
THE DISTRIBUTION OF DESCENTS

AND LENGTH IN A COXETER GROUP

Victor Reiner

University of Minnesota

e-mail: reiner@math.umn.edu
Submitted August 19, 1995; accepted November 25, 1995

��������� We give a method for computing the q-Eulerian distribution

W (t, q) =
�

w∈W
tdes(w)ql(w)

as a rational function in t and q, where (W,S) is an arbitrary Coxeter system, l(w)
is the length function in W , and des(w) is the number of simple reflections s ∈ S
for which l(ws) < l(w). Using this we compute generating functions encompassing
the q-Eulerian distributions of the classical infinite families of finite and affine Weyl
groups.

I. Introduction.
Let (W,S) be a Coxeter system (see [Hu] for definitions and terminology). There

are two statistics on elements of the Coxeter group W

l(w) = min{l : w = si1si2 · · · sil for some sik ∈ S}
des(w) = |{s ∈ S : l(ws) < l(w)}|

which generalize the well-known permutation statistics inversion number and de-
scent number in the case W is the symmetric group Sn. The polynomial∑

w∈Sn

tdes(w)

is known in the combinatorial literature as the Eulerian polynomial, which has
generating function

∑
n≥0

xn

n!

∑
w∈Sn

tdes(w) =
(1− t) ex(1−t)

1− t ex(1−t)
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and a q-analogue first computed by Stanley [St, §3]:

(1)
∑
n≥0

xn

[n]!q

∑
w∈Sn

tdes(w)ql(w) =
(1− t) exp(x(1− t); q)
1− t exp(x(1− t); q)

where exp(x; q) is the q-exponential given by

exp(x; q) =
∑
n≥0

xn

[n]!q

using the notation

[n]!q = [n]q[n− 1]q · · · [2]q[1]q =
(q; q)n

(1− q)n

[n]q =
1− qn
1− q

(x; q)n = (1− x)(1− qx)(1− q2x) · · · (1− qn−1x)

For this reason, we call
W (t, q) =

∑
w∈W

tdes(w)ql(w)

the q-Eulerian distribution of the Coxeter system (W,S), or the q-Eulerian distri-
bution of W by abuse of notation. (We caution the reader that this is not the same
notion as the q-Eulerian polynomial considered in [Br] for W = Bn,Dn). Analo-
gous generating functions to equation (1) for the infinite families of finite Coxeter
groups W = Bn(= Cn),Dn were computed in [Re1,Re2].

Note that in the case of an infinite Coxeter group W , the Eulerian distribution∑
w∈W tdes(w) does not make sense as a formal power series in t, since there are

only finitely many values {0, 1, 2, . . . , |S| − 1} of des(w) and hence infinitely many
group elements w with the same value of des(w). On the other hand, the length
distribution

W (q) =
∑
w∈W

ql(w)

does make sense in �[[q]], and is known to be a computable rational function in q
(see equation (6)). The formula for W (t, q) (equation (2)), which essentially comes
from inclusion-exclusion, shows that W (t, q) is a computable polynomial in t having
coefficients given by rational functions in q. Both this expression for W (t, q) and
this corollary are known as folklore within the subject of Coxeter groups, but are
hard to find written down.

For some of the classical infinite families of finite and affine Coxeter groups, an
encoding trick can be used to produce a generating function encompassing the q-
Eulerian distributions of the entire family of groups as in equation (1). We derive
a general result (Theorem 4) along these lines, and use it to recover known gener-
ating functions for the classical Weyl groups of types An(= Sn+1), Bn(= Cn),Dn
(see [St,Re1,Re2]) and derive new results for the infinite families Ãn, B̃n, C̃n, D̃n of
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affine Weyl groups. For example, we show for the affine Weyl groups S̃n(= Ãn−1)
associated to the symmetric groups Sn that∑

n≥1

xn

1− qn S̃n(t, q) =

[
x ∂
∂x log(exp(x; q))
1− t exp(x; q)

]
x7→x 1−t

1−q

.

Theorem 4 explains why the factor

1− t exp(x; q)

naturally appears in the denominator in all of these generating functions.
The paper is structured as follows. Section II collects folklore, known results,

and straightforward extensions concerning the computation of the q-Eulerian poly-
nomial W (t, q) of a general Coxeter system (W,S). In Section III, we apply this
to compute a generating function analogous to equation (1) for a general class of
infinite families of Coxeter groups (Theorem 4). Section IV then specializes this
to produce explicit generating functions for all of the infinite families of finite and
affine Weyl groups (Theorems 5,6,7,8).

II. How to calculate W (t, q).
We recall here some facts about Coxeter systems (W,S) and refer the reader to

[Hu] for proofs and definitions which have been omitted. Given w ∈ W , let its
descent set Des(w) be defined by

Des(w) = {s ∈ S : l(ws) < l(w)}

For any subset J ⊆ S, the parabolic subgroup WJ is the subgroup generated by J .
The set

W J = {w ∈W : Des(w) ⊆ S − J}
form a set of coset representatives for W/WJ , and furthermore when w ∈ W is
written uniquely in the form w = u · v where u ∈ W J , v ∈ WJ , then we have
l(u) + l(v) = l(w). As a consequence,

WJ (q)

 ∑
w∈W :Des(w)⊆S−J

ql(w)

 = W(q)

∑
w∈W :Des(w)⊆S−J

ql(w) =
W (q)
WJ(q)

where recall that we are using the notation

W (q) =
∑
w∈W

ql(w).

We will consider not only subsets S ⊆ T , but also multisets T on the ground set S,
which we think of as functions T : S → � specifying a multiplicity T (s) for each
element of s in S. For any such function T in S�, let T̂ denote its support, i.e. the
subset T̂ ⊆ S defined by

T̂ = {s ∈ S : T (s) > 0}.
Also denote by |T | the cardinality

∑
s∈S T (s) of the multiset or function.
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Theorem 1. For any Coxeter system (W,S) we have

W (t, q) =
∑
T⊆S

t|T |(1− t)|S−T | W (q)
WS−T (q)

(2)

W (t, q)
(1− t)|S| =

∑
T∈S�

t|T |
W (q)

WS−T̂ (q)
(3)

Proof. We prove equation (2), from which (3) follows easily. Starting with the
right-hand side of (2), one has

∑
T⊆S

t|T |(1− t)|S−T | W (q)
WS−T (q)

=
∑
T⊆S

t|T |(1− t)|S−T |
∑

w∈W :Des(w)⊆T
ql(w)

=
∑
w∈W

ql(w)
∑

Des(w)⊆T⊆S
t|T |(1− t)|S−T |

=
∑
w∈W

ql(w)tdes(w)
∑

�⊆T ′⊆S−Des(w)

t|T
′|(1− t)|S−Des(w)−T ′|

=
∑
w∈W

ql(w)tdes(w)(t+ (1− t))|S−Des(w)|

=
∑
w∈W

ql(w)tdes(w)

= W (t, q)�

Remarks. The specialization of equation (2) to q = 1 appears as [Ste, Proposition
2.2(b)], and the special case of (2) in which W is of type An appears in slightly
different form as [DF, equation (2.5)].

It is just as easy to refine equations (2), (3) to keep track of the entire descent
set Des(w) by giving each s ∈ S its own indeterminate ts. One can also refine this
computation to incorporate other statistics than the length function l(w), as long as
the statistic n(w) in question is additive under every parabolic coset decomposition
in the following sense: for all J ⊆ S, when w ∈ W is written uniquely as w = u · v
with u ∈W J , v ∈WJ , we have n(w) = n(u) + n(v). The following theorem is then
proven in exactly the same fashion as Theorem 1:

Theorem 1′. Let (W,S) be a Coxeter system, and n1(w), n2(w), . . . a series of
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additive statistics. Then using the notations

qn(w) =
∏
i

q
ni(w)
i

tT =
∏
s∈T

ts

(1− t)T =
∏
s∈T

(1− ts)

W (q) =
∑
w∈W

qn(w)

W (t,q) =
∑
w∈W

tDes(w)qn(w)

we have

W (t,q) =
∑

subset T⊆S
tT (1− t)S−T

W (q)
WS−T (q)

(4)

W (t,q)
(1− t)S

=
∑
T∈S�

tT
W (q)

WS−T̂ (q)
�(5)

In light of this theorem, it is useful to know a classification of the additive
statistics on W :

Proposition 2. Let (W,S) be a Coxeter system, and let n : W → � be an additive
statistic in the above sense. Then

1. The statistic n is completely determined by its values on S via the formula

n(w) =
l(w)∑
j=1

n(sij )

for any reduced decomposition w = si1si2 · · · sil(w) .
2. The statistic n is well-defined if and only if it is constant on the W -conjugacy

classes restricted to S, which are well-known (see e.g. [Hu, Exercise §5.3]) to
coincide with the connected components of nodes in the subgraph induced
by the odd-labelled edges of the Coxeter diagram.

As a consequence, there is a universal tuple of additive statistics n1, n2, . . . whose
multivariate distribution specializes to that of any other additive statistics, de-
fined by setting ni|S to be the characteristic function of the ith W -conjugacy class
restricted to S.

Proof. If n is additive, then the decomposition 1 = 1 · 1 implies n(1) = n(1) + n(1)
so n(1) = 0. If the values of n on S are specified, then n(w) is determined by
the formula in the proposition for any w, using induction on l(w): choose any
s ∈ Des(w), and then w = ws · s is the unique decomposition in W {s} ·W{s}, so
n(w) = n(ws) + n(s).
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To prove the second assertion, note that if s, s′ are connected by an odd-labelled
edge in the Coxeter diagram, then the longest element of W{s,s′} has two reduced
decompositions

s s′s · · · = s′ s s′ · · ·

and the formula for n forces n(s) = n(s′). So n must be constant on the W -
conjugacy classes restricted to S, and Tits’ solution to the word problem for (W,S)
[Hu, §8.1] shows that any such function on S will extend (by the above formula) to
a well-defined additive function on W . �

Recall [Hu, §1.11, §5.12] the fact that W (q) is a rational function in q, which
may be computed using the recursion

(6) W (q) = f(q)

∑
J�S

(−1)|J|

WJ(q)

−1

where

f(q) =
{

(−1)|S|+1 if W is infinite
ql(w0) + (−1)|S|+1 if W is finite

and w0 is the element of maximal length in W when W is finite. From equation
(2), we conclude that W (t, q) is also a rational function in t and q (in fact a poly-
nomial in t with coefficients given by rational functions of q, i.e. W (t, q) ∈ �(q)[t]).
More generally, the q-analogue of recursion (6) in which q is replaced by q and
l(w) by a(w) follows from the same proof as (6). Therefore W (q) ∈ �(q) for
any additive statistics a1(w), a2(w), . . . , and from equation (4) we conclude that
W (t,q) ∈ �(q)[t].

Before leaving this folklore section, we note a happy occurrence when the Coxeter
diagram for W is linear, i.e. when it has no nodes of degree greater than or equal to
3. In this situation and with q = 1, Stembridge [Ste, Proposition 2.3, Remark 2.4]
observed that the right-hand side of (2) has a concise determinantal expression, and
the proof given there generalizes in a straightforward fashion to prove the following:

Theorem 3. Let (W,S) be a Coxeter system with linear Coxeter diagram, and
label the nodes 1, 2, . . . , n in linear order. Then

W (t,q) = W (q) det[aij ]0≤i,j≤n

where

aij =


0 i − j > 1

ti − 1 i − j = 1
ti

W[i+1,j](q) i ≤ j

and by convention t0 = 1, and W[i+1,i] is the trivial group with 1 element.�

For example, if W is the Weyl group of type Bn(= Cn), then the Coxeter diagram
is a path with n nodes having all edges labelled 3 except for one on the end labelled 4.
An interesting additive statistic n(w) is the number of times the Coxeter generator
on the end with the edge labelled 4 occurs in a reduced word for w (this is the
same as the number of negative signs occurring in w when considered as a signed
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permutation). It is not hard to check (see e.g. [Re1, Lemma 3.1]) that if we let
qn(w) = an(w)ql(w), then

Bn(q) = (−aq; q)n[n]!q

and hence the above determinant is very explicit. For example when n = 2,

B2(t,q) = (−aq; q)2 [2]!q det

 1 1
[2]!q

1
(−aq;q)2[2]!q

t1 − 1 t1
t1

(−aq;q)1[1]!q
0 t2 − 1 t2


= 1 + qt1 + aq2t1 + aq3t1 + aqt2 + aq2t2 + a2q3t2 + a2q4t1t2.

III. W (t, q) for infinite families.
In this section we use equation (2) to compute the generating function encom-

passing W (n)(t, q) for all n, where W (n) is an infinite family of Coxeter groups which
grows in a certain prescribed fashion. It turns out that all of the infinite families
of finite and affine Coxeter groups fit this description, and we deduce generating
functions for their q-Eulerian polynomials (and some more general infinite families)
as corollaries.

We begin by describing the infinite family W (n). Let (W,S) be a Coxeter system,
and choose a particular generator v ∈ S to distinguish. Partition the neighbors of
v in the Coxeter diagram for (W,S) into two blocks B1, B2, and define (W (n), S(n))
for n ∈ � to be the Coxeter system whose diagram is obtained from that of (W,S)
as follows: replace the node v with a path having n + 1 vertices s0, . . . , sn and n
edges all labelled 3, then connect s0 to the elements of B1 using the same edge
labels as v used, and similarly connect sn to the elements of B2. For example,
(W (0), S(0)) = (W,S), while (W (1), S(1)) will have one more node and one more
edge (labelled 3) in its diagram than (W,S) had. The goal of this section is to
compute an expression for the generating function∑

n≥0

xn

W (n)(q)
W (n)(t, q)

For a subset J ⊆ S− v, let (W (n)
J , S

(n)
J ) be the Coxeter system corresponding to

the parabolic subgroup generated by J ∪ {s0, . . . , sn}. Also define for J ⊆ S − v
and a, b ∈ � the Coxeter system (W (a,b)

J , S
(a,b)
J ) to be the one corresponding to the

parabolic subgroup of (W (a+b), S(a+b)) generated by J ∪ ({s0, . . . , sn} − sa). Let

expWJ
(x; q) =

∑
n≥0

xn

W
(n)
J (q)

dexWJ (x; q) =
∑
a,b≥0

xa+b

W
(a,b)
J (q)

The terminologies “exp” and “dex” are intended to be suggestive of the fact that
in the special cases of interest, expWJ

(x; q) will be related to a q-analogue of the
exponential function exp(x), and dexWJ (x; q) will either be a product of two such
q-analogues of exponentials (so a double exponential) or the derivative of such a
q-analogue.
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Theorem 4.

∑
n≥0

xn

W (n)(q)
W (n)(t, q) = ∑

J⊆S−v
t|J |(1− t)|S−J|

(
expWS−v−J (x; q) +

tdexWS−v−J (x; q)
1− t exp(x; q)

)
x 7→x(1−t)

Proof. From equation (2) we have

W (n)(t, q) =
∑

T⊆S(n)

t|T |(1− t)|S(n)−T | W (n)(q)

W
(n)

S(n)−T (q)

so that

W (n)(t, q)
W (n)(q) (1− t)n

=
∑

J⊆S−v
t|J |(1− t)|S−J|

∑
K⊆{s0,... ,sn}

t|K|

(1− t)|K|
1

W
(n)

S(n)−J−K(q)

=
∑

J⊆S−v
t|J |(1− t)|S−J|

∑
K∈�{s0,... ,sn}

t|K|
1

W
(n)

S(n)−J−K̂(q)

=
∑

J⊆S−v
t|J |(1− t)|S−J|

 1

W
(n)
S−v−J (q)

+
∑
k≥1

tk
∑

K∈�{s0,... ,sn}
|K|=k

1

W
(n)

S(n)−J−K̂(q)



At this stage, we use an encoding for the functions K : {s0, . . . , sn} → � hav-
ing |K| = k. Let ωi ∈ �n be the vector e1 + e2 + . . . + ei, where ei is the ith

standard basis vector, so that ω0 = (0, 0, . . . , 0) and ωn = (1, 1, . . . , 1). Given
K : {s0, . . . , sn} → �, encode it as the vector c(K) =

∑n
i=0K(si)ωi ∈ �n.

Note that once we have fixed the cardinality |K| = k ≥ 1, then K is completely
determined by c(K), which is a decreasing sequence with entries in the range [0, k].
Hence K is also completely determined by the sequence a(K) = (a0, . . . , ak) where
ai is the number of occurrences of i in c(K). Furthermore, it is easy to check that
the parabolic subgroup WS(n)−J−K̂ is then isomorphic to

W (a,b)
S−v−J × Sa1 × · · · × Sak−1 .
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Therefore we may continue the calculation

W (n)(t, q)
W (n)(q) (1− t)n =

∑
J⊆S−v

t|J|(1− t)|S−J|× 1

W
(n)
S−v−J (q)

+
∑
k≥1

tk
∑

(a0,... ,ak)∈�k+1
�

ai=n

1

W
(a,b)
S−v−J (q) [a1]!q · · · [ak−1]!q


∑
n≥0

W (n)(t, q)
W (n)(q)

xn

(1− t)n =
∑

J⊆S−v
t|J |(1− t)|S−J|×∑

n≥0

xn

W (n)
S−v−J (q)

+
∑
k≥1

tk
∑
n≥0

∑
(a0,... ,ak)∈�k+1
�

ai=n

xa0+ak

W (a0,ak)
S−v−J (q)

xa1

[a1]!q
· · · x

ak−1

[ak−1]!q


=

∑
J⊆S−v

t|J|(1− t)|S−J |×expWS−v−J (x; q) +
∑

a0,ak≥0

xa0+ak

W
(a,b)
S−v−J (q)

∑
k≥1

tk(exp(x; q))k


=

∑
J⊆S−v

t|J|(1− t)|S−J |
(

expWS−v−J (x; q) + dexWS−v−J (x; q)
t

1− t exp(x; q)

)
The theorem now follows upon replacing x by x(1− t).�
Remarks.

1. The crucial encoding of functions K : {s0, . . . , sn} → � used in the middle
of the preceding proof is a translation and generalization of the “direct
encoding” used in [GG, §1] for type An.

2. There is an obvious q-analogue of Theorem 3 involving additive statistics
on (W,S), with the same proof.

IV. Explicit generating functions for classical Weyl groups and affine
Weyl groups.

This section (and the remainder of the paper) is devoted to specializing Theorem
4 to compute generating functions for descents and length in all of the classical
finite and affine Weyl groups, and certain families which generalize them. In all
cases where W is a finite or affine Weyl group, the denominators W (q) occurring
in the left-hand side of Theorem 4 can be made explicit for the following reason: if
W is a finite Weyl group of rank n, then there is an associated multiset of numbers
e1, e2, . . . , en called the exponents of W , satisfying

W (q) =
n∏
i=1

[ei + 1]q(7)

W̃ (q) =
n∏
i=1

[ei + 1]q
1− qei(8)
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where W̃ is the affine Weyl group associated to W . The first formula is a theorem
of Chevalley [Hu, §3.15], the second a theorem of Bott [Hu, §8.9]. We should
mention that Bott’s proof, although extremely elegant and unified, is not completely
elementary, and more elementary proofs of some cases of his theorem have recently
appeared in [BB, BE , EE, ER].

We first consider an infinite family of Coxeter systems with linear diagrams. Let
W r,s
n be the family of Coxeter groups whose Coxeter diagram is a path with n

nodes, in which the labels on almost all of the edges are 3 except for the leftmost
edge labelled r and the rightmost edge labelled s. Let W r

n be the family defined
by W r

n = W r,3
n The next result uses Theorem 4 to compute a generating function

for W r,s
n (t, q). Note that W r,s

n contains as special cases the finite Coxeter groups
of type An, Bn(= Cn),H3, H4, and the affine Weyl groups C̃n, as well as some
hyperbolic Coxeter groups (see [Hu, §2.4, 2.5, 6.9]).

Before stating the theorem, we establish some more notation. Let

expW r(x; q) =
∑
n≥0

xn

W r
n(q)

expW r,s(x; q) =
∑
n≥0

xn

W r,s
n (q)

where by convention we define W r,s
0 = W r

0 to be the trivial group with 1 element,
W r,s

1 = W r
1 is the unique Coxeter system of rank 1, and W r,s

2 = W r
2 = I2(r) is the

rank 2 (dihedral) Coxeter system of order 2r.

Theorem 5.

∑
n≥0

xn

W r,s
n (q)

W r,s
n (t, q) = expW r,s(x(1− t); q)

(9)

+
t x (1− t) expW r (x(1− t); q) expW s(x(1− t); q)

1− t exp(x(1− t); q)

∑
n≥0

xn

W r
n(q)

W r
n(t, q) =

(1− t) expW r(x(1− t); q)
1− t exp(x(1− t); q)

(10)

Proof. Equation (10) follows from equation (9) by setting s = 3 and noting that

expW r,3(x; q) = expW r (x; q)

expW3(x; q) =
exp(x; q)− 1

x
.

We wish to derive equation (9) from Theorem 4. In the notation preceding
Theorem 4, choose (W,S) to have Coxeter diagram with 3 nodes s1, s2, s3 forming
a path with two edges {s1, s2}, {s2, s3} labelled r and s respectively, and let v =
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s2, B1 = {s1}, B2 = {s2}. One can then check that

W (n) = W r,s
n+3

expWs1,s3
(x; q) = x−3

(
expW r,s(x; q)− 1− x

[2]q
− x2

[2]q[r]q

)
expWs1

(x; q) = x−2

(
expW r (x; q)− 1− x

[2]q

)
expWs3

(x; q) = x−2

(
expW s(x; q)− 1− x

[2]q

)
expW�(x; q) = x−2(exp(x; q)− 1− x)

dexWs1,s3
(x; q) = x−2(expW r(x; q)− 1)(expW s(x; q)− 1)

dexWs1
(x; q) = x−2(expW r(x; q)− 1)(exp(x; q)− 1))

dexWs3
(x; q) = x−2(expW s(x; q)− 1)(exp(x; q)− 1))

dexW�(x; q) = x−2(exp(x; q)− 1)2

and using these facts, equation (9) follows from Theorem 4 with a little algebra. �

We now specialize Theorem 5 to obtain generating functions for the types An−1(=
Sn), Bn(= Cn), and C̃n.

If r = 3 then W r
n coincides with the finite Weyl group An(= Sn+1) which has

exponents 1, . . . , n, and one can check that equation (10) is equivalent to Stanley’s
formula (1). It is interesting to note that expWr (x; q) has an alternate expression
in this case in terms of an infinite product, since expW r(x; q) = x−1(exp(x; q)− 1)
as noted earlier, and

exp(x; q) =
∑
n≥0

(x(1− q))n
(q; q)n

= (x(1− q); q)−1
∞

where the last equality is by the q-binomial theorem [GR, Appendix II.3]:

∑
n≥0

(z; q)n
(q; q)n

xn =
(zx; q)∞
(x; q)∞

.

If r = 4 then W r
n coincides with the finite Weyl group Bn or Cn which has

exponents 1, 3, . . . , 2n−1. In this case equation (10) is equivalent to [Re1, §3] spe-
cialized to a = q = 1. Again we note that expW r(x; q) has an alternate expression
in this case as an infinite product, since

expW 4(x; q) =
∑
n≥0

(x(1− q))n
(q2; q2)n

= (x(1− q); q2)−1
∞

again by the q-binomial theorem. Furthermore, since the Coxeter diagram in the
case has an edge labelled 4, there exists another additive statistic n(w), equal to
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the number of negative signs in w considered as a signed permutation (see example
after Theorem 3). Using the known distribution

Bn(q) =
∑
w∈Bn

an(w)ql(w) = (−aq; q)n[n]!q

the proof of Theorem 3 for r = 4 can be refined to a result equivalent to [Re1,
§3, specialized to q = 1]. On the other hand, it does not seem to be true that the
generalization of expW 4(x; q) defined by

expW 4(x; a, q) =
∑
n≥0

xn

(−aq; q)n[n]!q

has a nice infinite product expression.
If r = s = 4 then W r,s

n+1 coincides with the affine Weyl group C̃n for n ≥ 2, so
equation (9) says

1 +
x(1 + tq)

[2]q
+
x2C2(t, q)

[2]q[4]q
+ x

∑
n≥2

xn

C̃n(q)
C̃n(t, q)

= expW4,4(x(1− t); q) +
t x (1− t) [expW4(x(1− t); q)]2

1− t exp(x(1− t); q) .

Again we can replace exp(x; q), expW 4(x; q) by their infinite product formulas as
before, and expW4,4(x; q) also has an expression involving an infinite product: since
the associated Weyl group Cn has exponents 1, 3, . . . , 2n− 1, by (8) we have

(11) W 4,4
n+1 = C̃n(q) =

(q2; q2)n
(1− q)n(q; q2)n

for n ≥ 2 and hence

expW 4,4(x; q) = 1 +
x

[2]q
+

x2

[2]q[4]q
+ x

∑
n≥2

(q; q2)n
(q2; q2)n

(x(1− q))n

= 1 +
x

[2]q
+

x2

[2]q[4]q
+ x

(
(xq(1− q); q2)∞
(x(1− q); q2)∞

− x(1− q)
1 + q

− 1
)

where the last equality comes from the q-binomial theorem. Furthermore, since the
Coxeter diagram in this case has its two extreme edges labelled 4, there exist two
other additive statistic n(w), m(w) equal to the number of occurrences of the two
endpoint Coxeter generators occurring in a reduced word for w. One can prove
the following refinement of equation (11) (a special case of Bott’s Theorem) for
W 4,4
n+1 = C̃n:

C̃n(q) =
∑
w∈C̃n

an(w)bm(w)ql(w)

=
(−aq; q)n(−bq; q)n[n]!q

(abqn+1; q)n
(12)
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by using the q-generalization of recursion (6) to show

1
C̃n(q)

=
n∑
i=0

qi
2
ai

Bi(a, q)Bn−i(b, q)

=
n∑
i=0

qi
2
ai

(−aq; q)i[i]!q(−bq; q)n−i[n− i]!q

and then applying the q-Vandermonde summation formula [GR, Appendix II.6].
The q-refinement of Theorem 5 with r = s = 4 then gives a very explicit generating
function generalization enumerating C̃n by the quadruple of statistics

(n(w),m(w), l(w),des(w)).

On the other hand, it no longer seems to be true that there is a nice infinite product
expression for the relevant generalization of expW4,4(x; q) defined by

expW 4,4(x; a, b, q) =
∑
n≥0

(abqn+1; q)n
(−bq; q)n(−aq; q)n[n]!q

xn

= 4φ3

( √
abq −

√
abq

√
abq −

√
abq

−aq −bq abq

∣∣∣∣x(1− q); q
)

where the last equation is basic hypergeometric series notation (see e.g. [GR]).
We next deal with the affine symmetric groups. Let Ãn−1 = S̃n be the affine

Weyl group corresponding to the Weyl group An−1 = Sn, so S̃n has as its Coxeter
diagram a cycle with n vertices and label 3 on every edge. Let

expS̃(x : q) =
∑
n≥1

xn

S̃n(q)
.

We now prove a formula claimed in the Introduction:

Theorem 6.

∑
n≥1

xn

1− qn S̃n(t, q) =

[
x ∂
∂x log(exp(x; q))
1− t exp(x; q)

]
x 7→x 1−t

1−q

.

Proof. In the notation preceding Theorem 4, choose (W,S) to have Coxeter diagram
with 3 nodes s1, s2, s3 arranged in a triangle with the three edges labelled 3. Let
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v = s3 and B1 = {s1}, B2 = {s2}. One can then check that

W (n) = S̃n+3

expWs1,s2
(x; q) = x−3

(
expS̃(x; q)− x− x2(1− q)

[2]q

)
expWs1

(x; q) = expWs2
(x; q) = x−3

(
exp(x; q)1− x− x2

[2]q

)
expW�(x; q) = x−2(exp(x; q)− 1− x)

dexWs1,s2
(x; q) = −2x−3

(
exp(x; q)− 1− x− x2

[2]q

)
+ x−2

(
∂

∂x
exp(x; q)− 1− 2x

[2]q

)
dexWs1

(x; q) = dexWs2
(x; q) = x−3(exp(x; q)− 1)(exp(x; q)− 1− x)

dexW�(x; q) = x−2(exp(x; q)− 1)2

and using these facts one can simplify Theorem 4 in this case to

∑
n≥1

xn

S̃n(q)
S̃n(t, q) =

[
expS̃(x; q) +

t x ∂
∂x exp(x; q)

1− t exp(x; q)

]
x7→x (1−t)

.

To rewrite this more explicitly, we note that the exponents of Sn = An−1 are
1, 2, . . . , n− 1, so that equation (8) gives

S̃n(q) =
[n]!q

(q; q)n−1
=

1− qn
(1− q)n .

Therefore

expS̃(x; q) =
∑
n≥1

xn(1− q)n
1− qn

=
∑
n≥1

∑
m≥0

(x(1− q))nqnm

=
∑
m≥0

∑
n≥1

(x(1− q)qm)n

=
∑
m≥0

x(1− q) qm
1− x(1− q) qm

=
∑
m≥0

x
∂

∂x
log[(1− x(1− q) qm)−1]

= x
∂

∂x
log[(x(1− q); q)−1

∞ ]

= x
∂

∂x
log(exp(x; q))
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Substituting this into the last equation and replacing x by x
1−q gives

∑
n≥1

xn

1− qn S̃n(t, q) =

[
x
∂

∂x
log(exp(x; q)) +

t x ∂
∂x exp(x; q)

1− t exp(x; q)

]
x7→x 1−t

1−q

which is equivalent to the theorem by a little algebra.�

Next we move on to a common generalization of the Weyl groups Dn and the
affine Weyl groups B̃n. Let Dr

n be the Coxeter system whose graph is obtained
from the graph for Dn by replacing the label of 3 on the edge farthest from the
“fork” with a label of r. Note that D3

n = Dn and D4
n = B̃n (see [Hu, §2.4, 2.5]).

We adopt the notation

expDr(x; q) =
∑
n≥2

xn

Dr
n(q)

expD(x; q) =
∑
n≥2

xn

Dn(q)

where by convention we define Dr
2 = A1 ⊕A1 and Dr

3 = A3.
Remark: The notation expD(x; q) is slightly different from the notation expD(u)
used in [Re2, Corollary 4.5], and in fact, there is an error in this previous reference,
which we correct here: the definition of expD(u) given there as

expD(u) =
∑
n≥0

un

(−q; q)n−1[n]!q

should actually read

expD(u) = 2 +
∑
n≥1

un

(−q; q)n−1[n]!q

Therefore this previous definition of expD(u) differs from our present notation
expD(u; q) in the coefficients of u0, u1.

Theorem 7.

∑
n≥4

xn

Dr
n(q)

Dr
n(t, q) =

∑
n≥4

〈xn〉
[
expDr (x; q) +

t x expWr (x; q)
1− t exp(x; q)

(
2− tx

1− t + expD(x; q)
)]

x 7→x(1−t)
· xn

(13)

Proof. In the notation preceding Theorem 4, choose (W,S) to have Coxeter diagram
with 4 nodes s1, s2, s3, s4 in which s4 is connected by an edge labelled 3 to s1, s2,
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and connected to s3 by an edge labelled r, with no other edges in the diagram. Let
v = s4 and B1 = {s1, s2}, B2 = {s3}. One can then check that

W (n) = Dr
n+4

expWs1,s2,s3
(x; q) = x−4

(
expDr (x; q)− x2

([2]q)2
− x3

[3]!q

)
expWs1,s2

(x; q) = x−3

(
expD(x; q)− x2

([2]q)2

)
expWs1,s3

(x; q) = expWs2,s3
(x; q) = x−3

(
expW r (x; q)− 1− x

[2]!q
− x2

[2]q[r]q

)
expWs1

(x; q) = expWs2
(x; q) = x−3

(
exp(x; q)− 1− x− x2

[2]!q

)
expWs3

(x; q) = x−2

(
expW r (x; q)− 1− x

[2]!q

)
expW�(x; q) = x−2(exp(x; q)− 1− x)

dexWs1,s2,s3
(x; q) = x−3 expD(x; q)(expW r(x; q)− 1)

dexWs1,s2
(x; q) = x−3 expD(x; q)(exp(x; q)− 1)

dexWs1,s3
(x; q) = dexWs2,s3

(x; q) = x−3(expW r(x; q)− 1)(exp(x; q)− 1− x)

dexWs1
(x; q) = dexWs2

(x; q) = x−3(exp(x; q)− 1)(exp(x; q)− 1− x)

dexWs3
(x; q) = x−2(expW r(x; q)− 1)(exp(x; q)− 1)

dexW�(x; q) = x−2(exp(x; q)− 1)2

and using these the result follows from Theorem 4. �

We now specialize Theorem 7 to r = 3, 4. If r = 3, then Dr
n = Dn and then

one can check that our conventions for D3 and D2 have been chosen correctly so
that the generating function on the right-hand side of equation (13) agrees with
the left-hand side in its coefficient of x2, x3 (as well as xn for n ≥ 4). Therefore we
obtain

2tx+
∑
n≥2

xn

Dn(q)
Dn(t, q) =

(1− t) expD(x(1− t); q) + t (2− tx) (exp(x(1− t); q)− 1)
1− t exp(x(1− t); q) .

which one can easily check agrees with [Re2, Corollary 4.5]. Note that since Dn
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has exponents 1, 3, . . . , 2n− 3, n− 1 by equation (7) we have

expD(x; q) =
∑
n≥2

xn

(−q; q)n−1[n]!q

=
∑
n≥2

xn(1− q)n(1 + qn)
(q2; q2)n

=
∑
n≥2

(
(x(1− q))n

(q2; q2)n
+

(xq(1− q))n
(q2; q2)n

)
= (x(1− q); q2)−1

∞ + (xq(1− q); q2)−1
∞ − 2− x

so one can again replace the exponential functions exp(x; q), expD(x; q) appearing
above by expressions involving infinite products if desired.

If r = 4, then Dr
n = B̃n−1, so equation (13) gives a closed form for the generating

function ∑
n≥3

xn

B̃n(q)
B̃n(t, q).

Since B̃n is the affine Weyl group associated to Bn, which has the same exponents
as Cn, we must have B̃n(q) = C̃n(q) by equation (7). Therefore we have already
seen how all of the functions expD4(x; q), expW 4(x; q), exp(x; q) appearing in the
generating function can be made more explicit, and replaced by expressions involv-
ing infinite products if desired. Furthermore, since the Coxeter diagram for B̃n has
an edge labelled 4, there is another additive statistic n(w) which counts how many
times the Coxeter generator at that end of the diagram is used in a reduced word
for w, and one can derive (similarly to (12)) the following refinement of equation
(10) for W = B̃n:

B̃n(q) =
∑
w∈B̃n

an(w)ql(w)

=
(−aq; q)n(−q; q)n−1[n]!q

(aqn; q)n
(14)

This allows one to refine equation (13) when r = 4 so as to incorporate the statistic
n(w). However, as before the generalization expD4(x; a, q) of expD4(x; q) does not
seem to have a nice infinite product expression.

The only affine Weyl group remaining to be discussed is D̃n, whose Coxeter
diagram looks like a path with forks at both ends having n nodes total, and all
edges labelled 3 (see [Hu, §2.5]). We use the notation

expD̃(x; q) =
∑
n≥4

xn

D̃n(q)
.
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Theorem 8.∑
n≥4

xn

D̃n(q)
D̃n(t, q) =

∑
n≥4

〈xn〉{
(1− t) expD̃(x(1− t); q) +

t

1− t exp(x(1− t); q)×[
t2(2 + 2x− tx)2 + t(2 + tx)(2− 4t− 3tx+ 2t2x) exp(x(1− t); q)

1− t
+2(1− t)(2− tx) expD(x(1− t); q) + (1− t) expD(x(1− t); q)2

]}
xn

Proof. In the notation preceding Theorem 4, choose (W,S) to have Coxeter diagram
with 5 nodes s1, s2, s3, s4, s5 in which s5 is connected by an edge labelled 3 to
s1, s2, s3, s4, and there are no other edges in the diagram. Let v = s5 and B1 =
{s1, s2}, B2 = {s3, s4}. One can then check that

W (n) = D̃r
n+4

expWs1,s2,s3,s4
(x; q) = x−4expD̃(x; q)

expWs1,s2,s3
(x; q) = expWs1,s2,s4

(x; q) = expWs1,s3,s4
(x; q) = expWs2,s3,s4

(x; q)

= x−4

(
expD(x; q)− x2

([2]q)2
− x3

[3]!q

)
expWs1,s2

(x; q) = expWs3,s4
(x; q) = x−3

(
expD(x; q)− x2

([2]q)2

)
expWs1,s3

(x; q) = expWs1,s4
(x; q) = expWs2,s3

(x; q) = expWs2,s4
(x; q)

= x−4

(
exp(x; q)− 1− x− x2

[2]!q
− x3

[3]!q

)
expWs1

(x; q) = expWs2
(x; q) = expWs3

(x; q) = expWs4
(x; q)

= x−3

(
exp(x; q)− 1− x− x2

[2]!q

)
expW�(x; q) = x−2(exp(x; q)− 1− x)

dexWs1,s2,s3,s4
(x; q) = x−4 expD̃(x;q)

dexWs1,s2,s3
(x; q) = dexWs1,s2,s4

(x; q) = dexWs1,s3,s4
(x; q) = dexWs2,s3,s4

(x; q)

= x−4 expD(x; q)(exp(x; q)− 1− x)

dexWs1,s2
(x; q) = dexWs3,s4

(x; q) = x−3 expD(x; q)(exp(x; q)− 1)

dexWs1,s3
(x; q) = dexWs1,s4

(x; q) = dexWs2,s3
(x; q) = dexWs2,s4

(x; q)

= x−4(exp(x; q)− 1− x)2

dexWs1
(x; q) = dexWs2

(x; q) = dexWs3
(x; q) = dexWs4

(x; q)

= x−3(exp(x; q)− 1)(exp(x; q)− 1− x)

dexW�(x; q) = x−2(exp(x; q)− 1)2

and using these facts, the result follows from Theorem 4 with a little algebra. �
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As in the previous cases of affine Weyl groups, it is possible to replace expD̃(x)
by an expression involving infinite products, if desired. Since Dn has exponents
1, 3, 5, . . . , 2n− 5, 2n− 3, n− 1, by equation (8) we have

D̃n(q) =
(−q; q)n−1[n]!q

(1− q)n(q; q2)n−1(1− qn−1)

=
(q2; q2)n

(1− q)n(q−1; q2)n
(1− q−1)

(1 + qn)(1− qn−1)

Therefore

expD̃(x; q) =
∑
n≥4

(x(1− q))n (q−1; q2)n
(q2; q2)n

(1 + qn)(1− qn−1)
(1− q−1)

=
∑
n≥4

(x(1− q))n (q−1; q2)n
(q2; q2)n

[
(1 + qn) +

1
q − 1

(1− q2n)
]

=
(xq−1(1− q); q2)∞

(x(1− q); q2)∞
+

(x(1− q); q2)∞
(xq(1− q); q2)∞

+ xq−1(1− q)(xq(1− q); q2)∞
(x(1− q); q2)∞

−
3∑
i=0

ci(q)xi

=
(xq(1− q); q2)∞
(x(1− q); q2)∞

+
(x(1− q); q2)∞
(xq(1− q); q2)∞

−
3∑
i=0

ci(q)xi

for some ci(q) which are rational functions of q.
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