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Abstract

The analysis of chessboard pebbling by Fan Chung, Ron Graham, John Morrison and
Andrew Odlyzko is strengthened and generalized, first to higher dimension and then to
arbitrary posets.
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1 The pebbling game

The pebbling game of Kontsevich is played on the grid points of the first quadrant. One starts
with a single pebble on the origin and a move consists of replacing any pebble with two pebbles,

> . However, only one

one above and one to the right of the vanishing pebble:
pebble is allowed on each grid point.

The original problem, posed by Kontsevich in 1981, was to show that the ten grid-points
closest to the origin, {(7,j) | i + 7 < 3}, form an unavoidable set, meaning that every game
position has at least one pebble in this set. The intended proof was the following.

To a pebble at (¢,7) assign the weight 27%=J. That makes the total weight of the pebbles
equal to 1 in all positions, for each move splits a pebble into two, half as heavy, and the total
weight was 1 to start with. With at most one pebble on each point, all grid points outside the
ten-point triangle can carry at most }-; ;g i (1+ % + % + %) = %, so some pebble must
be left in the triangle.

Shortly afterwards, A. Khodulev [10] made the surprising observation, that already the five-
point set i_:_, is unavoidable. The first complete proof appeared thirteen years later in the
American Mathematical Monthly [3], in which Chung, Graham, Morrison and Odlyzko also gave
new enumerative results.

The purpose of this paper is to extend these results to the higher dimension analogues of

the pebbling game and to a more general poset version.
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2 Pebbling in Z"

The n-dimensional version of the game, suggested by Paul Vaderlind [12], uses the integer grid
points of the first orthant. One starts with a single pebble on the origin and a legal move replaces
a pebble by n pebbles, each one step away in the n coordinate directions.

The weight of a pebble with coordinates (z1,...,2,)is ™77 and it is obvious that the
total weight of all pebbles is unchanged by a move in the pebbling game. If there were a pebble
on each point in the first orthant, the total weight would be

< \" 1

Z n_wl_l?_m _ (z :n—z) — (1 _ _)_n — e When n— oo
; n
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Weight calculations can be used to prove that a certain point set is unavoidable, for example
the seven-point set in Z° consisting of the origin and its six neighbours in the positive orthant.

The total weight that can be carried on all other orthant grid points is
1 1
- =)y - l—-c—c - — = = 0.98598. ..
(1-3) - ,

but the total pebble weight is one.
Dimension six is the lowest dimension in which this kind of proof will work, but in fact the

following is true.

Proposition 1 The four-point set in Z", n > 3 consisting of the origin and three neighbour

points is unavoidable.

Proor. Consider the unit cube defined by the four-point set. When the four points have been
emptied, three other points on the cube will have received two pebbles each, one of which must
be sent along to the (1,1, 1)-point. But in a legal game, no point will receive more than two

pebbles, as shown in the proof of Proposition 4 below. O

Proofs of this kind are greatly facilitated if several pebbles are allowed to occupy the same
point, at least temporarily. The following result appears as Lemma 3 in [3] in the two-dimensional
case and will be proved in much greater generality in our next section, so let us just state it as

a fact.

Fact 2 If a configuration of pebbles with at most one pebble per point is reachable by moves

which allow stacking of pebbles, then it is also reachable by moves which do not allow stacking.
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The level of an orthant point is the sum of its coordinates. Thus, level zero contains the
origin only, level one has n points, level two n(n + 1)/2 points etc. The following level trimming
procedure for determining whether or not a set of points, X, is unavoidable is given in [3].
Starting at level zero and proceeding one level at a time, perform the moves required to remove
all pebbles from a point in X or all but one pebble from a point not in X. Stacking of pebbles
is allowed.

The following fact is not completely obvious, but again, a much more general statement will

be proved in the next section.

Fact 3 The configuration after trimming levels 0 through k is independent of the order in which
the moves are performed. The set X is unavoidable if and only if the trimming procedure can

go on for ever without running out of pebbles.

Level trimming supplies a polynomial time algorithm to determine whether or not a given
set X is unavoidable, as stated in the next proposition. Let us warn the reader that a much

better result will appear in Theorem 13.

Proposition 4 Let level k be the last one containing a point from X C 7" and consider the
configurations after trimming levels 1,2, ..., nk. The set X is unavoidable if and only if none of

these contains a point with three or more pebbles on it at any stage.

Proor. In the one-dimensional case, there are no unavoidable sets and no three pebble points.
The two-dimensional case is a consequence of Theorem 1 in [3], so we can assume n > 3. If there
are three or more pebbles on a point, ¢ = (21, 22, 23,...), at least two of these must propagate
to each of the points (2141, 22, 23,...), (z1,22+1,23,...) and (1, 22,23+1,...) (an equilateral
triangle on the next level). On the next level, each point in the triangle (z1 + 1,224+ 1, 23,...),
(z1,22+ 1,23+ 1,...) and (z1 4+ 1,23, 23+ 1,...) receives at least two pebbles from the triangle
below, one of which must be sent on to the point 2’ = (21 + 1,224+ 1,23+ 1,...). So now there
are at least three pebbles on 2’ and the game goes on forever.

Now, assume that there are no three-pebble points on level £ + 1. This implies that each
point sends at most one pebble to its neighbours on the next level. Level k 4 1 intersects the
coordinate axes in n points, none of which can have more than one pebble, so they send no
pebbles to their neighbours. Therefore, on level k + 2 the axis points have zero pebbles and the
axis neighbours at most one pebble. Iterating the argument, we find that on level k + m, all

points with distance less than m from an axis have at most one pebble. The center point on
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level nk is (k,k,...,k) and with m = (n — 1)k, we see that all other points have at most one

pebble. Therefore, when level nk has been trimmed, the game is over. O

A byproduct of the proof is a polynomial bound for the length of the game corresponding
to an avoidable set X. Again, a much better bound will appear in Theorem 13. Let us now
consider the connection between an avoidable set X and the end position after the game. Points
in X that are never touched by a pebble are of no consequence, but modulo these uninteresting

points, the correspondence is in fact bijective.

Definition. The wvoidance set of a (finite) pebbling game consists of all points in Z™ that at
some stage were pebble points but end up empty.

As defined, the voidance set seems to depend on the particular sequence of moves leading to
the final position, but in our next section, (Proposition 20), we shall show that games leading

to the same position have the same voidance set.
Fact 5 A reachable game position is completely specified by its voidance set.

As combinatorial objects, voidance sets are more tractable than reachable positions, not to
mention pebbling games. A hundred-point voidance set in Z? might correspond to a position
with a thousand pebbles, which in turn may arise from zillions of different move sequences.

It turns out that the points that are played in a two-dimensional pebbling game form a
characteristic configuration bounded by two lattice paths. A corresponding voidance set is the

set of left and lower boundary points on these paths.

Definition. A polyominoid setin Z* consists of all points on or between two lattice paths with
common starting point and common ending point. As demonstrated in Fig.1, the paths may be
partially or totally coincident, but without loss of generality, we may assume that they are not
strictly crossing. We call (z,y) a left boundary point if (x — 1,y) is not in the polyominoid and

a lower boundary point if (z,y — 1) is not in the polyominoid.

Observation 6 Polyominoid sets correspond bijectively to parallelogram polyominoes in the
sense of M.Delest and X.Viennot [4]. If the left path is translated one step upwards, the lower
path one step to the right, and the terminal points are rejoined in the obvious way, we get a

polyomino of the parallelogram type.
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Not counting the left lower point (the origin of coordinates), a polyominoid set with height
h and width w has & left and w lower boundary points, so the cardinality of the voidance set is
w+ h 4+ 1, one more than the length of each path.

The following enumeration result is classical in the context of polyominoes and noncrossing

lattice paths, see [4] and [8]. Still, for conveniency we give the proof in the polyominoid case.

Proposition 7 The number of polyominoid sets with lattice paths of length k, i.e. with k + 1

left and lower boundary points, is the Catalan number

1 [2k+2 2k 2k
om0 - (1) (%)

Proor. A lattice path of length £ can be represented as a binary k-vector. A pair of paths
with common terminal points means two binary vectors, u, v, with the same number of ones.
Complementing the second vector and concatenating it to the first vector, one gets a 2k-vector
with & ones, and there are (2:) of these.

The polyominoid (weakly noncrossing) condition is Y 7 u; < > 7 v; for all 1 < r < k. Other-
wise, let 7' be the first index for which Z{l u, =14+ Z{l v; and let us switch the (k — r’)-tails
between u and v. Now, there are two more ones in the first vector, u’, than in the second, v’,

and as for every such pair, 7’ can be defined as above, the correspondence is bijective. Finally,

the complemented concatenation trick shows that these nonpolyominoid pairs are <k2_k2) O

Proposition 8 The points played in a pebbling game on Z* form a polyominoid.

ProoF. As this is a special case of the last proposition of this paper, let us just sketch the
easy proof. Assume that the level trimming procedure has been carried out up to level k& and
that the set of played points is polyominoid so far. The two lattice paths bound a diagonal
segment of points on level k£, and these transmit pebbles to diagonal segment of neighbours on
level k£ 4 1. All points of this segment, except possibly the left and right extremes, receive two
pebbles and must be played, so it is clear that the lattice paths can be extended to level k + 1.
O

Every pebbling game in Z? defines a polyominoid, viz. the set of all points that have been
played. In Z™, the play may of course use all n dimensions, but the set of points that have been

played still form a polyominoid set, although folded and meandering through the dimensions.

Definition. A folded polyominoid set in 7" is defined by a consistent labelling of the edges

of a polyominoid set with coordinate directions. Consistency means that for each square in the
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polyominoid, adjacent sides have different labels but opposite sides have the same label. Thus,
for a polyominoid with height h and width w, it is sufficient to specify h 4+ w labels, for example
on the left and lower edges.

Labelling of left and lower edges may be seen as distribution of k labels over 2k places,
namely the pair of k-vectors u and v defining the boundary paths. Unlabelled places contain
zeroes. There are of course compatibility restrictions on this distribution and these can be stated
concisely if we introduce the notation |u_,| for the number of labels in the initial r-segment of
u. Thus, moving r steps along the left boundary path, we go |u,_,| steps upward and r — |u_,|
steps to the right. And moving r steps along the lower boundary path, we go |v .| steps to the

right and r — |v_,| steps upwards.

Theorem 9 For pebbling in 7" with n > 3, the following combinatorial objects correspond

bijectively to each other.
1. Reachable positions with the highest pebble on level k + 1.
2. Voidance sets of cardinality k + 1.
3. Folded polyominoids with boundary path lengths k.

4. Pairs of integer k-vectors, u and v, with a total of k nonzero elements (labels) in {1,...,n},

such that

(a) if for any 0 <r <k, |u_,| +|v_,| = r then u,41 < v,41,
(b) |u...7°| + |V...7’| > for all 1 <r< k,

(c) if the same label occurs in w; and v;, then |u_;| +|v._ ;| < max(1, j).

Proor. The folded polyominoid characterization of reachable positions in Z" will emerge as
a corollary of Proposition 27. In dimension three and higher, no node is played twice (this will
be proved in Proposition 24), so the voidance set consists of all left and lower boundary points
of the folded polyominoid, and we have already noted that their cardinality is & + 1.

A folded polyominoid may be unfolded in the zy-plane in at least two ways (zy-reflections),
more if there are intermediate singleton levels, but condition (a) uniquely defines the left and
lower boundary vectors u and v. For both paths reach the same point in r steps if and only if
lu_ o[+ v [=r

Similarly, condition (b) expresses the fact that the left path should keep to the left of the

lower path. (The binary vectors in the proof of Proposition 7 correspond to our vectors in a
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somewhat confusing way: the nonzero labels in u mean binary zeroes and zero labels mean
binary ones, in v it is the other way around.)

Condition (c¢) means that the horisontal strip to the right of the vertical segment u; must
not intersect the vertical strip above the horizontal segment v;. Either v; is to the left of u;,

which implies |v_;| < ¢ —|u 4|, or u; is below v;, which means |u_;| < j—|v ;. O

The beautiful enumeration result for two-dimensional polyominoids makes one hope for some
similar formula for folded polyominoids. If one exists, it has eluded this author so far. The
conditions in the theorem makes computer calculations of these numbers easy and we include a
table of them. Note the Catalan numbers in the second column! The row k = 2 is n(3n — 1)/2
and it can be proved that row k is a k-th degree polynomial in n.

The theorem does not apply to the two-dimensional case, for the same polyominoid may
correspond to several voidance sets. The reason is that some points in the polyominoid may
be played twice. Which points? First, they must receive two pebbles, so their left and lower
neighbours are in the polyominoid. Second, their right and upper neighbours must be emptied,
s0 these must be a left and a lower boundary point. It follows that a twice played point must be

a singleton on its level. The result of the second play is that two old voidance points are replaced

® ®
by one new voidance point. ,_?_@ - ,_%_, . Let us call this configuration a crossing.
® ®

Theorem 10 For pebbling in 72, reachable positions with the highest pebble on level k + 1
correspond bijectively to folded polyominoids with boundary pathlengths k and with any subset
of the crossings marked as voidance points. The generating function for the number of such
reachable positions is

B 1—6z+ 422+ 423 4+ /1 — 4z

=1+ 22+ ba” + 142° + 432" + 1402° 4 - - -
2(1 — 62 + 822 — 4at) 122 + 52?4 142° + 432* + 14027 +

9()

with asymptotic behaviour gj, ~ const - G*, where G = 4.112. ...

Voidance sets of cardinality k+1 correspond bijectively to folded polyominoids with boundary
lengths k +t and with t crossings marked as voidance points, t > 0. The generating function
for the number of such voidance sets is

22— 1le 41222 + 21 — 4

M) = = 1422+ 52° + 152° + 51a* + 1872 + - -
) 2(1 — 7a + 1422 — 923) + 22 + 527 + 1527 4+ Hla” + 18727 +

with asymptotic behaviour hy, ~ const - G*, where G' = 4.147 . ...
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Proor. Knowing that the number of unmarked polyominoids is Cz41, we can write down

a recursion
k-2

gk = C(k—l—l + Z(CT+1 - QCT)(gk—T - 29k—r—1)

r=2

with the following interpretation. Let r be the level where the first marked crossing appears.
Then C,41 —2C, is the number of unmarked polyominoids ending with a :_I on level r, for
we have to subtract polyominoids ending with o I . By the same reasoning, the number
of marked polyominoids starting with I_: and reaching k& — r levels is gr—, — 2 gp—r—1-

It is well-known that the Catalan numbers have the generating function (1 + /1 — 4z)/2z.
Standard manipulations and hard work (thanks, Maple!) produce the expression for g(z).

The recursion for hy is derived analogously, the only difference being that each marked

crossing reduces the number of voidance points and has to be compensated for:

k-1
hk = Ck—l—l + Z(CT+1 -2 CT)(hk—T—I—l -2 hk—r) .

r=2
The roots of the denominators determine the asymptotic exponents (see the chapter by

Odlyzko in [9]) as 1/(smallest root). Exponents greater than four were to be expected, since

C ~ const - 4%, O

An important part of the paper by Chung, Graham, Morrison and Odlyzko is the enumeration
of minimal unavoidable sets in Z2. The asymptotic expression found is const - 4% with v =
4.147 .. ., exactly our result when counting voidance sets! The agreement is hardly a coincidence,
for in Proposition 21 of next section, we prove that a minimal unavoidable set is a voidance set
with an extra point. The extra point must be chosen such that level trimming becomes infinite

and such that deletion of any other point makes level trimming finite again.

Theorem 11 FEvery minimal unavoidable set in Z* can be constructed from the left and lower
boundary points of a marked polyominoid by adding a polyominoid point on the second highest
level.

The generating function for the number of minimal unavoidable sets of cardinality k is

3 (1 =324 2%)/1—42 — 1+ 5z — 2% — 62°

= 42° +222% £ 9827 + 41228 + ...
1— 7z + 1422 — 933 v sse 98 4 Az

m(z) =z

with asymptotic behaviour my ~ const - H*, where H = 4.147 .. ..
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Proor. Let us look at all possibilities of adding an extra unavoidable point to a marked poly-
ominoid ending like +I i.e. a point that cannot be emptied by further play. Positions outside
the polyominoid can be emptied, for adding such a point means building a larger polyommmd
e.g. ‘_::5 The corner point can also be emptied by building a new marked crossing
Other polyominoid points, however, really are unavoidable (for emptying them would stack three
pebbles somewhere), but only the corner neighbours produce minimal unavoidable sets. In, for
example, ©+I , the last lower boundary point could be deleted.

So either of the corner neighbours in ’_I , produces a minimal unavoidable set together with
the left and lower boundary points. The same reasoning for the special cases ‘:l et cetera

—0—?

shows that the configurations andj always produce one minimal unavoidable set each,
and those are all there are.

Counting marked polyominoids ending in .t is a simple matter. There are hy_o —2hy_3 of
type -t and from these we subtract hp_s—hy_4 of type 7 ,s0 theresultis hp_os—3hp_s+hr_4.
The symmetric case gives a factor two and the final expression is my = 2(hg—2 — 3hk_3 + hg_4).

The generating function m(z) and the asymptotic expression for my, follow immediately from

the corresponding results for h(z). O

There are four four-point unavoidable sets in Z3. The origin and its three neighbours was
proved unavoidable in Proposition 1. The square m in any coordinate plane is also unavoid-
able, for no point may be fired twice in dimension n > 3. These two examples of minimal

unavoidable sets in Z™ are, in fact, generic.

Theorem 12 FEvery minimal unavoidable set in Z™ can be constructed from the left and lower

boundary points of a folded polyominoid by adding one of the following points.
e The highest point of the folded polyominoid (unless it is already a left or lower boundary
point).

e A point that forms an isoceles triangle with the two corner neighbours (provided that the

folded polyominoid ends with a ._I ).

Proor. Simpler than the two-dimensional case. One just has to test all positions of an extra

point. O

Now, at last, we can state the optimal version of Proposition 4.
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Theorem 13 Let level k in Z™ be the last one containing a point from X and consider the
configurations after trimming levels 1,....k + 1. The set X is unavoidable if no three-pebble
point occurs during this game. If X is avoidable, level trimming will come to an end no later

than after level 2k.

Proor. The truth of the statement for our minimal unavoidable sets can be established easily
enough by a direct check and since each unavoidable set contains a minimal one, the rest is clear.

The analogous method applied to the voidance sets proves the other half of the statement. O

3 Pebbling a poset

The pebbling game generalizes immediately to any digraph, but to preserve its essential features
we restrict ourselves to infinite but locally finite posets with 0 and without maximal elements.
The game board is the Hasse diagram, one starts with a single pebble on 0 and a move consists
of removing a pebble from any node z and adding a pebble to each node covering x, that is to
each w > z such that there is no v with u > v > z.

Following Bjoérner, Lovdsz and Shor [1], we say that node z is fired. It is illegal to fire a node
unless all of its covering nodes are empty, but we also consider a stacking variant of the game
in which pebbles are allowed to accumulate, at least temporarily.

The shot count is a record of the number of times each node has been fired during a game,

so it is a function from nodes to nonnegative integers.

Proposition 14 Different move sequences lead to the same position if and only if they have

the same shot count.

ProoF. A node z that was fired f(z) times has got 3_ f(y) — f(«) pebbles, where the sum is

taken over all nodes y covered by z. O

The bijective correspondence between reachable positions and shot counts is useful, for shot
counts are less complex combinatorial objects. A simple characterization of shot counts comes

next.

Proposition 15 A finite distribution f of nonnegative integers over the nodes is a shot count
of a legal game if and only if there is a 0 or a 1 on 0 and for every other node x, the difference

> fly) — f(z) =0 or 1, where the sum is taken over all nodes y covered by x.
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Proor. A game with shot count f is defined by the following rule. Always fire a maximal
node in the subset of nodes x that have a pebble and have not been fired f(z) times yet. Simple

verifications. O

Proposition 16 If a configuration of pebbles with at most one pebble per node is reachable by
moves which allow stacking of pebbles, then it is also reachable by moves which do not allow

stacking.

ProoF. A consequence of the previous proposition. O

The last three propositions have the flavour of strong convergence, a concept introduced by

Anders Bjorner and developed in [7]. A game is strongly convergent if either
e every possible game has the same length and ends in the same terminal position, or
e every game goes on for ever.

Since the posets we are interested in are infinite, there are no terminal positions unless we restrict
legal moves in the following way. Choose an arbitrary subset of nodes X as nodes to be emptied
and call a pebble obstructing if it is in X or (recursive definition!) covers an obstructing pebble

(i.e. its node covers the other pebble’s node).

Proposition 17 With the new rule that only obstructing pebbles may be moved, pebbling is

strongly convergent for every poset and for every set X of nodes to be emptied.

Proor. As shown by Kimmo Eriksson, strong convergence of a game is equivalent to the
polygon property, i.e. from any position where two different plays,  and y, are possible, either
there are two play sequences of equal length, one starting with ., the other with y and leading
to the same position, or there are two infinite play sequences, one starting with z and the other
with y.

In a pebbling game position where two nodes, z and ¥y, can be fired, there are two cases.
Either there is a finite play sequence in which both nodes are fired, assume that its shot count
is f. One can play either = or y first, and the algorithm in the proof of Proposition 15 then
defines the rest of a sequence leading to the same position. Or, there is an infinite sequence, for
as long as one of the obstructing pebbles x,y is unplayed, there is certainly some playable node
left.

So the pebbling game has the polygon property and is therefore strongly convergent. O
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In the corresponding stacking version of the game, more moves are allowed, but the terminal
position will be the same. A pebble is obstructing if it is stacked or in X or covers an obstructing

pebble.

Proposition 18 The stacking version of the game in which only obstructing pebbles may be

moved is strongly convergent.

ProoOF. A consequence of the previous three propositions. Note that the shot count determines

the length of the game. O

To find out whether a set X is unavoidable, one can play the game level after level, allowing
temporary stacking of pebbles. The level of a node z is the length of the shortest path from 0
to . Starting at level zero and proceeding one level at a time, one fires all obstructing pebbles

on that level. This is called level trimming.

Proposition 19 The set X is unavoidable if and only if the level trimming procedure can go

on forever, without running out of obstructing pebbles.

ProoF. Suppose that X can be emptied in a finite game with shot count f. It is obvious that
the trimming procedure has a shot count g with g < f, componentwise, and the proposition

follows from this. O

Definition. The voidance set of a game consists of all points that at some stage were visited

by a pebble but are empty by the end of the game.

Proposition 20 There is a one-to-one-to-one correpondence between reachable positions, shot

counts and voidance sets.

Proor. There is only one small thing left to prove, namely that the shot count f can be
reconstructed from its voidance set. It is evident that level trimming produces one candidate,
say f*, with only absolutely necessary firings, so f* < f componentwise. Suppose that there
are nodes z for which f*(z) < f(z), and choose such a node on the lowest possible level. Level
trimming must leave a pebble on z since it can be fired once more, therefore z is not in the

voidance set of f*, but it is in the voidance set of f, contrary to our assumption. O

A set X is minimal unavoidable if all strict subsets of X are avoidable. A characterization
of minimal unavoidable sets is easy as soon as all voidance sets are known, for we have the

following result.
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Proposition 21 Let X be a minimal unavoidable set and © a node on the highest level in X .

Then X — {x} is a voidance set.

ProoFr. Because of the minimality, X —{z} is avoidable, so level trimming is a finite procedure.
Any uninteresting point y € X, untouched in this level trimming, would be as uninteresting in
the continued infinite level trimming of X, for the influence of x is noticeable only on higher

levels. Therefore, X — {y} would still be unavoidable, contradicting minimality. O

In the sequel, we shall concentrate on shot counts, as characterized by Proposition 15. The
support of a shot count is the subposet of nodes that have been fired, i.e. with nonzero shot
count. In the Z™ case, this subposet has very nice properties, and the reason for this turns out

to be that the poset of points in the first orthant has V-completion.

z
Definition. A poset P hasV-completion if whenever y; and y, cover x, there is <l>2

a node z covering both y; and ys,.

Proposition 22 For a poset P with V-completion, the support of any shot count is a ranked

poset (even if P is not) and has a unique maximal element (even though P has not).

Proor. The support supp f also has V-completion, for if z, y1, y2 are in supp f (see illustration
above), by Proposition 15 we get f(2) > f(y1) + f(y2) — 1 > 1, so z is also in the support. V-
completion is the simplest case of the polygon property, so there is strong convergence and
a unique terminal, i.e. maximal node. All paths to this terminal have equal length and this

provides the ranking. O

Corollary 23 For a pebbling game in 2", let k be the highest level on which pebbles have been

fired. Then, exactly one firing took place on level k.

Unexpectedly, the characterization of reachable pebble positions is somewhat more difficult in
the plane than in higher dimensions. The reason is that in higher Z", every node is covered by
at least three nodes.

Such a poset must be infinite, so the triple-cover property never applies to the subset supp f
for any shot count f. However, a more interesting property follows, namely the dual of V-

completion.

z
Definition. A poset P has A-completion if whenever z covers y; and ys, there is <>2
a node z covered by both y; and ys.
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Proposition 24 If a poset P has V-completion and if every node is covered by at least three
nodes, then f(z) = 1 for any shot count f and any node z in supp f. Further, supp f has

A-completion.

ProoFr. In order to carry out a (finite) induction proof of the statement f(z) = 1, we shall

need a stronger induction assumption.

Q(n): Level n and all higher levels of supp f have f(z) = 1 and contain no tridents /I\.

or °\V , nor any of the following zig-zag shapes: m , W , W e

By Proposition 22, the assumption is true for the very highest level. From ((n), one can

infer Q(n — 1), as follows. A trident ./I\. on level n — 1 would mean f(z) > 2 on level n. A

trident '\V can be V-completed to either @ , a forbidden zig-zag, or <b , a forbidden

trident.

A node z on level n — 1 with f(2) > 2 will have at least three covering nodes y1,y2,ys in P
and since f(y;) > 1, that means a forbiddent trident. Finally, if there is a zig-zag on level n — 1,
V-completion gives either a zig-zag or a trident on level n.

Thus, we have proved Q(0) and the first part of the proposition. We now assume that there
is some A-shape that cannot be completed to a quadrangle. Let the shortest completing polygon
have bottom element . We know that such a polygon exists, for # may be 0. Completing the

bottom V we get z, distinct from uy and vy in the figure (or there would be a shorter polygon).

> u (%))
Ca) U1 Ca) U1
Uoi\/lvo = U Vo = u Vo
x x x
Now, there are two V-s to be completed and the same argument shows that 2’ and z” must be
distinct from us and v, but also distinct from each other, for we cannot have a trident /I\. .

Iterating, we move up level for level and the final A-shape (u, = v,) must produce a zig-zag,

contradicting the @)-property just proved. O

Scrutinizing the proof, one finds that the assumption about triple covers in P is used only
to prove f(z) = 1, which in turn is used only to prove nonexistence of /I\.—tridents. Thus,

there is a weaker form of the proposition with the advantage that it can be applied to Z2.

Proposition 25 If a poset P has V-completion and f is a shot count such that supp f has no
/I\.—tridents, then supp f has A-completion.

Remark 26 The subposets supp f of the last two propositions contain no tridents or zig-zags,

but they may contain the X-shape N . By repeated V-completion upwards and A-completion
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downwards, one finds that an X-shape must be part of a dihedral interval, e.g. this one:

(This is the Bruhat poset of the dihedral group [3(4).) The poset P may continue below

the V and above the A, but on the levels in-between there are no nodes outside the dihedral
interval. This is an easy consequence of Proposition 22. Therefore, all dihedral intervals, if any,
may be replaced by quadrangles o-, while maintaining the shot count properties. Conversely,
if a shot count poset has some level with only two nodes on it, then the quadrangle containg
these nodes may be expanded into a dihedral interval. Therefore, a characterization of shot

count posets may as well assume that there are no X-shapes.

The following characterization is valid for all Z™ but its main result is that everything may
be considered as taking place in Z2. The pebbling game may meander through all » dimensions,

but the poset structure of the shot count is planar.

Proposition 27 If a pebbling game is played on a poset P with V-completion and the nodes
that have been fired form a subposet without /I\.—tridents or X-shapes N , then this subposet

is isomorphic to a polyominoid subset of 72.

Proor. Assume that the embedding has been constructed for levels zero through k, so the
last two levels look something like N\/. . V-completion forces an extension to level
k 4+ 1 and A-extension justifies it. Since /I\.—tridents cannot occur, everything is specified
except whether the boundary points on level k£ have single or double covers. In both cases, the

embedding is straight-forward.

4 Conclusions and acknowledgements

The pebbling game is closely related to the checker jumping game, where a move looks like

OO - ]— [ - J, in any direction. The main difference seems to be that pebbling moves

create pebbles while checker jumps annihilate checkers, but that is only a superficial discrepancy.
If checkers were small and empty gridpoints large, a natural interpretation of the move —
would be that a black spot is created! Exactly the same invariant weight method can
be used in both games, but for some reason, it is much more successful in checker jumping.
In fact, the bounds stemming from weight considerations are sharp for the natural reachability
problems solved by Eriksson and Lindstrém [5], but far from sharp in pebbling.

Our interpretation of pebbling as a strongly convergent game demonstrates the similarity

with the chip firing game of Bjérner, Lovasz and Shor [1]. Chips can accumulate on the nodes
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and when a node is fired, it sends one chip to each neighbour. Some of the chip firing analysis
can be applied to pebbling, but the most interesting part focuses on recurrent positions, and
that phenomenon cannot occur in pebbling.

No, pebbling has its own special features and the most astonishing is the uniform structure of
reachable positions, regardless of whether the game is played on Z2, Z'7 or any poset satisfying
a few regularity conditions. In all cases, the same combinatorial object emerges: the folded
polyominoid. In addition to the geometric and game interpretations there are several others.
The set of paths leading from the origin to the highest point of the polyominoid may be seen
as a set of words in an n-letter alphabet and this is often, but not always, an equivalence class
corresponding to some commutation relations (a trace according to Cartier and Foata [2]). Of
special interest is the Cozxeter group case and many folded polyominoids occur as intervals in
the Cayley graph of the appropriate Coxeter group, as shown in [6]. Finally, a heap of pieces in
the sense of Viennot [13] can be associated to every folded polyominoid in a number of ways.

Paul Vaderlind, who drew my attention to the pebbling game, also independently discovered
Proposition 4 and analysed a generalization to acyclic digraphs, not presented in this paper.

Interesting identities involving our generating functions g and h were found by Douglas Rogers

(unpublished).
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Figure 1: Two polyominoes with polyominoids and left-lower boundary points.

*x0y e [
OXOZasza Z:—:—;I u = (y,y,0,0,Z,0,0)
338 B:
zxz yx VI($,0,Z,0,$,@/,O)

Figure 2: A folded polyominoid with left-lower labels and label vectors.

Sien n=1|n=2|n= n = n = n =
k=0 1 1 1 1 1 1
k=1 1 2

k=2 1 5 12 22 35 51
k=3 1 14 57 148 305 546
k=4 1 42 300 1126 3045 6756
k=5 1 132 1680 | 9220 | 32985 | 91236

Figure 3: Number of folded polyominoes in Z" with circumference 2k.
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