i = 0, 1, . . . , ak−1); in the resulting sequence, if xj (1 ≤ j ≤ ak) is the (r+1)th

element of ∞σ, add an extra Insert operation after the rth Insert operation
(or at the beginning of A if r = 0). Conditions (i) and (iii) ensure that the
resulting sequence of Insert and Delete-Minimum operations is a well-formed
priority queue algorithm G. From condition (ii) it follows that G transforms σ
into τ which completes the proof.

As an example, we consider

(σ, τ) = (3121321112222333132414, 1121311222322313331424)

the electronic journal of combinatorics 2 (1995), #R24 7

Dividing τ at each symbol 3, we obtain

i σi τi xi
0 21 12 –
1 12 12 ∞
2 21 21 21

3 21 12 23

Theorem 2 There is a one-to-one correspondence between unambiguous trees
on n+1 nodes with, for 1 ≤ i ≤ k, ai nodes labelled i and allowable pairs (σ, τ)
where σ and τ are sequences of length n =

∑k
i=1 ai with ai occurrences of i

(1 ≤ i ≤ k).

Proof The proof of the theorem is by construction. We shall show how to
construct an unambiguous tree for each allowable pair and prove that the con-
struction rule is a bijection between the set of allowable pairs and the set of
unambiguous trees.

The tree Γ that is associated with an allowable pair (σ, τ) has nodes labelled
by the elements of σ together with a label ∞, and the multisets of node labels
and elements of ∞σ are, of course, equal. It will convenient to have a specific
correspondence between the set of nodes of Γ and the elements of∞σ such that
each node is labelled by its corresponding element in ∞σ. Such a correspon-
dence will be called a matching. Our construction of Γ produces a particular
matching which is itself used, via induction, in defining the construction. The
matching has an additional property that we call conformal: if x and y are
nodes in Γ, x the parent of y, and the label of x is less than or equal to the
label of y, then the element of ∞σ which matches x occurs earlier in ∞σ than
the element which matches y.

The construction of Γ is inductive and the base case is when σ and τ are
empty; then the corresponding tree has a single node labelled ∞ and, in the
matching, this node matches the first (and only) element of ∞σ.

If σ and τ are non-empty we consider the decomposition in Lemma 1. By
induction, we may assume that, for each (σi, τi), there exists an unambiguous
tree Γi, and a conformal matching between its set of nodes and the elements
of ∞σi.

We now form a new tree from Γ0,Γ1, . . . ,Γak . The first step is to replace
each of the labels ∞ on the roots of Γ1, . . . ,Γak by a label k. We regard
the label on the root of Γi as corresponding to the ith k, ki of ∞σ; then we
have a matching µ between the elements of ∞σ and the nodes of the forest
{Γ0,Γ1, . . . ,Γak}. The second step is to define new edges by the following rule:

(a) if kj immediately follows a symbol (xj) of kiσi in σ an edge is placed
between Γi and Γj

(b) the edge connects the root of Γj to the node zj of Γi that matches the
symbol xj

the electronic journal of combinatorics 2 (1995), #R24 8

Condition (b) together with condition (iii) of Lemma 1 ensures that if two
trees Γi and Γj are joined in this way then i < j; thus the resulting graph Γ is
indeed a tree. Moreover, by the conformal property, the node zj of Γi has no
child node in Γi labelled k; thus Γ is unambiguous. Furthermore, µ is now a
conformal matching between the nodes of Γ and the elements of ∞σ.

Notice that, in Γ, the set of subtrees Γi may be readily identified; they are
the connected components that remain when all edges with a lower end point
labelled k have been removed. Moreover, their order, Γ0,Γ1, . . . ,Γak may be
reconstructed also. Obviously Γ0 is the subtree whose root is labelled ∞. The
immediate subtrees of it will be Γ1,Γ2, . . . ,Γc and their order is determined
by the order of the nodes of Γ0 to which they are attached. The immediate
subtrees of Γ1 will come next (ordered by the nodes of Γ1 to which they are
attached); then the subtrees of Γ2, Γ3 and so on.

These observations allow the construction to be reversed. Suppose that Γ
is an unambiguous tree. We can produce a corresponding allowable pair (σ, τ)
and a conformal mapping between the nodes of Γ and the elements of ∞σ as
follows. First we delete all edges whose lower end point in labelled k to obtain
a forest of trees {Γ0,Γ1, . . . ,Γak}. We let Γ0 be the unique tree of the forest
whose root is labelled ∞; all the other subtrees have root labelled k.

We now replace all the labels k by the label ∞ to obtain a forest of un-
ambiguous trees, and using induction, we let (σi, τi) be the allowable pair that
corresponds to Γi. Again by induction there will exist conformal mappings
between the nodes of each Γi and the elements of ∞σi. Now, by the remarks
following the previous construction, we can determine an order on the trees
Γ0,Γ1, . . . ,Γak in the forest.

Finally we construct the desired pair (σ, τ) according to Lemma 1. In other
words we set τ = τ0kτ1 . . . kτak and define σ to be the result of inserting ak
symbols k in σ0σ1 . . . σak ; the jth k is inserted immediately after xj , where xj
is the symbol that matches the parent of the root of Γj in Γ (notice that the
unambiguous property of Γ is used here in ensuring that x1, x2, . . . , xak are all
different elements of σ).

We have now shown that the construction of an unambiguous tree from an
allowable pair is a bijection and so the proof of Theorem 2 is complete.

As an example, we show the construction of the unambiguous tree associ-
ated with the allowable pattern

(σ, τ) = (3121321112222333132414, 1121311222322313331424)

Decomposing this pattern in accordance with lemma 1, we obtain the table
of σi, τi and xi which was given just before theorem 2.

We first catalogue the unambiguous trees associated with all allowable pairs
of length not more than 2.

With the empty pair (,) is associated a tree t∞consisting simply of a root.
With the pair (i, i) is associated the unambiguous tree

the electronic journal of combinatorics 2 (1995), #R24 9

t
t∞i

This is evidently the only possibility, but it is easy to check that it is
produced by the construction.

For the pair (i1i2, i1i2), the only possible unambiguous tree with the proper
labels is. t

t
t
∞

i1

i2

For the pair (12, 12) we have to use the construction of Theorem 2. Here
k = 2, ak = 1 and (σ0, τ0) = (1, 1), (σ1, τ1) = (,) and x1 = 1.

The corresponding tree is thus: t
t
t
∞

1

2

For the pair (21, 21) we have (σ0, τ0) = (,), (σ1, τ1) = (1, 1) and x1 = ∞.
We obtain the tree: t

t
t
∞

2

1

The remaining allowable pair of length 2 is (21, 12), for which we have
(σ0, τ0) = (1, 1), (σ1, τ1) = (,) and x1 =∞. This gives rise to the tree:t

t ¡¡¡ @
@@t

∞

21

This gives us the components Γ0,Γ1,Γ2 and Γ3 of the forest from which the
unambiguous tree of figure 1 is constructed. Relabeling the roots of Γ1, Γ2 and
Γ3 and attaching subscripts to the labels, they are:

Γ0 :
t
t t¡
¡¡
@
@@

∞

11 21

Γ1 :

t
t
t
31

12

22

Γ2 :

t
t
t
32

23

13

Γ3 :
t
t t¡
¡¡
@
@@

33

14 24

the electronic journal of combinatorics 2 (1995), #R24 10

Finally, we add edges joining xi to 3i: between ∞ and 31; between 21 and
32 and between 23 and 33. We can then delete the subscripts (which represent
the conformal map, used in the inductive step but not needed in the final tree)
to give the tree of figure 1.

The reverse construction goes straight-forwardly. Decomposing Γ, we ob-
tain the four subtrees Γ0, . . . ,Γ3, with their labels. By induction we can deter-
mine the sub-patterns σi and τi. Finally the xi are determined by the positions
of the edges we deleted in the decomposition. According to Lemma 1, σ and τ
are determined by the σi, τi and xi.

In view of Theorem 2 we must determine the number of unambiguous trees
to obtain a proof of Theorem 1. Since unambiguous trees are in one-to-one
correspondence with k-way trees, Theorem 1 follows from the main result of
[4].

3 The number of inputs and outputs

In this section we study the two quantities
t(σ) = |{τ : (σ, τ) is allowable}|, and
s(τ) = |{σ : (σ, τ) is allowable}|
Clearly t(σ) is the number of different outputs that may arise when a pri-

ority queue is presented with the input σ; and s(τ) is the number of inputs
capable of generating the output τ .

It turns out that t(σ) can be calculated by adapting the algorithm of [2]
that was developed for permutations. Assuming that ak > 0 (if not, we replace
k by k − 1) we may put σ = αkβ where β = b1b2 . . . br contains no element
equal to k. Then we note that

t(αkβ) =
{
t(α) if r = 0
t(α)t(β) + t(αb1kb2 . . . br) otherwise

(the term t(α)t(β) enumerates those outputs which arise from deleting the
element k from the priority queue before inserting the first symbol of β (at that
point the priority queue will be empty) and the term t(αb1kb2 . . . br) enumerates
the outputs which arise from inserting b1 before the element k is deleted).

As in [2] these equations can be made the basis of a dynamic programming
algorithm with execution time O(n4).

The quantity s(τ) cannot be calculated by generalising the permutation
algorithm of [2] (that algorithm uses the distinctness of the elements in an
essential way). We can, however, use Lemma 1. In the notation of that lemma
we have

s(τ) = P
k∏
i=1

s(τi)

where P is the number of ways in which the ak occurrences of k may be validly
positioned within σ0σ1 . . . σak . A valid positioning is, by Lemma 1, one where
each k occurs no later than the corresponding k in τ .

the electronic journal of combinatorics 2 (1995), #R24 11

In order to calculate P , let r = ak and let n1 < n2 < . . . < nr be the
positions of the elements equal to k in τ . Then, clearly, P is the number of
vectors (m1,m2, . . . , mr) such that

1. 1 ≤ m1 < m2 < . . . < mr ≤ n, and
2. mi ≤ ni

since each vector gives a possible list of positions for the elements equal to k
in σ. We now give a relatively simple algorithm for computing P .

Define the (r + 1)−variable function

Qr+1(m0, n1, n2, . . . , nr) =
n1∑

m1=m0+1

n2∑
m2=m1+1

· · ·
nr∑

mr=mr−1+1

1

Then P = Qr+1(0, n1, n2, . . . , nr) since each term in the summation corre-
sponds to a vector satisfying the conditions above. Then the recurrences

Q1(mr) = 1 for all mr

Qr−k+1(mk, nk+1, . . . , nr)

=
nk+1∑

mk+1=mk+1

Qr−k(mk+1, nk+2, . . . , nr)

= Qr−k+1(mk + 1, nk+1, . . . , nr) +Qr−k(mk + 1, nk+2, . . . , nr)

allow the values Qr−k+1(mk, nk+1, . . . , nr) for all values of mk to be calculated
in constant time per value. The quantity P can therefore be calculated in
O(nak) steps.

An efficient algorithm for computing s(τ) is now evident. Recursively, we
compute each s(τi), compute P , and then compute s(τ). The total work done
is dominated by the time taken to compute P and all the analogous quantities
in the recursive steps. One of these computations is done for every symbol of
τ and so the total time is O(n

∑k
i=1 ai) = O(n2)

4 The maximum number of outputs

It appears to be impossible to find a closed formula for t(σ) valid for arbi-
trary re-arrangements of the multiset S. Clearly, t(σ) is minimal in the case
σ = 1a12a2 . . . kak (here t(σ) = 1). The maximal value of t(σ) occurs when
σ = kak . . . 2a21a1 and, in this section, we shall investigate this maximal value.
The analogous problem for s(τ) is more straightforward: its maximal value is(

n
a1,a2,...,ak

)
since every arrangement of S can generate the output 1a12a2 . . . kak .

Let c(a1, a2, . . . , ak) = t(kak . . . 2a21a1). We shall derive recurrences for
this quantity and a closed expression for its multi-variate generating function.
Remarkably, this generating function is a symmetric function in its k variables
and therefore c(a1, a2, . . . , ak) is symmetric in its arguments. We know of no
simple reason for this fact.

the electronic journal of combinatorics 2 (1995), #R24 12

Lemma 2 Let σ = kak . . . 2a21a1 . Then a sequence τ on the same multiset
is one of the possible outputs arising from σ as input if and only if τ has no
subsequence abc whose relative values are as 132

Proof When a priority queue is given input in non-increasing order the cur-
rent minimal element may be taken to be the last element inserted. We may
therefore presume that elements are inserted and deleted according to a Last-
In, First-Out discipline; in other words the priority queue behaves like a stack.
Stack permutations can be characterised by the avoidance of a forbidden pat-
tern [9] p.239 ((132) when the input is decreasing); this remains true even when
the input has repeated elements.

Remarks

1. It is convenient to describe the conclusion of this lemma by saying that
an output generated by σ has “no (132) pattern”, or that (σ, τ) has “no
(321, 132) pattern”

2. A more general result than this can be proved: if σ and τ are any ar-
rangements of S then (σ, τ) is allowable if and only if it has no (12, 21)
pattern nor (321, 132) pattern.

Lemma 3 c(a1) = 1 and for k ≥ 2,

c(a1, . . . , ak) =
a1∑
r=1

c(r, a2 − 1, . . . , ak) + c(a1 + a2, a3, . . . , ak) for a2 ≥ 1

c(a1, a3, .., ak) for a2 = 0

Proof If a2 = 0 the result follows by relabeling the elements of S. Assume
a2 ≥ 1 and let R be the set of outputs that can be generated by the input
kak . . .2a21a1 . Let σ ∈ R be such that all the 2’s in σ come before all the 1’s,
and let σ′ be the sequence obtained from σ by replacing all the 1’s by 2’s. Then
σ′ is an output for the sequence kak . . . 2a2+a1 . Conversely, for any output σ′

generated by the input kak . . .2a2+a1 , we can construct a sequence σ in R by
replacing the last a1 2’s in σ′ by 1’s. The new sequence is in R since this change
cannot introduce any (132) patterns. Hence the total number of sequences in
R with all the 2’s before all the 1’s is c(a1 + a2, a3, . . . , ak).

Next consider a sequence σ in R containing at least one occurrence of a
1 before a 2. By considering the first occurrence of 1 in σ and the first 2
succeeding this 1 we obtain a unique decomposition σ = σ11α2σ2 where σ1

contains no 1’s and α contains no 2’s. But then, because σ contains no 132
pattern α has the form α = 1q for some q ≥ 0.

Consider the sequence σ̂ = σ11σ2 obtained by removing the uniquely deter-
mined substring 1q2 from σ. Clearly σ̂ has no 132 pattern either and so is one
of the c(a1 − q, a2 − 1, a3, . . . , ak) outputs obtainable from the input sequence
kak . . .2a2−11a1−q.

the electronic journal of combinatorics 2 (1995), #R24 13

Conversely, from any one of these latter outputs σ̂ we can obtain a sequence
of R merely by inserting the substring 1q2 immediately after the first 1 of σ̂
(since this cannot introduce a 132 pattern). Therefore the total number of
sequences in R which do not have all their 1’s before all their 2’s is

a1∑
r=1

c(r, a2 − 1, . . . , ak)

which proves the result.
Using the previous lemma one can obtain the following results fairly easily.

c(a1) = 1

c(a1, a2) =
(
a1 + a2

a1

)
c(a1, a2, a3) = 2a1+a2+a3 −

a1−1∑
r=0

(
a1 + a2 + a3

r

)

−
a2−1∑
r=0

(
a1 + a2 + a3

r

)
−
a3−1∑
r=0

(
a1 + a2 + a3

r

)
However, obtaining an expression for c(a1, a2, . . . , ak) in general appears to

present more difficulty. Further progress can be made by defining

G(x1, . . . , xk) =
∑
a1=0

· · ·
∑
ak=0

c(a1, . . . , ak)xa1
1 . . . xakk

as the generating function for c(a1, . . . , ak). The recurrence for c(a1, . . . , ak)
above can be used to obtain a recursive formula for G(x1, . . . , xk).

Lemma 4

G(x1) =
1

1− x1
,

G(x1, . . . , xk) =
x2(1− x2)G(x2, x3, . . . , xk)− x1(1− x1)G(x1, x3, . . . , xk)

(1− x1 − x2)(x2 − x1)
for k ≥ 2

Proof Clearly, c(a1) = 1 for all a1 ≥ 0 and so G(x1) = 1/(1−x1). Now assume
k ≥ 2.

G(x1, . . . , xk)

=
∑
a1=0

· · ·
∑
ak=0

c(a1, . . . , ak)xa1
1 · · ·xakk

=
∑
a1=0

∑
a2=1

· · ·
∑
ak=0

(
a1∑
r=0

c(r, a2 − 1, . . . , ak)

the electronic journal of combinatorics 2 (1995), #R24 14

− c(0, a2 − 1 . . . , ak) + c(a1 + a2, a3, . . . , ak)

)
xa1

1 · · ·xakk

+
∑
a1=0

∑
a3=0

· · ·
∑
ak=0

c(a1, a3, . . . , ak)xa1
1 x

a3
3 · · ·xakk

= x2

∑
a1=0

· · ·
∑
ak=0

a1∑
r=0

c(r, a2, . . . , ak)xa1
1 · · · xakk

+ x2

∑
a1=0

· · ·
∑
ak=0

(c(1 + a1 + a2, a3, . . . , ak)− c(a2, a3, . . . , ak))xa1
1 . . . xakk

+G(x1, x3, . . . , xk)

= x2

∑
a2=0

· · ·
∑
ak=0

∑
r=0

∑
a1=r

c(r, a2, . . . , ak)xa1
1 · · ·xakk

+ x2

∑
a1=0

· · ·
∑
ak=0

c(1 + a1 + a2, a3, . . . , ak)xa1
1 · · ·xakk

− x2

1− x1
G(x2, x3, . . . , xk) +G(x1, x3, . . . , xk)

=
x2

1− x1
G(x1, x2, . . . , xk)−

x2

1− x1
G(x2, x3, . . . , xk)

+G(x1, x3, . . . , xk) +H

where

H = x2

∑
a1=0

· · ·
∑
ak=0

c(1 + a1 + a2, a3, . . . , ak)xa1
1 · · ·xakk

=
∑
a1=0

(
x1

x2

)a1 ∑
a2=0

· · ·
∑
ak=0

c(1 + a1 + a2, a3, . . . , ak)x1+a1+a2
2 · · ·xakk

=
∑
a1=0

(
x1

x2

)a1
(∑
a2=0

· · ·
∑
ak=0

c(a2, a3, . . . , ak)xa2
2 · · · xakk

−
∑
a3=0

· · ·
∑
ak=0

a1∑
a2=0

c(a2, a3, . . . , ak)xa2
2 · · · xakk

)

=
∑
a1=0

(
x1

x2

)a1

G(x2, . . . , xk)

−
∑
a1=0

(
x1

x2

)a1 a1∑
a2=0

∑
a3=0

· · ·
∑
αk=0

c(a2, a3, . . . , ak)xa2
2 · · ·xakk

=
x2

x2 − x1
G(x2, x3, . . . , xk)

−
∑
a2=0

(∑
a1=a2

(
x1

x2

)a1
) ∑
a3=0

· · ·
∑
ak=0

c(a2, a3, . . . , ak)xa2
2 · · ·xakk

the electronic journal of combinatorics 2 (1995), #R24 15

=
x2

x2 − x1
G(x2, x3, . . . , xk)

−
∑
a2=0

∑
a3=0

· · ·
∑
ak=0

xa2
1

xa2−1
2 (x2 − x1)

c(a2, a3, . . . , ak)xa2
2 · · ·xakk

=
x2

x2 − x1
(G(x2, x3, . . . , xk)−G(x1, x3, . . . , xk))

It follows that

G(x1, . . . , xk) =
x2(1− x2)G(x2, x3, . . . , xk)− x1(1− x1)G(x1, x3, . . . , xk)

(1− x1 − x2)(x2 − x1)

as required.
To solve this recurrence and obtain an expression for G(x1, . . . , xk) we use

the notation
yi = xi(1− xi).

Then the recurrence becomes:

G(x1) = x1/y1

G(x1, . . . , xk) =
1

(y1 − y2)
(y1G(x1, x3, . . . , xk)− y2G(x2 . . . , xk)) .

Now let
A(z1, . . . , zn) =

∏
1≤i<j≤n

(zi − zj),

for n ≥ 2, and let A(z) = 1 and A() = 1. The following result was initially
conjectured as a result of computational exploration with the AXIOM system
[8].

Theorem 3

G(x1, . . . , xk) = −
∑k

i=1(−1)ixiyk−2
i A(y1, . . . , yi−1, yi+1, . . . , yk)
A(y1, . . . , yk)

Proof by induction on k. When k = 1, the result can be checked directly.
Otherwise assume the result holds for k − 1 and substitute that twice into the
recurrence above. We get

G(x1, . . . , xk)

=
−1

y1 − y2
y1

(
−x1y

k−3
1 A(y3, . . . , yk)

+
∑n

i=3(−1)i−1xiy
k−3
i A(y1, y3, . . . , yi−1, yi+1, . . . , yk)

)
A(y1, y3, . . . , yk)

the electronic journal of combinatorics 2 (1995), #R24 16

− y2

(∑n
i=2 xiy

k−3
i (−1)i−1A(y2, . . . , yi−1, yi+1, . . . , yk)

)
A(y2, . . . , yk)

)
.

Placing this over a common denominator of A(y1, . . . , yk) the numerator be-
comes:

x1y
k−2
1 A(y3, . . . , yk)

k∏
j=3

(y2 − yj)

+
k∑
i=3

(−1)ixiyk−3
i y1A(y1, y3, . . . , yi−1, yi+1, . . . , yk)

k∏
j=3

(y2 − yj)

−
k∑
i=2

(−1)ixiyk−3
i y2A(y2, . . . , yi−1, yi+1, . . . , yk)

k∏
j=3

(y1 − yj)

Collecting terms in each xi and combining the products with the A(. . .) ex-
pressions this becomes:

x1y
k−2
1 A(y2, . . . , yk)− x2y

k−2
2 A(y1, y3, . . . , yk)

+
k∑
i=3

(−1)ixiyk−3
i A(y1, . . . , yi−1, yi+1, . . . , yk)

(
y1(y2 − yi)− y2(y1 − yi)

y1 − y2

)
Finally, we note that

y1(y2 − yi)− y2(y1 − yi)
y1 − y2

= −yi

which gives the desired result.

Corollary 2 c(a1, . . . , ak) is symmetric in a1, . . . , ak

Proof The denominator of the generating function G(x1, . . . , xk) is clearly
anti-symmetric in its variables. Furthermore, it is clear that exchanging two
variables xi and xi+1 (1 ≤ i < k) in the numerator negates it, which implies
that the numerator is also anti-symmetric. Thus the generating function is
symmetric and the result now follows.

Remark: H.S. Wilf [13] has observed that both the numerator and the de-
nominator of the expression for G can be viewed as determinants, giving

the electronic journal of combinatorics 2 (1995), #R24 17

G(x1, . . . , xk) =

∣∣∣∣∣∣∣∣∣
y0

1 y1
1 · · · yk−2

1 x1y
k−2
1

y0
2 y1

2 · · · yk−2
2 x2y

k−2
2

...
...

. . .
...

...
y0
k y1

k · · · yk−2
k xky

k−2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y0

1 y1
1 · · · yk−1

1

y0
2 y1

2 · · · yk−1
2

...
...

. . .
...

y0
k y1

k · · · yk−1
k

∣∣∣∣∣∣∣∣∣
This is exactly the form given by Cramer’s rule for determining the last

unknown uk in the system of linear equations (indexed by i):

k∑
j=1

ujy
j−1
i = xiy

k−2
i

Letting

P (t) =
k−1∑
j=0

uk−jt
j

we see that uk is in fact the constant term in the unique polynomial P (t) of
degree k − 1 defined by

P (1/yi) = xi/yi

It is not known whether the other coefficients of this polynomial or the
polynomial itself have any combinatorial meaning.
Acknowledgment We thank the referee for a number of suggestions which
greatly improved the exposition of this paper.

References

[1] Atkinson M D and Thiyagarajah M: The permutational power of a priority
queue, BIT 33 (1993), 2-6.

[2] Atkinson M D and Beals R: Priority queues and permutations, SIAM J.
Computing 23 (1994), 1225–1230.

[3] Atkinson M D: Transforming binary sequences with priority queues, OR-
DER 10 (1993), 31-36.

[4] Atkinson M D and Walker L A: Enumerating k-way trees, Information
Processing Letters 48 (1993), 73-75.

[5] Cameron P J: Combinatorics: Topics, Techniques, Algorithms, Cambridge
University Press, (Cambridge, New York, Melbourne) 1994.

[6] Cormen T H, Leiserson C E, Rivest R L: Introduction to Algorithms,
McGraw-Hill (Cambridge, Mass.) 1992

the electronic journal of combinatorics 2 (1995), #R24 18

[7] Golin M, Zaks S: Labelled trees and pairs of input-output permutations
in priority queues, Proceedings of the 20th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG), München, Ger-
many, June 1994

[8] Jenks R D, Sutor R S: Axiom, the Scientific Computation System,
Springer-Verlag, (New York), 1992

[9] Knuth D E: Fundamental Algorithms, The Art of Computer Programming
Vol. 1, Addison-Wesley, (Reading, Massachusetts), 1973

[10] Knuth D E: Sorting and Searching, The Art of Computer Programming
Vol. 3, Addison-Wesley, (Reading, Massachusetts), 1973

[11] Moon J W: Counting Labelled Trees, Canad. Math. Monographs No. 1
(1970).

[12] Pratt V R: Computing permutations with double-ended queues, parallel
stacks and parallel queues, Proc. ACM Symp. Theory of Computing 5
(1973), 268–277.

[13] Wilf H S: private communication, 1995.

