
PebblingsHenrik ErikssonNADA, KTH, S-100 44 Stockholm, Swedenhenrik@nada.kth.seSubmitted: June 15, 1994; Accepted: April 5, 1995AbstractThe analysis of chessboard pebbling by Fan Chung, Ron Graham, John Morrison andAndrew Odlyzko is strengthened and generalized, �rst to higher dimension and then toarbitrary posets.Subject Classi�cation: Primary 05A15; secondary 05E99.1 The pebbling gameThe pebbling game of Kontsevich is played on the grid points of the �rst quadrant. One startswith a single pebble on the origin and a move consists of replacing any pebble with two pebbles,one above and one to the right of the vanishing pebble: f pp - ffp . However, only onepebble is allowed on each grid point.The original problem, posed by Kontsevich in 1981, was to show that the ten grid-pointsclosest to the origin, f(i; j) j i + j � 3g, form an unavoidable set, meaning that every gameposition has at least one pebble in this set. The intended proof was the following.To a pebble at (i; j) assign the weight 2�i�j . That makes the total weight of the pebblesequal to 1 in all positions, for each move splits a pebble into two, half as heavy, and the totalweight was 1 to start with. With at most one pebble on each point, all grid points outside theten-point triangle can carry at most Pi;j�0 2�i�j � (1 + 22 + 34 + 48) = 34 , so some pebble mustbe left in the triangle.Shortly afterwards, A. Khodulev [10] made the surprising observation, that already the �ve-point set s ss s sp is unavoidable. The �rst complete proof appeared thirteen years later in theAmerican Mathematical Monthly [3], in which Chung, Graham, Morrison and Odlyzko also gavenew enumerative results.The purpose of this paper is to extend these results to the higher dimension analogues ofthe pebbling game and to a more general poset version.



the electronic journal of combinatorics 2 (1995), #R7 22 Pebbling in ZnThe n-dimensional version of the game, suggested by Paul Vaderlind [12], uses the integer gridpoints of the �rst orthant. One starts with a single pebble on the origin and a legal move replacesa pebble by n pebbles, each one step away in the n coordinate directions.The weight of a pebble with coordinates (x1; : : : ; xn) is n�x1�����xn and it is obvious that thetotal weight of all pebbles is unchanged by a move in the pebbling game. If there were a pebbleon each point in the �rst orthant, the total weight would beXxi�0n�x1�x2���� =  1Xi=0 n�i!n = (1� 1n)�n ! e when n!1Weight calculations can be used to prove that a certain point set is unavoidable, for examplethe seven-point set in Z6 consisting of the origin and its six neighbours in the positive orthant.The total weight that can be carried on all other orthant grid points is(1� 16)�6 � 1� 16 � 16 � 16 � 16 � 16 � 16 = 0:98598 : : : ;but the total pebble weight is one.Dimension six is the lowest dimension in which this kind of proof will work, but in fact thefollowing is true.Proposition 1 The four-point set in Zn, n � 3 consisting of the origin and three neighbourpoints is unavoidable.Proof. Consider the unit cube de�ned by the four-point set. When the four points have beenemptied, three other points on the cube will have received two pebbles each, one of which mustbe sent along to the (1; 1; 1)-point. But in a legal game, no point will receive more than twopebbles, as shown in the proof of Proposition 4 below. 2Proofs of this kind are greatly facilitated if several pebbles are allowed to occupy the samepoint, at least temporarily. The following result appears as Lemma 3 in [3] in the two-dimensionalcase and will be proved in much greater generality in our next section, so let us just state it asa fact.Fact 2 If a con�guration of pebbles with at most one pebble per point is reachable by moveswhich allow stacking of pebbles, then it is also reachable by moves which do not allow stacking.



the electronic journal of combinatorics 2 (1995), #R7 3The level of an orthant point is the sum of its coordinates. Thus, level zero contains theorigin only, level one has n points, level two n(n+1)=2 points etc. The following level trimmingprocedure for determining whether or not a set of points, X , is unavoidable is given in [3].Starting at level zero and proceeding one level at a time, perform the moves required to removeall pebbles from a point in X or all but one pebble from a point not in X . Stacking of pebblesis allowed.The following fact is not completely obvious, but again, a much more general statement willbe proved in the next section.Fact 3 The con�guration after trimming levels 0 through k is independent of the order in whichthe moves are performed. The set X is unavoidable if and only if the trimming procedure cango on for ever without running out of pebbles.Level trimming supplies a polynomial time algorithm to determine whether or not a givenset X is unavoidable, as stated in the next proposition. Let us warn the reader that a muchbetter result will appear in Theorem 13.Proposition 4 Let level k be the last one containing a point from X � Zn and consider thecon�gurations after trimming levels 1; 2; : : : ; nk. The set X is unavoidable if and only if none ofthese contains a point with three or more pebbles on it at any stage.Proof. In the one-dimensional case, there are no unavoidable sets and no three pebble points.The two-dimensional case is a consequence of Theorem 1 in [3], so we can assume n � 3. If thereare three or more pebbles on a point, x = (x1; x2; x3; : : :), at least two of these must propagateto each of the points (x1+1; x2; x3; : : :), (x1; x2+1; x3; : : :) and (x1; x2; x3+1; : : :) (an equilateraltriangle on the next level). On the next level, each point in the triangle (x1 + 1; x2+ 1; x3; : : :),(x1; x2+1; x3+1; : : :) and (x1+1; x2; x3+1; : : :) receives at least two pebbles from the trianglebelow, one of which must be sent on to the point x0 = (x1 + 1; x2+ 1; x3+ 1; : : :). So now thereare at least three pebbles on x0 and the game goes on forever.Now, assume that there are no three-pebble points on level k + 1. This implies that eachpoint sends at most one pebble to its neighbours on the next level. Level k + 1 intersects thecoordinate axes in n points, none of which can have more than one pebble, so they send nopebbles to their neighbours. Therefore, on level k+ 2 the axis points have zero pebbles and theaxis neighbours at most one pebble. Iterating the argument, we �nd that on level k + m, allpoints with distance less than m from an axis have at most one pebble. The center point on



the electronic journal of combinatorics 2 (1995), #R7 4level nk is (k; k; : : : ; k) and with m = (n � 1)k, we see that all other points have at most onepebble. Therefore, when level nk has been trimmed, the game is over. 2A byproduct of the proof is a polynomial bound for the length of the game correspondingto an avoidable set X . Again, a much better bound will appear in Theorem 13. Let us nowconsider the connection between an avoidable set X and the end position after the game. Pointsin X that are never touched by a pebble are of no consequence, but modulo these uninterestingpoints, the correspondence is in fact bijective.De�nition. The voidance set of a (�nite) pebbling game consists of all points in Zn that atsome stage were pebble points but end up empty.As de�ned, the voidance set seems to depend on the particular sequence of moves leading tothe �nal position, but in our next section, (Proposition 20), we shall show that games leadingto the same position have the same voidance set.Fact 5 A reachable game position is completely speci�ed by its voidance set.As combinatorial objects, voidance sets are more tractable than reachable positions, not tomention pebbling games. A hundred-point voidance set in Z2 might correspond to a positionwith a thousand pebbles, which in turn may arise from zillions of di�erent move sequences.It turns out that the points that are played in a two-dimensional pebbling game form acharacteristic con�guration bounded by two lattice paths. A corresponding voidance set is theset of left and lower boundary points on these paths.De�nition. A polyominoid set in Z2 consists of all points on or between two lattice paths withcommon starting point and common ending point. As demonstrated in Fig.1, the paths may bepartially or totally coincident, but without loss of generality, we may assume that they are notstrictly crossing. We call (x; y) a left boundary point if (x� 1; y) is not in the polyominoid anda lower boundary point if (x; y� 1) is not in the polyominoid.Observation 6 Polyominoid sets correspond bijectively to parallelogram polyominoes in thesense of M.Delest and X.Viennot [4]. If the left path is translated one step upwards, the lowerpath one step to the right, and the terminal points are rejoined in the obvious way, we get apolyomino of the parallelogram type.



the electronic journal of combinatorics 2 (1995), #R7 5Not counting the left lower point (the origin of coordinates), a polyominoid set with heighth and width w has h left and w lower boundary points, so the cardinality of the voidance set isw + h + 1, one more than the length of each path.The following enumeration result is classical in the context of polyominoes and noncrossinglattice paths, see [4] and [8]. Still, for conveniency we give the proof in the polyominoid case.Proposition 7 The number of polyominoid sets with lattice paths of length k, i.e. with k + 1left and lower boundary points, is the Catalan numberCk+1 = 1k + 2 2k + 2k + 1 ! =  2kk !�  2kk � 2!Proof. A lattice path of length k can be represented as a binary k-vector. A pair of pathswith common terminal points means two binary vectors, u, v, with the same number of ones.Complementing the second vector and concatenating it to the �rst vector, one gets a 2k-vectorwith k ones, and there are �2kk � of these.The polyominoid (weakly noncrossing) condition is Pr1 ui � Pr1 vi for all 1 � r � k. Other-wise, let r0 be the �rst index for which Pr01 ui = 1 +Pr01 vi and let us switch the (k � r0)-tailsbetween u and v. Now, there are two more ones in the �rst vector, u0, than in the second, v0,and as for every such pair, r0 can be de�ned as above, the correspondence is bijective. Finally,the complemented concatenation trick shows that these nonpolyominoid pairs are � 2kk�2�. 2Proposition 8 The points played in a pebbling game on Z2 form a polyominoid.Proof. As this is a special case of the last proposition of this paper, let us just sketch theeasy proof. Assume that the level trimming procedure has been carried out up to level k andthat the set of played points is polyominoid so far. The two lattice paths bound a diagonalsegment of points on level k, and these transmit pebbles to diagonal segment of neighbours onlevel k + 1. All points of this segment, except possibly the left and right extremes, receive twopebbles and must be played, so it is clear that the lattice paths can be extended to level k + 1.2 Every pebbling game in Z2 de�nes a polyominoid, viz. the set of all points that have beenplayed. In Zn, the play may of course use all n dimensions, but the set of points that have beenplayed still form a polyominoid set, although folded and meandering through the dimensions.De�nition. A folded polyominoid set in Zn is de�ned by a consistent labelling of the edgesof a polyominoid set with coordinate directions. Consistency means that for each square in the



the electronic journal of combinatorics 2 (1995), #R7 6polyominoid, adjacent sides have di�erent labels but opposite sides have the same label. Thus,for a polyominoid with height h and width w, it is su�cient to specify h+w labels, for exampleon the left and lower edges.Labelling of left and lower edges may be seen as distribution of k labels over 2k places,namely the pair of k-vectors u and v de�ning the boundary paths. Unlabelled places containzeroes. There are of course compatibility restrictions on this distribution and these can be statedconcisely if we introduce the notation ju:::rj for the number of labels in the initial r-segment ofu. Thus, moving r steps along the left boundary path, we go ju:::rj steps upward and r � ju:::rjsteps to the right. And moving r steps along the lower boundary path, we go jv:::rj steps to theright and r � jv:::rj steps upwards.Theorem 9 For pebbling in Zn with n � 3, the following combinatorial objects correspondbijectively to each other.1. Reachable positions with the highest pebble on level k + 1.2. Voidance sets of cardinality k + 1.3. Folded polyominoids with boundary path lengths k.4. Pairs of integer k-vectors, u and v, with a total of k nonzero elements (labels) in f1; : : : ; ng,such that(a) if for any 0 � r < k, ju:::rj+ jv:::rj = r then ur+1 � vr+1,(b) ju:::rj+ jv:::rj � r for all 1 � r � k,(c) if the same label occurs in ui and vj , then ju:::ij+ jv:::j j � max(i; j).Proof. The folded polyominoid characterization of reachable positions in Zn will emerge asa corollary of Proposition 27. In dimension three and higher, no node is played twice (this willbe proved in Proposition 24), so the voidance set consists of all left and lower boundary pointsof the folded polyominoid, and we have already noted that their cardinality is k + 1.A folded polyominoid may be unfolded in the xy-plane in at least two ways (xy-re
ections),more if there are intermediate singleton levels, but condition (a) uniquely de�nes the left andlower boundary vectors u and v. For both paths reach the same point in r steps if and only ifju:::rj+ jv:::rj = r.Similarly, condition (b) expresses the fact that the left path should keep to the left of thelower path. (The binary vectors in the proof of Proposition 7 correspond to our vectors in a



the electronic journal of combinatorics 2 (1995), #R7 7somewhat confusing way: the nonzero labels in u mean binary zeroes and zero labels meanbinary ones, in v it is the other way around.)Condition (c) means that the horisontal strip to the right of the vertical segment ui mustnot intersect the vertical strip above the horizontal segment vj . Either vj is to the left of ui,which implies jv:::j j � i� ju:::ij, or ui is below vj , which means ju:::ij � j � jv:::j j. 2The beautiful enumeration result for two-dimensional polyominoids makes one hope for somesimilar formula for folded polyominoids. If one exists, it has eluded this author so far. Theconditions in the theorem makes computer calculations of these numbers easy and we include atable of them. Note the Catalan numbers in the second column! The row k = 2 is n(3n� 1)=2and it can be proved that row k is a k-th degree polynomial in n.The theorem does not apply to the two-dimensional case, for the same polyominoid maycorrespond to several voidance sets. The reason is that some points in the polyominoid maybe played twice. Which points? First, they must receive two pebbles, so their left and lowerneighbours are in the polyominoid. Second, their right and upper neighbours must be emptied,so these must be a left and a lower boundary point. It follows that a twice played point must bea singleton on its level. The result of the second play is that two old voidance points are replacedby one new voidance point. ss ss sc c ! ss sc ss s . Let us call this con�guration a crossing.Theorem 10 For pebbling in Z2, reachable positions with the highest pebble on level k + 1correspond bijectively to folded polyominoids with boundary pathlengths k and with any subsetof the crossings marked as voidance points. The generating function for the number of suchreachable positions isg(x) = 1� 6x+ 4x2 + 4x3 +p1� 4x2(1� 6x+ 8x2 � 4x4) = 1 + 2x+ 5x2 + 14x3 + 43x4 + 140x5 + � � �with asymptotic behaviour gk � const �Gk, where G = 4:112 : : :.Voidance sets of cardinality k+1 correspond bijectively to folded polyominoids with boundarylengths k + t and with t crossings marked as voidance points, t � 0. The generating functionfor the number of such voidance sets ish(x) = 2� 11x+ 12x2 + xp1� 4x2(1� 7x+ 14x2 � 9x3) = 1 + 2x+ 5x2 + 15x3 + 51x4 + 187x5 + � � �with asymptotic behaviour hk � const �Gk, where G = 4:147 : : :.



the electronic journal of combinatorics 2 (1995), #R7 8Proof. Knowing that the number of unmarked polyominoids is Ck+1, we can write downa recursion gk = Ck+1 + k�2Xr=2(Cr+1 � 2Cr)(gk�r � 2 gk�r�1)with the following interpretation. Let r be the level where the �rst marked crossing appears.Then Cr+1�2Cr is the number of unmarked polyominoids ending with a ss ss on level r, forwe have to subtract polyominoids ending with ss or ss . By the same reasoning, the numberof marked polyominoids starting with ss ss and reaching k � r levels is gk�r � 2 gk�r�1.It is well-known that the Catalan numbers have the generating function (1 +p1� 4x)=2x.Standard manipulations and hard work (thanks, Maple!) produce the expression for g(x).The recursion for hk is derived analogously, the only di�erence being that each markedcrossing reduces the number of voidance points and has to be compensated for:hk = Ck+1 + k�1Xr=2(Cr+1 � 2Cr)(hk�r+1 � 2 hk�r) :The roots of the denominators determine the asymptotic exponents (see the chapter byOdlyzko in [9]) as 1/(smallest root). Exponents greater than four were to be expected, sinceCk � const � 4k. 2An important part of the paper by Chung, Graham, Morrison and Odlyzko is the enumerationof minimal unavoidable sets in Z2. The asymptotic expression found is const � 
k with 
 =4:147 : : :, exactly our result when counting voidance sets! The agreement is hardly a coincidence,for in Proposition 21 of next section, we prove that a minimal unavoidable set is a voidance setwith an extra point. The extra point must be chosen such that level trimming becomes in�niteand such that deletion of any other point makes level trimming �nite again.Theorem 11 Every minimal unavoidable set in Z2 can be constructed from the left and lowerboundary points of a marked polyominoid by adding a polyominoid point on the second highestlevel.The generating function for the number of minimal unavoidable sets of cardinality k ism(x) = x3 (1� 3x+ x2)p1� 4x� 1 + 5x� x2 � 6x31� 7x+ 14x2 � 9x3 = 4x5 + 22x6 + 98x7 + 412x8 + � � �with asymptotic behaviour mk � const �Hk, where H = 4:147 : : :.



the electronic journal of combinatorics 2 (1995), #R7 9Proof. Let us look at all possibilities of adding an extra unavoidable point to a marked poly-ominoid ending like ss s, i.e. a point that cannot be emptied by further play. Positions outsidethe polyominoid can be emptied, for adding such a point means building a larger polyominoid,e.g. s ss s c . The corner point can also be emptied by building a new marked crossing s sc ss s.Other polyominoid points, however, really are unavoidable (for emptying them would stack threepebbles somewhere), but only the corner neighbours produce minimal unavoidable sets. In, forexample, s sqc s , the last lower boundary point could be deleted.So either of the corner neighbours in ss s , produces a minimal unavoidable set together withthe left and lower boundary points. The same reasoning for the special cases ss c et ceterashows that the con�gurations ss and ss always produce one minimal unavoidable set each,and those are all there are.Counting marked polyominoids ending in ss is a simple matter. There are hk�2�2hk�3 oftype s and from these we subtract hk�3�hk�4 of type sc , so the result is hk�2�3hk�3+hk�4.The symmetric case gives a factor two and the �nal expression is mk = 2(hk�2� 3hk�3+ hk�4).The generating function m(x) and the asymptotic expression formk follow immediately fromthe corresponding results for h(x). 2There are four four-point unavoidable sets in Z3. The origin and its three neighbours wasproved unavoidable in Proposition 1. The square cc cc in any coordinate plane is also unavoid-able, for no point may be �red twice in dimension n � 3. These two examples of minimalunavoidable sets in Zn are, in fact, generic.Theorem 12 Every minimal unavoidable set in Zn can be constructed from the left and lowerboundary points of a folded polyominoid by adding one of the following points.� The highest point of the folded polyominoid (unless it is already a left or lower boundarypoint).� A point that forms an isoceles triangle with the two corner neighbours (provided that thefolded polyominoid ends with a s ss ).Proof. Simpler than the two-dimensional case. One just has to test all positions of an extrapoint. 2Now, at last, we can state the optimal version of Proposition 4.



the electronic journal of combinatorics 2 (1995), #R7 10Theorem 13 Let level k in Zn be the last one containing a point from X and consider thecon�gurations after trimming levels 1; : : : ; k + 1. The set X is unavoidable if no three-pebblepoint occurs during this game. If X is avoidable, level trimming will come to an end no laterthan after level 2k.Proof. The truth of the statement for our minimal unavoidable sets can be established easilyenough by a direct check and since each unavoidable set contains a minimal one, the rest is clear.The analogous method applied to the voidance sets proves the other half of the statement. 23 Pebbling a posetThe pebbling game generalizes immediately to any digraph, but to preserve its essential featureswe restrict ourselves to in�nite but locally �nite posets with 0̂ and without maximal elements.The game board is the Hasse diagram, one starts with a single pebble on 0̂ and a move consistsof removing a pebble from any node x and adding a pebble to each node covering x, that is toeach u > x such that there is no v with u > v > x.Following Bj�orner, Lov�asz and Shor [1], we say that node x is �red. It is illegal to �re a nodeunless all of its covering nodes are empty, but we also consider a stacking variant of the gamein which pebbles are allowed to accumulate, at least temporarily.The shot count is a record of the number of times each node has been �red during a game,so it is a function from nodes to nonnegative integers.Proposition 14 Di�erent move sequences lead to the same position if and only if they havethe same shot count.Proof. A node x that was �red f(x) times has got P f(y)� f(x) pebbles, where the sum istaken over all nodes y covered by x. 2The bijective correspondence between reachable positions and shot counts is useful, for shotcounts are less complex combinatorial objects. A simple characterization of shot counts comesnext.Proposition 15 A �nite distribution f of nonnegative integers over the nodes is a shot countof a legal game if and only if there is a 0 or a 1 on 0̂ and for every other node x, the di�erenceP f(y)� f(x) = 0 or 1, where the sum is taken over all nodes y covered by x.



the electronic journal of combinatorics 2 (1995), #R7 11Proof. A game with shot count f is de�ned by the following rule. Always �re a maximalnode in the subset of nodes x that have a pebble and have not been �red f(x) times yet. Simpleveri�cations. 2Proposition 16 If a con�guration of pebbles with at most one pebble per node is reachable bymoves which allow stacking of pebbles, then it is also reachable by moves which do not allowstacking.Proof. A consequence of the previous proposition. 2The last three propositions have the 
avour of strong convergence, a concept introduced byAnders Bj�orner and developed in [7]. A game is strongly convergent if either� every possible game has the same length and ends in the same terminal position, or� every game goes on for ever.Since the posets we are interested in are in�nite, there are no terminal positions unless we restrictlegal moves in the following way. Choose an arbitrary subset of nodes X as nodes to be emptiedand call a pebble obstructing if it is in X or (recursive de�nition!) covers an obstructing pebble(i.e. its node covers the other pebble's node).Proposition 17 With the new rule that only obstructing pebbles may be moved, pebbling isstrongly convergent for every poset and for every set X of nodes to be emptied.Proof. As shown by Kimmo Eriksson, strong convergence of a game is equivalent to thepolygon property, i.e. from any position where two di�erent plays, x and y, are possible, eitherthere are two play sequences of equal length, one starting with x, the other with y and leadingto the same position, or there are two in�nite play sequences, one starting with x and the otherwith y.In a pebbling game position where two nodes, x and y, can be �red, there are two cases.Either there is a �nite play sequence in which both nodes are �red, assume that its shot countis f . One can play either x or y �rst, and the algorithm in the proof of Proposition 15 thende�nes the rest of a sequence leading to the same position. Or, there is an in�nite sequence, foras long as one of the obstructing pebbles x; y is unplayed, there is certainly some playable nodeleft.So the pebbling game has the polygon property and is therefore strongly convergent. 2



the electronic journal of combinatorics 2 (1995), #R7 12In the corresponding stacking version of the game, more moves are allowed, but the terminalposition will be the same. A pebble is obstructing if it is stacked or in X or covers an obstructingpebble.Proposition 18 The stacking version of the game in which only obstructing pebbles may bemoved is strongly convergent.Proof. A consequence of the previous three propositions. Note that the shot count determinesthe length of the game. 2To �nd out whether a set X is unavoidable, one can play the game level after level, allowingtemporary stacking of pebbles. The level of a node x is the length of the shortest path from 0̂to x. Starting at level zero and proceeding one level at a time, one �res all obstructing pebbleson that level. This is called level trimming.Proposition 19 The set X is unavoidable if and only if the level trimming procedure can goon forever, without running out of obstructing pebbles.Proof. Suppose that X can be emptied in a �nite game with shot count f . It is obvious thatthe trimming procedure has a shot count g with g � f , componentwise, and the propositionfollows from this. 2De�nition. The voidance set of a game consists of all points that at some stage were visitedby a pebble but are empty by the end of the game.Proposition 20 There is a one-to-one-to-one correpondence between reachable positions, shotcounts and voidance sets.Proof. There is only one small thing left to prove, namely that the shot count f can bereconstructed from its voidance set. It is evident that level trimming produces one candidate,say f�, with only absolutely necessary �rings, so f� � f componentwise. Suppose that thereare nodes x for which f�(x) < f(x), and choose such a node on the lowest possible level. Leveltrimming must leave a pebble on x since it can be �red once more, therefore x is not in thevoidance set of f�, but it is in the voidance set of f , contrary to our assumption. 2A set X is minimal unavoidable if all strict subsets of X are avoidable. A characterizationof minimal unavoidable sets is easy as soon as all voidance sets are known, for we have thefollowing result.



the electronic journal of combinatorics 2 (1995), #R7 13Proposition 21 Let X be a minimal unavoidable set and x a node on the highest level in X .Then X � fxg is a voidance set.Proof. Because of the minimality, X�fxg is avoidable, so level trimming is a �nite procedure.Any uninteresting point y 2 X , untouched in this level trimming, would be as uninteresting inthe continued in�nite level trimming of X , for the in
uence of x is noticeable only on higherlevels. Therefore, X � fyg would still be unavoidable, contradicting minimality. 2In the sequel, we shall concentrate on shot counts, as characterized by Proposition 15. Thesupport of a shot count is the subposet of nodes that have been �red, i.e. with nonzero shotcount. In the Zn case, this subposet has very nice properties, and the reason for this turns outto be that the poset of points in the �rst orthant has V-completion.De�nition. A poset P hasV-completion if whenever y1 and y2 cover x, there is @ ��@xzy1 y2a node z covering both y1 and y2.Proposition 22 For a poset P with V-completion, the support of any shot count is a rankedposet (even if P is not) and has a unique maximal element (even though P has not).Proof. The support supp f also has V-completion, for if x; y1; y2 are in supp f (see illustrationabove), by Proposition 15 we get f(z) � f(y1) + f(y2)� 1 � 1, so z is also in the support. V-completion is the simplest case of the polygon property, so there is strong convergence anda unique terminal, i.e. maximal node. All paths to this terminal have equal length and thisprovides the ranking. 2Corollary 23 For a pebbling game in Zn, let k be the highest level on which pebbles have been�red. Then, exactly one �ring took place on level k.Unexpectedly, the characterization of reachable pebble positions is somewhat more di�cult inthe plane than in higher dimensions. The reason is that in higher Zn, every node is covered byat least three nodes.Such a poset must be in�nite, so the triple-cover property never applies to the subset supp ffor any shot count f . However, a more interesting property follows, namely the dual of V-completion.De�nition. A poset P has �-completion if whenever z covers y1 and y2, there is @ ��@xzy1 y2a node x covered by both y1 and y2.



the electronic journal of combinatorics 2 (1995), #R7 14Proposition 24 If a poset P has V-completion and if every node is covered by at least threenodes, then f(x) = 1 for any shot count f and any node x in supp f . Further, supp f has�-completion.Proof. In order to carry out a (�nite) induction proof of the statement f(x) = 1, we shallneed a stronger induction assumption.Q(n): Level n and all higher levels of supp f have f(x) = 1 and contain no tridents �@s s ssor @�s s ss , nor any of the following zig-zag shapes: ��@@s s ss s s , ���@@@s s s ss s s s , ����@@@@s s s s ss s s s s ; : : :By Proposition 22, the assumption is true for the very highest level. From Q(n), one caninfer Q(n � 1), as follows. A trident �@s s ss on level n � 1 would mean f(z) � 2 on level n. Atrident @�s s ss can be V-completed to either ��@@s s ss s ss�@ , a forbidden zig-zag, or �@s s sss�@ , a forbiddentrident.A node x on level n� 1 with f(x) � 2 will have at least three covering nodes y1; y2; y3 in Pand since f(yi) � 1, that means a forbiddent trident. Finally, if there is a zig-zag on level n� 1,V-completion gives either a zig-zag or a trident on level n.Thus, we have proved Q(0) and the �rst part of the proposition. We now assume that thereis some �-shape that cannot be completed to a quadrangle. Let the shortest completing polygonhave bottom element x. We know that such a polygon exists, for x may be 0̂. Completing thebottom V we get z, distinct from u1 and v1 in the �gure (or there would be a shorter polygon).s ss�@u0 v0x ) �@ss ssss�@u1u0 v1v0xz ) JJ

�@��BBss sssss ss s�@u2u1u0 v2v1v0xz0z00Now, there are two V-s to be completed and the same argument shows that z0 and z00 must bedistinct from u2 and v2, but also distinct from each other, for we cannot have a trident �@s s ss .Iterating, we move up level for level and the �nal �-shape (un = vn) must produce a zig-zag,contradicting the Q-property just proved. 2Scrutinizing the proof, one �nds that the assumption about triple covers in P is used onlyto prove f(x) = 1, which in turn is used only to prove nonexistence of �@s s ss -tridents. Thus,there is a weaker form of the proposition with the advantage that it can be applied to Z2.Proposition 25 If a poset P has V-completion and f is a shot count such that supp f has no�@s s ss -tridents, then supp f has �-completion.Remark 26 The subposets supp f of the last two propositions contain no tridents or zig-zags,but they may contain the X-shape �@s ss s . By repeated V-completion upwards and �-completion



the electronic journal of combinatorics 2 (1995), #R7 15downwards, one �nds that an X-shape must be part of a dihedral interval, e.g. this one: �A�@�@A�ss sss sss(This is the Bruhat poset of the dihedral group I2(4).) The poset P may continue belowthe V and above the �, but on the levels in-between there are no nodes outside the dihedralinterval. This is an easy consequence of Proposition 22. Therefore, all dihedral intervals, if any,may be replaced by quadrangles �@@�s sss , while maintaining the shot count properties. Conversely,if a shot count poset has some level with only two nodes on it, then the quadrangle containgthese nodes may be expanded into a dihedral interval. Therefore, a characterization of shotcount posets may as well assume that there are no X-shapes.The following characterization is valid for all Zn but its main result is that everything maybe considered as taking place in Z2. The pebbling game may meander through all n dimensions,but the poset structure of the shot count is planar.Proposition 27 If a pebbling game is played on a poset P with V-completion and the nodesthat have been �red form a subposet without �@s s ss -tridents or X-shapes �@s ss s , then this subposetis isomorphic to a polyominoid subset of Z2.Proof. Assume that the embedding has been constructed for levels zero through k, so thelast two levels look something like � � �@ @s s ss s s . V-completion forces an extension to levelk + 1 and �-extension justi�es it. Since �@s s ss -tridents cannot occur, everything is speci�edexcept whether the boundary points on level k have single or double covers. In both cases, theembedding is straight-forward.4 Conclusions and acknowledgementsThe pebbling game is closely related to the checker jumping game, where a move looks likef f p - p p f , in any direction. The main di�erence seems to be that pebbling movescreate pebbles while checker jumps annihilate checkers, but that is only a super�cial discrepancy.If checkers were small and empty gridpoints large, a natural interpretation of the move d d v -v v d would be that a black spot is created! Exactly the same invariant weight method canbe used in both games, but for some reason, it is much more successful in checker jumping.In fact, the bounds stemming from weight considerations are sharp for the natural reachabilityproblems solved by Eriksson and Lindstr�om [5], but far from sharp in pebbling.Our interpretation of pebbling as a strongly convergent game demonstrates the similaritywith the chip �ring game of Bj�orner, Lov�asz and Shor [1]. Chips can accumulate on the nodes



the electronic journal of combinatorics 2 (1995), #R7 16and when a node is �red, it sends one chip to each neighbour. Some of the chip �ring analysiscan be applied to pebbling, but the most interesting part focuses on recurrent positions, andthat phenomenon cannot occur in pebbling.No, pebbling has its own special features and the most astonishing is the uniform structure ofreachable positions, regardless of whether the game is played on Z3, Z17 or any poset satisfyinga few regularity conditions. In all cases, the same combinatorial object emerges: the foldedpolyominoid. In addition to the geometric and game interpretations there are several others.The set of paths leading from the origin to the highest point of the polyominoid may be seenas a set of words in an n-letter alphabet and this is often, but not always, an equivalence classcorresponding to some commutation relations (a trace according to Cartier and Foata [2]). Ofspecial interest is the Coxeter group case and many folded polyominoids occur as intervals inthe Cayley graph of the appropriate Coxeter group, as shown in [6]. Finally, a heap of pieces inthe sense of Viennot [13] can be associated to every folded polyominoid in a number of ways.Paul Vaderlind, who drew my attention to the pebbling game, also independently discoveredProposition 4 and analysed a generalization to acyclic digraphs, not presented in this paper.Interesting identities involving our generating functions g and h were found by Douglas Rogers(unpublished).References[1] A. Bj�orner, L. Lov�asz and P. W. Shor, Chip-�ring games on graphs, European J.Combin.12, 1991, 283{291.[2] P. Cartier and D. Foata, Probl�emes combinatoires de commutations et r�earrangements,Lecture Notes in Maths 85, 1969, Springer, Berlin.[3] F. Chung, R. Graham, J. Morrison and A. Odlyzko, Pebbling a chessboard, Amer. Math.Monthly 102, 1995, 113{123.[4] M. Delest and X. Viennot, Algebraic languages and polyominoes enumeration, Theoret-ical Computer Science 34, 1984, 169{206.[5] H. Eriksson and B. Lindstr�om, Twin checker jumping, to appear in European J.Combin.,1995.
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the electronic journal of combinatorics 2 (1995), #R7 18s ss ss ss ss ss ss ss s sssssssss $ c c cc sc cs s sc s ssc s ss s sss s ssss ss ss s ss ss s ss ss ss $ c cc ssc s c cc s cscFigure 1: Two polyominoes with polyominoids and left-lower boundary points.
s ss sss s s ss s sssxxx zz x yx yy yy y yz z z s ss sss s s ss s sssx z x yyy z u = (y; y; 0; 0; z; 0; 0)v = (x; 0; z; 0; x; y; 0)Figure 2: A folded polyominoid with left-lower labels and label vectors.
fk;n n = 1 n = 2 n = 3 n = 4 n = 5 n = 6k = 0 1 1 1 1 1 1k = 1 1 2 3 4 5 6k = 2 1 5 12 22 35 51k = 3 1 14 57 148 305 546k = 4 1 42 300 1126 3045 6756k = 5 1 132 1680 9220 32985 91236Figure 3: Number of folded polyominoes in Zn with circumference 2k.


