
On 2-ranks of Steiner triple systemsE. F. Assmus, Jr.�Submitted: March 13, 1995; Accepted: April 17, 1995AbstractOur main result is an existence and uniqueness theorem for Steiner triplesystems which associates to every such system a binary code | called the\carrier" | which depends only on the order of the system and its 2-rank.When the Steiner triple system is of 2-rank less than the number of points ofthe system, the carrier organizes all the information necessary to constructdirectly all systems of the given order and 2-rank from Steiner triple systemsof a speci�ed smaller order. The carriers are an easily understood, two-parameter family of binary codes related to the Hamming codes.We also discuss Steiner quadruple systems and prove an analogous exis-tence and uniqueness theorem; in this case the binary code (correspondingto the carrier in the triple system case) is the dual of the code obtained froma �rst-order Reed-Muller code by repeating it a certain speci�ed number oftimes.Some particularly intriguing possible enumerations and some general openproblems are discussed. We also present applications of this coding-theoreticclassi�cation to the theory of triple and quadruple systems giving, for exam-ple, a direct proof of the fact that all triple systems are derived provided thoseof full 2-rank are and showing that whenever there are resolvable quadruplesystems on u and on v points there is a resolvable quadruple system on uvpoints.�The author wishes especially to thank Paul Camion and Pascale Charpin. Theresearch atmosphere that they have created at Projet Codes, INRIA surely contributed tothis investigation, which took place during the early months of 1995 while the author wasa visitor. 1



the electronic journal of combinatorics 2(1995), #R9 2The methods used in both the classi�cation and the applications make itabundantly clear why the number of triple and quadruple systems grows insuch a staggering way and why a triple system that extends to a quadruplesystem has, generally, many such extensions.11 IntroductionThe work we report on here began as an e�ort to understand the surprisingfacts uncovered by a comprehensive computer study of the 80 Steiner triplesystems of order 6 (on 15 points) undertaken by Tonchev and Weishaar [22].Among the results we establish, perhaps the easiest to state and prove is thefollowing:A Steiner triple system on n points has 2-rank n � 1 if and only if itsbinary code is the direct sum of an even code and a full code F r2 . Moreoverwe have n = 2r+1 with the support of the full code the support of the uniquemaximal subsystem on r points | the support of the even code being thecorresponding complementary oval.This result explains why only one binary code arose from the sixteenSteiner triple systems of 2-rank 14 and order 6 and immediately gives thecode's weight enumerator.But the result cited above was a relatively minor consequence of this in-vestigation since it quickly evolved into a full-edged investigation of Steinertriple systems of de�cient 2-rank | that is, 2-rank less than the number ofpoints of the system. In fact the work can be taken as a binary view of thewhole range of Steiner triple systems: we show in principle how to constructrecursively all Steiner triple systems of de�cient 2-rank using the degeneratesystem on one point and those systems of full 2-rank as a starting point.Thus the systems of full 2-rank are seen as the building blocks 2 since, fromthe binary point of view, Steiner triple systems of full 2-rank must be viewedas unintelligible and hence taken as given facts of life.The mandarins in the binary world peopled by Steiner triple systems arethe systems given by the points and lines of a projective geometry over the1AMS Primary Classi�cation: 05B07; Secondary Classi�cation: 94B25.2This will undoubtedly strike some readers as going a bit far in deciding what thebuilding blocks should be and, indeed, the vast majority of Steiner triple systems have full2-rank.



the electronic journal of combinatorics 2(1995), #R9 3�eld F2 and the binary codes involved are the Hamming codes. Here the2-rank is as de�cient as it can possibly be: the 2-rank of the design of pointsand lines of PGk�1(F2) is 2k� 1� k, or better, n� k, where n = 2k � 1 is thenumber of points of this classical system. Our basic existence and uniquenesstheorem for Steiner triple systems of de�cient 2-rank is the following:For any admissible 3 n > 7, writing n + 1 = u � 2k with u odd, andchoosing an i with 1 � i < k, there is a Steiner triple system on n pointswith 2-rank n � k + i. Moreover, all triple systems on n points with 2-rankn� k + i share the same binary code.The results presented here allow one, in principle, to construct all theSteiner triple systems with the given de�cient 2-rank. We did not allowi = k in the existence theorem above for those are the systems with full2-rank | which we cannot in general construct. Such systems do, however,exist for n > 7 and we construct many such systems via Theorem 7.2. Wehave honored the classical systems by leaving them unmentioned for those nof the form 2k � 1.In particular, then, we show that the binary code of a Steiner triplesystem is completely determined by its 2-rank; this explains why Tonchevand Weishaar found only �ve codes (one for each dimension between 11 and15) among the 80 Steiner triple systems on 15 points.4Some may wish to see this e�ort as a \constructive" redoing of a programbegun by Luc Teirlinck and brought to what seemed then to be a de�nitiveend by Doyen, Hubaut and Vandensavel when they proved their marveloustheorem describing the modular ranks of Steiner triple systems. We will not,however, use their results here; the reader need only know the basic factsabout codes and designs5 to understand the material to follow.3That is, n � 3; 7 (mod 12): Note that necessarily k � 2.4The computer study done by Tonchev and Weishaar also looked at the binary codesgiven by the column spaces of the incidence matrices; these so-called point codes are acomplete invariant for the 80 triple systems. Thus the 80 incidence matrices of the Steinertriple systems of order 6 have the remarkable property that their binary row spaces produceonly �ve essentially distinct codes of block length 15 while their binary column spacesproduce 80 essentially distinct codes of block length 35. This phenomenon may very wellbe characteristic of Steiner triple systems in general. For a brief discussion of the mattersee [2, Section 7].5Easily gleaned fromChapters 1 and 2 of [3] or, indeed, from almost any book discussingdesigns and codes.



the electronic journal of combinatorics 2(1995), #R9 4Others may wish to see it as an elaboration of an ancient \doubling"construction frequently attributed to Reiss, who in the Spring of 1856 gavea proof of the fact that Steiner triple systems exist for all n � 1; 3 (mod 6).Again, the reader need not be familiar with the constructions necessary togive such a proof.So, we will be concerned throughout with Steiner triple systems of 2-rankthat is not maximal. It is surely true that such systems are rare and thatmost Steiner triple systems on n � 3; 7 (mod 12) points have full 2-rank. Inorder for the rank to drop not only must the point set be of cardinalitycongruent to 3 modulo 4, as we have insisted in the existence and uniquenessresult above, but the system must necessarily have subsystems of maximalsize. But, the smaller the 2-rank the closer the system is to the classicalsystem of points and lines of a projective geometry over the two-element�eld and it makes sense to say something about such systems.We will associate to each such system a binary code which we will call thecarrier . We will determine all possible carriers and show how to constructall systems of de�cient 2-rank from the carriers and systems of smaller order.The carriers turn out to be a two-parameter family of easily understoodbinary codes with enormous automorphism groups, and these codes visiblyexhibit the structure of the binary projective space attached to each Steinertriple system of de�cient 2-rank. Moreover, the carrier organizes the datanecessary to construct the Steiner triple systems of which it is the carrier andmakes it clear why the number of such systems grows in such a staggeringway with n.One should expect a classi�cation such as the one just described to reducea question about Steiner triple systems to the same question about those offull 2-rank. As an illustration of just that we give a direct proof of a result(Theorem 6.1) closely related to a result of Mendelsohn6 that immediatelygives the following:If Steiner triple systems of full 2-rank are derived then all Steiner triplesystems are derived.7To be fair this leaves a lot unproved, but it is not entirely out of the ques-tion that one could show that those with full 2-rank are derived. Moreover,6Mendelsohn's result (see [13]) is couched in the language of sloops and squiens; it verywell may be equivalent to our result.7A Steiner triple system is derived if it extends to a Steiner quadruple system.



the electronic journal of combinatorics 2(1995), #R9 5the results we describe in Section 6 also show how to construct all Steinerquadruple systems of de�cient 2-rank, an easier task, and Theorem 7.2 yieldsmany derived Steiner triple systems of full 2-rank.The reader looking for the avor of the subject may want to read onlySection 2 and Section 8. The main technical development comes in Sec-tion 3. The construction of all triple systems of de�cient 2-rank is treatedin Section 4 and Section 5 discusses some particularly easy cases of the con-struction. Section 6 includes an application to the question of which triplesystems are derived and initiates a discussion of Steiner quadruple systems.We complete that discussion in Section 7 by stating and proving our ex-istence and uniqueness theorem for quadruple systems of de�cient 2-rank,Theorem 7.1, and giving an application to resolvable Steiner quadruple sys-tems. Section 8 mentions the \ternary" view of Steiner triple systems andmakes some concluding remarks.2 Steiner triple systems of de�cient 2-rankSuppose we are given a Steiner triple system on a set S of cardinality n whosebinary code D is a proper subspace of F n2 . This implies that n is congruentto 3 modulo 4 since the order, n�32 , of the system must be even. If r is thenumber of weight-one vectors in D then, of course, r < n. But much moreis true:Proposition 2.1 Let S0 be the support of the set of weight-one vectors ofthe binary code D of a Steiner triple system on the set S. Assume that S0is a proper subset of S. Then either S0 is empty and jSj = 2k � 1, with theSteiner system the classical one of points and lines of PGk�1(F2), or S0 isthe support of a subsystem8 and D is the direct sum of the full binary codeon S0 and a code C of minimum weight two whose support is the complementof S0 in S.Proof: If S0 is empty, then D must have minimum weight 3; moreover, theminimum-weight vectors must be precisely the incidence vectors of the given8A subsystem of a Steiner triple system is a set of points S0 with the property that ifa triple has two points in S0 its third point is also in S0 | so that the point set togetherwith the triples contained in it forms a Steiner triple system; we regard a one-point subsetas a subsystem, called the degenerate Steiner triple system.



the electronic journal of combinatorics 2(1995), #R9 6Steiner triple system. It follows (see, for example, [4]) that we have theclassical system.Assume S0 is non-empty. Then, clearly, the full binary code on S0 is asubcode of D and given any two distinct points of S0 the triple containingthose points must have its third point in S0 for otherwise there would be aweight-one vector with a 1 not in S 0. For the same reason the projection ofD onto the complement of S 0 must have minimum weight 2 and, obviously,D is the direct sum of that projection and the full binary code on S0. 2Clearly the code C of the Proposition is uniquely determined by theSteiner triple system; we shall call this code the carrier of the Steiner triplesystem. Its block length will be jSj � jS 0j and its dimension will deter-mine the 2-rank of the triple system | which is, of course, the dimensionof D: dim(D) = dim(C) + jS0j. Similarly the subsystem on S0 is uniquelydetermined by the Steiner triple system; we shall call this subsystem thetrivializing subsystem since that part of D supported by S 0 is of no use indetermining the underlying triple system. This trivializing subsystem mayvery well be a Steiner triple system with de�cient 2-rank; for example those16 of the 80 systems of order 6 whose 2-rank is 14 must have, as we shallsoon see, the Fano plane as their trivializing subsystem.Proposition 2.2 Let D be the binary code of a Steiner triple system on aset S of cardinality n = 2r+1. Suppose the Steiner triple system has 2-rankless than n. Then, if S0 is the support of the set of weight-one vectors of D,jS0j � r with equality if and only if the carrier of the triple system is the full,even-weight code on its support. In the case of equality the 2-rank is n � 1and D is the direct sum of F r2 and the full even-weight subcode of F r+12 .Proof: It is well-known, and in any case very easy to see, that a propersubsystem can have at most n�12 = r points and that, for such a maximalsubsystem,9 every triple not in the subsystemmeets its point set in one point.Thus, when jS0j = r, the carrier contains all the vectors of weight two in itssupport and, since D is not the entire ambient space, must be the full even-weight code on r+1 points. Conversely, if the carrier is the full even-weight9We remind the reader that the complement of the support of a maximal subsystemhas the property that every triple meets it in exactly two points if it meets it at all. Sincewe have a design of even order the complement is, therefore, called an oval . For a morecomplete discussion of ovals in designs see either [1] or [5].



the electronic journal of combinatorics 2(1995), #R9 7code on its support, then no triple of the system is contained in the supportof the carrier and hence every triple of the system must meet the trivializingsubsystem; this implies that the trivializing subsystem is maximal.2Since the 2-rank of a Steiner triple system on n points with carrier C isn minus the codimension of C in its ambient space, in order to characterizethe binary codes of those Steiner triple systems on n points with 2-rank n�1we must still show that jS0j < n�12 implies that the carrier has codimensionat least two in its ambient space. But this is a consequence of the followingeasy coding-theoretic characterization of the even-weight subcode of F r+12 .Lemma 2.3 Let E be a binary [r+ 1; r] code with minimum weight at least2. Then E is the even-weight subcode of F r+12 .Proof: 10 Consider E?. It is of dimension one and if its non-zero vector werenot the all-one vector | there would be vectors of weight one in E. HenceE = (F2 |)? is the even-weight subcode of F r+12 .2We have now characterized the binary codes of those Steiner triple sys-tems on n points of 2-rank n � 1 and hence explained why Tonchev andWeishaar found only one such code for n = 15:Theorem 2.4 A Steiner triple system on n points has 2-rank n � 1 if andonly if its binary code is the direct sum of an even code and a full code F r2 .Moreover, it follows that n = 2r + 1, that the support of the full code is theunique maximal subsystem of the given triple system, and that the even codeis the code of all even-weight vectors supported on the corresponding oval ofthe system.We need only remark that the uniqueness of the maximal subsystem is aconsequence of known results (see [9, 21]) but easily follows without recourseto those results. In fact, we have the following, more general result:Proposition 2.5 Let D be the binary code of a Steiner triple system of de-�cient 2-rank and suppose there is a subsystem T such that the projection of10The proof given here of Lemma 2.3 is due to John Dillon, who graciously read avery early version of the manuscript. It carries over without change to an arbitrary �eldand shows, in that case, that the code is monomially equivalent to the dual of the codegenerated by the all-one vector.



the electronic journal of combinatorics 2(1995), #R9 8D onto the complement of the point set of T has minimum weight at least 2.Then the trivializing subsystem is contained in the point set of T . In partic-ular, the trivializing subsystem is contained in every maximal subsystem.Proof: The proof is quite obvious since the projection must, clearly, be inthe carrier and for a maximal subsystem the projection must always be thefull even-weight subcode on the supporting oval.2Actually, the trivializing subsystem is the intersection of all the maximalsubsystems but we will not need that fact in the development; it will becomeapparent as we progress.Writing the weight enumerator of a code of block length n as Pni=0AiX i,where Ai is the number of vectors of weight i in the code, we have immedi-ately:Corollary 2.6 The weight enumerator of the binary code of a Steiner triplesystem on n = 2r + 1 points and 2-rank n � 1 is(1 +X)rXi�0  r + 12i !X2i = 12(1 +X)r �(1 �X)r+1 + (1 +X)r+1� :3 The carrierWe have characterized the carrier in the codimension 1 case: it is the fulleven-weight code on its support. We wish now to investigate the carrier inthe general case. We �rst of all determine the weight-two vectors in thecarrier.Proposition 3.1 Let C be the carrier of a Steiner triple system on n pointswhose trivializing subsystem is a proper subsystem on r points. Then n�r =2l for some positive integer l � r+12 and the supports of the weight-two vectorsof C form a resolvable 11 1-(2l; 2; r) design. In particular C has rl vectors ofweight 2.11That is, a resolution with r parallel classes of the given set of 2-subsets of the 2l-set.Of course, if 2r+1 = n, we are in the codimension 1 case and C is the even-weight subcodeof F 2l2 ; the set of all 2-subsets of a 2l-set is always resolvable | in fact in many ways forl > 3.



the electronic journal of combinatorics 2(1995), #R9 9Proof: Clearly the weight-two vectors of C coming from the triples of thesystem meeting the trivializing subsystem in exactly one point yield a resolv-able 1-design with parameters 1-(2l; 2; r). We need only show that there areno further weight-two vectors in C. So suppose v were another weight-twovector in C. Then there would be a triple of the system whose support cov-ered the support of v and was disjoint from the trivializing subsystem. Thusthe sum of v and the incidence vector of the triple would yield a weight-onevector in C, a contradiction.2Thus, knowing only the carrier allows one to know the order of the triplesystem from which it came: since r is intrinsic to the carrier, we know fromthe carrier alone that the system must have 2l + r points and be of orderl + r�32 . For any binary code C | of even block length 2l and of minimumweight 2 | if the weight-two vectors yield a resolvable 1-(2l; 2; r) design, weshall call r the index of C. Thus a binary code of index r and block length2l will have precisely rl vectors of weight two and the index r of such a codewill clearly satisfy 1 � r � 2l � 1. Note that when r = 2l � 1 we are in thecodimension 1 case already treated. For such a C to be the carrier of thebinary code of a Steiner triple system we must, in addition, have r congruentto 1 or 3 modulo 6. But the condition on the weight-two vectors of C is,alone, very strong as the next proposition will show.Proposition 3.2 Let C be a binary code of minimum-weight 2 and blocklength v. Assume that the weight-two vectors of C form a 1-(v; 2; r) design.Then, r + 1 divides v and the weight-two vectors of C generate a subcodeisomorphic to the direct sum of vr+1 copies of the even-weight subcode ofF r+12 . If the 1-design is resolvable, then r must be odd and any resolution ofthe 1-(v; 2; r) design is built from vr+1 independently chosen resolutions of thedesign of weight-two vectors of F r+12 .Proof: Since the weight-two vectors of C form a 1-(v; 2; r) design, given anycoordinate e of C there are precisely r weight-two vectors of C with a 1 atthis coordinate. These r vectors generate an r-dimensional even subcode Eof C whose support is the r + 1 coordinates supporting the given r vectors.Thus E is isomorphic to the full even-weight subcode of F r+12 . It is easy to seethat this process partitions the set of coordinates of the code C into subsetsof cardinality r + 1 and gives all but the last assertion of the Proposition.So suppose r were even. Let P be a parallel class of some resolution of the



the electronic journal of combinatorics 2(1995), #R9 10design. Then P would have at least one of its 2-subsets supporting a vectorwith a 1 in the support of E and a 1 outside the support of E. But then wecould produce a weight-two vector with a 1 at e and a 1 outside the supportof E, an impossibility. It follows not only that r is odd, but also that anyresolution of the design yields a resolution of the weight-two vectors of E.Clearly, any independently chosen resolutions of the supports of the weight-two vectors of the various even subcodes can be stitched together to give aresolution of the 1-design.2In particular, we have determined the binary code generated by theweight-two vectors of a carrier of index r. Moreover, all resolutions of thedesign given by the weight-two vectors of the carrier are obtained by piec-ing together, however one wishes, 2lr+1 arbitrarily chosen resolutions of the2-subsets of an (r +1)-set. As the reader might imagine the number of suchchoices grows in a staggering way. Even when 2l = r + 1 and we are in thecodimension 1 case already treated, the number of ways to choose just oneresolution of the design of 2-subsets of a 2l-set grows very quickly with l (see[8, 14]).Remark: If the trivializing subsystem of a Steiner triple system on n pointshas r points, then, by the above Proposition, r+1 divides n+1. In fact, wewill show that the quotient is a power of 2, a crucial result.Suppose C, of block length 2l and index r, is the carrier of a Steinertriple system. Then the trivializing subsystem and the weight-two vectorsof C account for rl + r(r�1)6 = r r+6l�16 triples of the triple system. All othertriples, in number l3(2l � r � 1);must have their incidence vectors in the carrier's support and hence yieldweight-three vectors of the carrier (unless, of course, n = 2r + 1 and hence2l = r + 1 with C the full even-weight subcode of F 2l2 ). Moreover, anyweight-two vector in the carrier's ambient space which is not in the carrierhas its support contained in the support of a unique triple disjoint from thetrivializing subsystem. Such a triple yields a weight-three vector of C and,in fact, other weight-three vectors in C which are not incidence vectors ofthe Steiner triple system at hand since any weight-two vector in C whosesupport meets the support of the triple non-trivially (in, therefore, precisely



the electronic journal of combinatorics 2(1995), #R9 11one point) gives another weight-three vector in C whose support is not atriple of the Steiner triple system. We have thus proved the followingProposition 3.3 Let C be the carrier of a Steiner triple system on n pointswhose trivializing subsystem is a proper subsystem with r points. Then settingn� r = 2l there are, among the weight-three vectors of C,l3(2l � r � 1)vectors with the property that no two of these vectors have supports meetingin more than one point.We remark that the proposition is operative only when 2l > r + 1.Examples:1) Observe that for l = 1 (and hence r = 1) the [2; 1] binary code Cof minimum weight 2 is unique and looks like a carrier, but is not sincethe unique Steiner triple system on 3 points has 2-rank one and not two.Nevertheless we will denote this simple code by C1;1 below.2) A slightly more interesting example occurs when l = 2. Here thereis a unique resolution of the set of 2-subsets of a 4-set and the binary even-weight subcode C of F 42 is a putative carrier of index 3. One can indeed (aswe shall see below in a more general context, Theorem 4.1) construct theunique Steiner triple system on 7 points from the data but C will not be thecarrier. This code is denoted by C3;1 below.Our �nal example of this section is more pungent; although it too is not acarrier, it will be a maquette for the carriers we will eventually characterize.3) Consider the binary [6; 4] code C = C1;2 with generator matrix0BBB@ 1 1 0 0 0 00 0 1 1 0 00 0 0 0 1 11 0 1 0 1 0 1CCCAcorresponding to the case l = 3 and r = 1. Its weight enumerator is, visibly,X0 + 3X2 + 8X3 + 3X4 +X6and its weight-two vectors yield a resolvable 1-(6; 2; 1) design; thus C hasindex 1. But, again, it is not the carrier of a Steiner triple system since



the electronic journal of combinatorics 2(1995), #R9 12that system would have to be the Fano plane, which has 2-rank four and not�ve. One can construct the Fano plane from the code C simply by choosingany four (4 = l3(2l � r � 1)) of the eight weight-three vectors satisfying thecriterion of the Proposition. That choice is essentially unique, as the readercan easily verify. For example, a normalized choice is the following:1 0 1 0 1 01 0 0 1 0 10 1 1 0 0 10 1 0 1 1 0and the gross number of choices is two.The automorphism group of C is clearly the semi-direct product of Sym(3)acting in the obvious way on the elementary abelian group of order 8 (viewedas the direct product of three copies of the cyclic group of order 2). As weshall later see, we should think of the cyclic group as Sym(2) and the Sym(3)here should be thought of as the group of the projective line over F2, thatis as PGL2(F2). For l = 3 no other value for the index is possible since anyresolvable 1-(6; 2; r) design with r > 1 generates the full even-weight subcodeof F 62 and 5 is not congruent to 1 or 3 modulo 6.)We now use Proposition 3.2 and the condition of Proposition 3.3 to com-pletely describe all possible carriers.Theorem 3.4 Suppose C is the carrier of a Steiner triple system. ThenC is a code of block length 2l, minimum weight 2, and index r for somer � 1; 3 (mod 6). Moreover, 2lr + 1 = 2m � 1for some positive integer m, C is uniquely determined by r and m, and aSteiner system with C as its carrier must have n+1r+1 = 2m and its 2-rank mustbe n �m = n� log2(n + 1r + 1 ):Proof: We already know that r + 1 divides 2l; if 2l = r + 1 we are in thecodimension 1 case and C is the full even-weight subcode of F 2l2 . Herem = 1.Assume, therefore, that r+1 < 2l. Setting 2lr+1 = s we have that the subcode



the electronic journal of combinatorics 2(1995), #R9 13of C generated by the weight-two vectors is isomorphic to the direct sum of scopies of the even-weight subcode of F r+12 and that the s supports partitionthe coordinates of C. Let the set of these s supports be S. Since r + 1 < 2lwe must have weight-three vectors in C. Suppose v is such a weight-threevector. Then it cannot have two 1s in any given S 2 S and hence de�nes atriple of the set S. If fR;S; Tg � S is such a triple, then every vector withone 1 in each of R, S and T is a weight-three vector in C. In particular,each such triple of S yields (r + 1)3 weight-three vectors of C. If fR;S; Tgand fR;S; T 0g are two such triples then T = T 0 for, otherwise, we couldproduce a weight-two vector in C with one 1 in T and another in T 0, animpossibility. It follows from Proposition 3.3 that we have de�ned a Steinertriple system on S. We next show that this triple system must be a classicaltriple system coming from the design of points and lines of some PGm�1(F2)and thus produce the m of the Theorem. Suppose the triple system justde�ned on S is not such a classical system. Then some linear combinationof the triples produces a vector of weight one. Ordering each of the subsetsin S and mimicking that linear combination with weight-three vectors of Cadjusted, say, ushright, we would produce a vector of weight one in C |which yields the desired contradiction.Now, since such a classical triple system is uniquely determined by mand since C is generated by its weight-two and weight-three vectors, wesee that r and m uniquely determine C. Determining the dimension of Cand hence the 2-rank of any triple system with C as carrier is easy: theclassical triple system has 2-rank 2m� 1�m and since there are 2m� 1 evensubcodes, each of dimension r, to take into account the dimension of C isr(2m� 1)+ 2m� 1�m and the 2-rank of the triple system with C as carrieris dim(C) + r = (r + 1)2m � (m+ 1) and, since 2l + r = n, we are done.2The carrier determined by r and m will henceforth be denoted byCr;mand its properties described explicitly in the Theorem below.Corollary 3.5 If a Steiner triple system has a trivializing subsystem on rpoints, then the Steiner system is on n = (r + 1)2m � 1 points for somepositive integer m.The proof just given yields more than the Theorem. It allows us to displayevery possible carrier and determine its automorphism group:



the electronic journal of combinatorics 2(1995), #R9 14Theorem 3.6 If C is a carrier of a Steiner triple system, then C? is iso-morphic to the code one obtains from the dual of the Hamming code on 2m�1points by repeating it r + 1 times. We denote this carrier C by Cr;m. It isof block length (r + 1)s where r � 1; 3 (mod 6) and s = (2m � 1) and enjoysthe following properties:� The (r+1)s coordinates of Cr;m are split into s sets each of cardinalityr + 1� On the s sets is imposed a classical Steiner triple system� A vector of weight 2 is in Cr;m if and only if its support is containedin one of the s sets� A vector of weight 3 is in Cr;m if and only if its support is such thatno two elements are in one of the s sets and the three sets that do havea non-empty intersection with its support form a triple of the imposedclassical Steiner triple system� Cr;m is generated by its vectors of weight 2 and 3.Corollary 3.7 The automorphism group of Cr;m is the semi-direct productof PGLm(F2) and the direct product of 2m � 1 copies of Sym(r + 1) wherethe projective group acts on the direct product in the obvious way.Corollary 3.8 A carrier Cr;m hasr(r + 12 )(2m � 1)vectors of weight 2 and (r + 1)3 (2m � 1)(2m�1 � 1)3vectors of weight 3.1212It is, of course, easy to give the weight enumerator of each Cr;m and we will soon doso | thus determining the weight enumerator of all binary codes of Steiner triple systemsof de�cient 2-rank. We have given the number of vectors of weight 2 and 3 in the Corollarysimply to emphasize those aspects of the carrier that are important in the construction ofall Steiner triple systems of de�cient 2-rank.



the electronic journal of combinatorics 2(1995), #R9 15We have taken the liberty in the statement of the Theorem to includethe binary code f0g as an honorary Hamming code of block length one.13 Itcorresponds to the case m = 1 where we have, of course, simply the even-weight subcode of F r+12 . Letting | be the all-one vector of length r + 1,observe that the dual of the code F2 |, which is the dual of the Hammingcode of block length one repeated r + 1 times, is precisely this even code. Aresolution of the 1-(r + 1; 2; r) design given by its weight-two vectors can, ingeneral, be had in many ways: for r = 1 or r = 3 just one, but for r = 7 sixand in 396 ways for r = 9 | and then the combinatorial explosion arrives[8].A resolution of the 1-design given by Cr;m when m > 1 can be formed bystitching together resolutions, chosen independently, for each of the 2m � 1even subcodes. To choose a collection of weight-three vectors of Cr;m sat-isfying the hypothesis of Proposition 3.3 one must and can choose (r + 1)2vectors, no two with two common 1s, for each of the triples, again indepen-dently, of the imposed triple system and that is very easy. We describe allpossible choices next:We think of the choice as an (r + 1) � 3 array of square matrices of sizer + 1. The pigeon-hole principle forces one to have r + 1 1s in each columnof the array. Thus we can assume that in the �rst of the three columns ofmatrices we have arranged matters so that the �rst matrix has 1s in its �rstcolumn with 0s elsewhere, the second has 1s in its second column with 0selsewhere, etc. Then we may assume that the second column of matricesis just the identity matrix repeated r + 1 times. Finally, the third columnconsists of r + 1 permutation matrices, P1; P2; : : : ; Pr+1 where PiP�1j has no�xed points for distinct i and j. For example, we could take Pi = Z i�1,1 � i � r + 1, where Z is the cyclic shift. This choice was that given inthe Example displaying the code C1;2, where there is only one choice up toequivalence.From the description of Cr;m in terms of the dual to the Hamming codeof block length s = 2m � 1 one uses the MacWilliams transform to compute13In fact, it deserves the name: it is a single-error correcting code of block length onewith every vector in the ambient space at distance 1 or less from a unique vector in thecode.



the electronic journal of combinatorics 2(1995), #R9 16easily its weight enumerator:1s+ 1 �(1 +X)s(r+1) + s(1�X2) (r+1)(s�1)2 (1�X)r+1� :Corollary 3.9 If D is the binary code of a Steiner triple system on n pointsof 2-rank n � m with a trivializing subsystem on r points, its weight enu-merator is12m �(1 +X)n�r + (2m � 1)(1 �X2)n�2r�12 (1�X)r+1� (1 +X)r:Proof: We have that n = (r+1)2m� 1 with s = 2m� 1 and that the binarycode of the triple system is the direct sum of Cr;m and F r2 .24 Constructing systems from a carrierWe begin by pointing out how to construct a Steiner triple system from aputative carrier satifying the criterion of Proposition 3.3. It follows that eachof the codes Cr;m will de�ne triple systems (which may possibly have largercarriers) and that the number of systems Cr;m constructs grows very fast asr and m do.Theorem 4.1 Suppose C is a binary code of block length 2l, minimumweight 2 and index r where r � 1; 3 (mod 6). Suppose also that C containsa collection of l3(2l�r�1) weight-three vectors with the property that no twohave supports intersecting in more than one point. Then, given the followingdata,� A Steiner triple system on r points� A resolution of the supports of the weight-two vectors of C into r par-allel classes� A bijection of the parallel classes of the above given resolution with thepoints of the above given triple system� A collection, possibly empty, of l3(2l� r� 1) weight-three vectors of Cwith the property that no two have supports intersecting in more thanone point,



the electronic journal of combinatorics 2(1995), #R9 17there is a Steiner triple system on 2l + r points containing the given systemon r points as a subsystem. Moreover, if the Steiner triple system given inthe data is of 2-rank r, then the carrier of the constructed system is Cr;m,where 2l = (r + 1)(2m � 1), and the trivializing subsystem is that Steinertriple system; if the system on r points is of de�cient 2-rank, then the carriermay be larger and that will depend on the choice of the other data.Proof: Let S 0 be the set of cardinality r on which the Steiner triple systemof the data is given and T the set of coordinate places of the code C. Weassume, of course, that S0 and T are disjoint; we construct the sought fortriple system on the set S = S0 [ T . Here are the triples on S:� The given triples on S0� For each x 2 S0 corresponding, under the given bijection, to the parallelclass P of the given resolution the triples of the form fxg [ P whereP 2 P� The triples from the supports of the selected weight-three vectors of CIt is easy to see that no two of the 3-subsets we have described meet in morethan one point. Moreover, the number of these 3-subsets of S isrl + r(r � 1)6 + l3(2l � r � 1) = (2l + r)(2l + r � 1)6and we have a Steiner triple system on S. Let D be the binary code ofthe constructed triple system. If the given triple system on S 0 has 2-rankr it is clear that it must be the trivializing subsystem since the projectionof D onto T is contained in C and generated by the weight-two and chosenweight-three vectors of C. If the given triple system on S0 has 2-rank lessthan r it may or may not be the trivializing subsystem but, because theprojection is contained in C, it will contain the trivializing subsystem byProposition 2.5.2Remarks:1) If the code C is the full even-weight subcode of F 2l2 of maximal index2l � 1 with l not divisible by 3, then the construction proceeds withoutrecourse to any weight-three vectors of C (and, in fact, there aren't any).All one needs is a resolution of the set of 2-subsets of a 2l-set and a Steiner



the electronic journal of combinatorics 2(1995), #R9 18triple system on 2l�1 points. There are always resolutions and always triplesystems (because of our restriction on l). This case of the construction goesback at least as far as Reiss [17] and is very well-known; all Steiner triplesystems with a maximal subsystem are clearly so constructible, the carrier,of course, is merely Cr;1 and the maximal subsytem is on r points.2) It is instructive to take a minimalist approach to this construction anddecide what transpires when one begins with the degenerate triple systemon one point and does not even assume that the carriers or Hamming codesare known, but \discovers" both in the construction process. The degener-ate triple system, yields the binary code f0g � F2 which is the honoraryHamming code of block length 1 which yields the carriers Cr;1.At this point we have but one triple system at our disposable and canonly use C1;1; turning the crank yields the unique triple system on 3 points,giving the Hamming code of block length 3 = 22 � 1 and hence the carriersCr;2.Now we have two triple systems at our disposal and we can use the oneon 3 points together with the carrier C3;1 which yields only the Fano plane,the unique triple system on 7 points; the Fano plane also arises from thedegenerate system and C1;2. Using the system on three points together withC3;2 yields all the systems on 15 points of 2-ranks 11, 12 and 13. We thereforeget the carriers Cr;3 and Cr;4.The next turn of the crank yields, among other systems, the 23 triplesystems on 15 points with 2-rank less than 15, more carriers and so on. Allpossible 2-ranks appear because one can �ddle with the data to make surethat the triple system one uses becomes the trivializing subsystem.14 Thereader may want to show that, restricting the triple systems to only thoseconstructed at a given stage, only triple systems on n = 2k � 1 points canbe constructed and all will have de�cient 2-rank between n � k and n � 1 .It also follows from Theorem 6.1 that only derived triple systems will arise.Although all 23 triple systems on 15 points with de�cient 2-rank will appear,that will cease to be true for the systems on 31 points since we have restrictedourselves only to triple system the construction process produces. Thus wewill miss those on 31 points coming from the 57 systems on 15 points with14This sort of �ddling has been used by Key and Sullivan [10] and by Phelps [16, Page107] to alter one system to get another | but not in the systematic context we aredescribing.



the electronic journal of combinatorics 2(1995), #R9 192-rank 15.3) A slightly less minimalist approach might admit, say, the classicaltriple systems coming from a�ne geometries over F 3 | all of which havefull 2-rank | besides those constructed during the process. One would thenget the Steiner triple systems on 19 points of 2-rank 18, among others. Onceagain, Theorem 6.1 shows that only derived Steiner triple systems will arise.4) One could even envision admitting all Steiner triple systems of full2-rank that are derived (thus, for example, admitting the two on 13 points,the 57 on 15 points not produced by the minimalist approach, and thoseproduced by Theorem 7.2). Once again only derived systems result and, forexample, one obtains the Steiner triple systems on 27 points of 2-rank 26 andall the triple systems on 31 points of de�cient 2-rank.5) Using the carrier C = C9;1 there is only one choice for the Steinertriple system: the a�ne plane of order 3 of full 2-rank. In this case onealways gets C as the carrier and the a�ne plane of order 3 as the trivializingsubsytem. Here there are 396 distinct resolutions (up to equivalence underSym(10)) and simply using the group of the a�ne plane cuts the possiblenumber of Steiner triple systems on 19 points with 2-rank 18 to at most332,640. Moreover, the data allow one to compute the exact number andthis has been done by Seah and Stinson [20]: there are 284,457. In this caseof Steiner triple systems of order 8 (on 19 points) the 2-rank is either 18or 19 (from Theorem 3.4) and Brendan McKay estimates that the numberof Steiner triple systems is 11 or 12 billion. Thus, the vast majority havefull 2-rank. The combinatorial explosion of the number of resolutions of a2l-set comes at l = 6. The precise number has been computed by Dinitz,Garnick and McKay (see [8]); there are 526,915,620 up to equivalence underSym(12). It seems unlikely that anything but asymptotic results will beavailable beyond 19 for the codimension 1 case.6) Using the carrier C9;2 of block length 30 with, again, the a�ne planeof order 3 being the only choice for the trivializing subsystem, we mustchoose on each of the three 10-sets a resolution of the set of 2-subsets. Therewill be a choice of 396 possible resolutions for each of the set of 2-subsetsof the three 10-sets | and therefore a gross number of choices of (396)3.The splicing will introduce a factor of (9!)2 with the bijection boosting thatfactor to (9!)3. There is still the choice of the weight-three vectors which willintroduce a another large factor, namely the number of ways to choose nine(since we may assume the �rst is the identity permutation) �xed-point free



the electronic journal of combinatorics 2(1995), #R9 20permutations from Sym(10) such that the product of any one with the inverseof any other is again �xed-point free. But, since all the automorphism datais available, the calculation might conceivably be within reach and certainlyestimates, such as those given by Ferch and Stinson in [19], could be made.If so, the number of Steiner triple systems on 39 points of 2-rank 37 would bedetermined or estimated | that is Steiner triple systems on 39 points witha trivializing subsystem on 9 points.7) Observe that not only can one estimate the number of systems onegets by the construction (knowing, of course, that every triple system withthe given 2-rank will be constructed) but, in principle, one can determinethe automorphism group of the constructed system from the automorphismgroup of the trivializing subsystem and the subgroup of the known automor-phism group of the carrier leaving the data invariant. Although it is knownthat most Steiner triple systems have a trivial automorphism group, thatdoesn't prohibit there being automorphisms here since we are not able toconstruct systems of full 2-rank | which dominate at every stage.8) It is possible to generalize this construction somewhat so as to be ableto produce some Steiner triple systems of full 2-rank. To do so one partiallydisregards the coding theory and imposes the triples of any triple systemon the various (r + 1)-sets. The matter is more easily explained in terms ofSteiner quadruple systems and we do that in Section 7.We summarize what we have proved in an existence and uniqueness the-orem which captures, by Theorem 4.1 and Corollary 3.5, all Steiner triplesystems of de�cient 2-rank. In particular, for n > 7 and m > 0 a Steinertriple system on n points of 2-rank n�m has a binary code isomorphic toCr;m �F r2and, of course, those of full 2-rank have simply F n2 as their binary code.Theorem 4.2 Let n > 7 be congruent to 3 or 7 modulo 12 and set n+ 1 =u�2k with u odd. Then, for any choice of i with 1 � i < k there is a Steinertriple system on n points of 2-rank n� k+ i. Any such Steiner triple systemhas a binary code isomorphic toCu2i�1;k�i � F u2i�12and all such Steiner triple systems can be constructed from Cu2i�1;k�i andSteiner triple systems on u2i � 1 points.



the electronic journal of combinatorics 2(1995), #R9 21Remarks:1)When u = 1 one also has, of course, the Hamming code of block length2k � 1 and 2-rank n � k, which is the binary code of the classical Steinertriple system of points and lines of PGk�1(F2). We have already seen how toconstruct, starting with merely the degenerate Steiner triple system, all theHamming codes and examples of the codes of the Theorem when u = 1. Thisbootstrap exercise is reminiscent of the construction of the integers from theempty set.2)Observe that when we add an overall parity check to the codeCr;m�F r2we get a certain smoothing and, in particular, we will have 2m copies of theeven-weight subcode of F r+12 underlying this extended code. As we will seewhen we discuss Steiner quadruple systems we will have an overarching a�negeometry over F2 involved and the �rst-order Reed-Muller code will take theplace of the dual of the Hamming code.5 Carriers of index one and threeWhen the carrier is either C1;m or C3;m there is only one choice availablefor each of the �rst three data items described in Theorem 4.1: Clearly, thechoice of Steiner triple system is the degenerate triple system in one case andthe 3-point system in the other. For C1;m it is obvious that there is but oneresolution and one bijection. But, that is also true forC3;m since the only res-olution of the set of 2-subsets of f1; 2; 3; 4g is ff12; 34g; f13; 24g; f14; 23gg onwhich Sym(4) acts triply-transitively. Hence, the 2m�1 symmetric groups onr+1 = 4 elements can be used to \straighten" all the seams one has in piecingtogether the unique resolutions of the 4-sets and Sym(3), the automorphismgroup of the Steiner triple system on 3 points, can be used to \straighten"the bijection with the three points of the triple system. Thus the Steinertriple system one gets in these two cases rests entirely with the choice of theweight-three vectors one chooses. In each of these cases the triple systemproduced will be on 2m+1 � 1 points and one can certainly choose triples soas to produce the Hamming code; in fact, the Hamming code will clearly becontained in any code one produces via Theorem 4.1. The only question iswhether or not, by properly choosing the weight-three vectors, we can getothers. The binary codes of the Steiner triple systems obtained will either bethe Hamming code H of block length 2m+1�1, the codeH�F2e where e is



the electronic journal of combinatorics 2(1995), #R9 22a weight-one vector, orH+F2e+F2f+F2g =H�F2e�F2f where e, f andg are three weight-one vectors whose supports form a weight-three vector ofthe Hamming code. In fact, this has already been thoroughly investigated byKey and Sullivan [10] and, indeed, the data can be so chosen. We formalizethe discussion above in the following two propositions.Proposition 5.1 If a Steiner triple system has a one-point trivializing sub-system, then it is on 2m+1 � 1 points for some m > 2 and its binary code isobtained from the corresponding Hamming code by simply adjoining a vectorof weight one.Proposition 5.2 If a Steiner triple system has a three-point trivializing sub-system then it is on 2m+1 � 1 points for some m > 2 and its binary codeis obtained from the corresponding Hamming code by simply adjoining twoweight-one vectors.It should not be a di�cult matter to determine all the Steiner triplesystems that arise in these two cases; we have not tried to do so. A moreinteresting case arises when one takes the Fano plane as the trivializing sub-system; here one employs the carrierC7;m and there will be a choice availableboth for the resolution of the set of 2-subsets of the 8-set, for the seams andfor the bijection. A computer study seems appropriate; all the Steiner triplesystems on 31 points of 2-rank 27, 28 and 29 could, perhaps, be enumerated.Clearly one expects the number of triple systems to increase markedlywith i as this parameter increases from 1 to k � 1 in Theorem 4.2. We havehere a nice example of how lowering the rank constrains the systems beingdiscussed. Even for triple systems on 19 points one has billions of systemsof 2-rank 19 but only hundreds of thousands with 2-rank 18. (The Tonchev-Weishaar study recorded one system of rank 12, �ve of rank 13, and sixteenof rank 14.)6 ApplicationsIn November of 1852 when Steiner originally asked for those n for which therewas a Steiner triple system and for the number of such systems for each suchn, he also asked 15 whether or not such systems extended to Steiner quadruple15Question (b) of the in�nite list of questions he posed: [18].



the electronic journal of combinatorics 2(1995), #R9 23systems, that is he asked, for any given Steiner triple system, whether or notit was possible to introduce a collection of 4-subsets of the underlying setwith the property that no one of these 4-subsets contained a triple but every3-subset not a triple was in a unique member of the introduced 4-subsets.Now we would express Steiner's question as follows: \Does every Steinertriple system on n points extend to a Steiner quadruple system on n + 1points?" or \Is every Steiner triple system derived?" since one gets such asystem from a Steiner quadruple system by suppressing a point and usingonly the quadruples through that point. All classical systems are derivedand, in general, in many ways so; in particular, the unique systems on 3, 7and 9 points are derived. Both triple systems on 13 points are derived as areall 80 triple systems on 15 points; these results were computer generated. Itis widely believed that all Steiner triple systems are derived and an enormouse�ort has gone into proving this result; for a survey of what is known aboutderived systems see [16].We make a contribution to the subject by reducing the question to thoseSteiner triple systems with full 2-rank. But, more importantly, the proofis very robust and sheds a lot of light on the question; the proof explicitlydisplays the quadruple systems that are the extension and thus also clearlyshows why an enormous number of extensions arise. Here is what we prove:Theorem 6.1 Any Steiner triple system whose trivializing subsystem is de-rived is itself derived.Proof:We assume the carrier of the system is Cr;m and view the point set ofthe system as s = 2m�1 disjoint (r+1)-sets and a disjoint r set in the obviousway. We must de�ne 4-subsets covering each triangle (i.e. a 3-subset whichis not itself a triple of the system) exactly once with none of the introduced4-subsets containing a triple. On the r-set we use those 4-subsets that de�neone of the trivializing subsystem's extensions since the r-subset is the supportof the trivializing subsystem | which we are assuming is derived. Similarly,we use (independently as always in this work) Steiner quadruple systems onr + 1 points on each of the (r + 1)-sets; these quadruple systems need haveno relation to the trivializing subsystem. These choices are rather obviousones; the �rst introduces 124r(r � 1)(r � 3)



the electronic journal of combinatorics 2(1995), #R9 244-subsets and the second s24(r + 1)r(r � 1):We next itemize some not quite so obvious choices:� For each point p of the r-set, each choice of two, R and S say, of the(r+1)-sets, and each choice of PR � R and PS � S say, where PR andPS are in the parallel class de�ned by p, we use the 4-subset PR [ PS.This introduces r s2!(r + 12 )24-subsets.� For each triple t of the trivializing subsystem on the r-set, each p 2 t,and each of the 2-subsets, P say, in the parallel class de�ned by p weuse the 4-subset P [ t0, where t0 is the triple t with p removed. Thisintroduces 12r(r � 1)s(r + 12 )4-subsets.� For each triple fR;S; Tg of the classical system on the (r + 1)-sets,each point p of the trivializing subsystem, and every triple fx; y; zgof the constructed triple system, with x 2 R; y 2 S and z 2 T , weuse the three 4-subsets fx0; y; z; pg; fx; y0; z; pg and fx; y; z0; pg wherefx; x0g; fy; y0g and fz; z0g are in the parallel class de�ned by p. Thisintroduces 12s(s� 1)r(r + 1)24-subsets.And �nally we employ the classical system on the (r + 1)-sets to introduce4-subsets with the property that they have one point in each of four (r+1)-sets. We pick, of course, four (r+1)-sets corresponding to some extension ofthe classical system. Any extension of the classical system will do, but, as weshall see later, one gets a \nicer" quadruple system if one chooses the naturalextension arising from the points and 2-ats of AGm(F2). If fR;S; T; Ug is



the electronic journal of combinatorics 2(1995), #R9 25such a 4-subset we will need to pick (r+1)3 4-subsets of the form fx; y; z; wgwith x 2 R; y 2 S; z 2 T and w 2 U with no two meeting in more thantwo points to insure that each of the 4 � (r + 1)3 of those 3-subsets of theunderlying point set that are contained in R[ S [ T [U | but with no twopoints in an individual one of the (r+1)-sets | is covered exactly once. Oneagain can normalize the choice much as was done in picking the triples inthe construction given in Section 4. So, for example, the �rst column wouldbe (r + 1)2 1s followed by 0s, the second (r + 1)2 0s followed by (r + 1)2 1sfollowed by 0s, etc. through the (r + 1)-st column. Then, for the next threecolumns against the 1s in column one we would put the same array as wedid for the triples; for the 1s in column two we can repeat with, say, a cyclicshift on the last r+1 columns consisting of the �xed-point free permutationmatrices. Here is an illustration for the case we have already treated withr = 1: 1 0 1 0 1 0 1 01 0 1 0 0 1 0 11 0 0 1 1 0 0 11 0 0 1 0 1 1 00 1 1 0 1 0 0 10 1 1 0 0 1 1 00 1 0 1 1 0 1 00 1 0 1 0 1 0 1This introduces 124s(s� 1)(s � 3)(r + 1)34-subsets.Since the triples of the constructed triple system either lie completely inthe r-set, have one point in the r-set and two points in some (r + 1)-set,or three points distributed over three (r + 1)-sets de�ning a triple of theclassical system on the collection of (r + 1)-sets, one sees easily that no oneof the 4-subsets introduced contains a triple of the constructed Steiner triplesystem.Seeing that no two of the chosen 4-subsets meet in more than two pointsis not di�cult. One can then sum and �nd the right number of 4-subsets,namely 124 [s(r + 1) + r][s(r + 1) + r � 1][s(r+ 1) + r � 3]



the electronic journal of combinatorics 2(1995), #R9 26| or what may be more instructive and is, moreover, fun, actually see howeach triangle is covered. For example, if a triangle has two points in one(r + 1)-set and one in the r-set one uses the doubleton to de�ne a point pin the r-set (which must be di�erent from the point we were given) and usesthese two points of the r-set to get a triple t of the trivializing subsystem andthen employs the second of the itemized prescriptions above. This completesthe proof.2Corollary 6.2 If all Steiner triple systems on n points and 2-rank n arederived, then all Steiner triple systems are derived.Proof: The proof is quite obvious and proceeds via induction on the orderof the triple system.2The Theorem is more robust than it �rst appears. For example it showsthat all Steiner triple systems on 31 points with 2-rank less than 31 arederived since we know those of smaller order are. Even without one line ofcomputation the Theorem shows that all Steiner triple systems on 19 pointsof 2-rank 18 are derived | but this was already known. As far as I knowit had not, however, been observed that all Steiner triple systems on 39points of 2-rank 37 are derived, an immediate consequence of the Theoremsince the trivializing subsystem must be the a�ne plane over F 3 | althoughthis could have been seen via existing methods. In fact, the Theorem itselfcould have been proved with existing methods since Kevin Phelps [15] hadshown that any system with a maximal derived subsystem was itself derived,and combining this with Teirlinck's notion of projective dimension [21] givesthe result. But the direct proof above is simple and exhibits explicitly anenormous number of the extensions.There is another point to be made about the proof: except for the arbi-trarily chosen quadruple systems on the (r+ 1)-sets and the 4-subsets givento us on the r-set by our hypothesis, one sees easily that all the 4-subsetschosen are contained in the linear span of the constructed Steiner triple sys-tem. This is because we have chosen the design of points and 2-ats of ana�ne geometry to extend the classical Steiner triple system on the (r + 1)-sets. But for this extraneous data the same thing is true since on each ofthe (r+ 1)-sets we see the full even-weight subcode and on the r-set the fullcode. Thus we have the following



the electronic journal of combinatorics 2(1995), #R9 27Corollary 6.3 If the trivializing subsystem of a Steiner triple system is de-rived, then not only is the Steiner system derived, but the extension can beso chosen that the binary code of the resulting quadruple system is simplythat of the Steiner system with an overall parity check added and its code isgiven by 2m full even-weight subcodes of F r+12 with the planes of the a�negeometry AGm(F2) imposed as those weight-four vectors with one 1 in eachof four of these even subcodes.Both the Theorem and this Corollary were proved by Key and Sullivanin the cases r = 1 and r = 3; these cases correspond to the degenerate triplesystem and the one on three points, both of which are derived.16And the proof isn't through yielding information: it can be read as a con-struction vehicle for Steiner quadruple systems; as such it gives the followingCorollary 6.4 Given any 2m Steiner quadruple systems on r + 1 points,where m is a positive integer, there is a Steiner quadruple system on 2m(r+1)points containing each of the given systems as subsystems, one on each of 2mdisjoint subsets of the constructed system. Moreover, the Steiner quadruplesystem can be chosen so that its 2-rank is 2m(r + 1)�m� 1.Such a construction in the case m = 1 has been known for a long timeand was used by Lindner and Rosa [11] to construct 31,021 Steiner quadruplesystems on 16 points. It should be clear to the reader why so many systemsarose. In this case the construction is, as our discussion clearly shows, essen-tially Reiss's \doubling" construction, but that does not seem to have beenexplicitly acknowledged in the literature [12, Construction A�].Since the binary code of a Steiner quadruple system is an even code, themaximal 2-rank for a Steiner quadruple system on v points is v�1 and if it isv�1 its binary code is the full even-weight subcode of F v2 . The constructionwe have just given constructs all Steiner quadruple systems of de�cient 2-rank.17 It would have been easier to classify Steiner quadruple systems ofde�cient 2-rank �rst, but then we would have missed those Steiner triplesystems, if any, that are not derived. The carrier is constructed by takingthe �rst-order Reed-Muller code, repeating it r+1 times, and then dualizingas we shall soon see.16The degenerate quadruple system has two points and no blocks.17I.e. 2-rank strictly less than v � 1.



the electronic journal of combinatorics 2(1995), #R9 28Since the classi�cation presented above should reduce a question aboutSteiner triple systems to the same question about those of full 2-rank | aswe did above for Steiner's question (b) | Kevin Phelps's question of whetheror not every Steiner triple system on 2k � 1 points can be seen as the set ofweight-three vectors of a perfect binary code containing the zero vector (see[2]) ought to be so reduced. In this case all such Steiner systems of de�cient2-rank are built from Steiner systems on 2i � 1 points for some i < k and aninductive proof should work. I have not tried to �nd such a proof.7 Steiner quadruple systemsWe already discused Steiner quadruple systems in Section 6 but we here wantto indicate how easy it is to begin, ab initio, and classify those of de�cient 2-rank. As a byproduct we describe a construction that produces many Steinerquadruple systems of full 2-rank and hence many Steiner triple systems offull 2-rank which are derived.Given a Steiner quadruple system on n + 1 points 18 the binary codegenerated by the incidence vectors of the blocks is contained in the full even-weight subcode of F n+12 and full 2-rank means simply that the code of thequadruple system is the full even-weight subcode and hence of 2-rank n. Ifthe 2-rank is strictly less than n then either the minimumweight of the codeis 4 | in which case n + 1 = 2m and the Steiner quadruple system is thethe design of points and 2-ats of AGm(F2) in direct analogy to the triplesystem case | or else there must exist vectors of weight two in the code. Ifv is such a vector, then using the quadruples of the system whose supportcontains the support of v produces a parallel class of 2-subsets that are thesupports of the weight-two vectors one obtains. One sees easily from thisthat the weight-two vectors of the code form a resolvable 1-design. If theindex of the code generated by the weight-two vectors is n we are in thepresence of a Steiner quadruple system of full 2-rank. When the quadruplesystem is of de�cient 2-rank we apply Proposition 3.2 and we �nd that thecode generated by the weight-two vectors is simply the direct sum of codesisomorphic to the full even-weight subcode of F r+12 where r is the index and18I.e., a 3-(n+ 1; 4; 1) design, frequently described as an S(3; 4; n+ 1) in the literature.



the electronic journal of combinatorics 2(1995), #R9 29r + 1 divides n+ 1. Set s+ 1 = n + 1r + 1 :The quadruple system imposes a resolution on the 1-(n+1; 2; r) design givenby the weight-two vectors of the code. Many of the vectors of weight fourwith support the union of two weight-two vectors in the same parallel classof this imposed resolution are the support of a quadruple of the system. Allother quadruples of the system have their four 1s distributed among four ofthe s + 1 sets of cardinality r + 1 given by Proposition 3.2. This imposes aSteiner quadruple system on these s+1 sets and just as in the triple systemcase, it must be the classical system of points and planes of AGm(F2), withs+ 1 = 2m, or else there would be unaccounted for weight-two vectors. Onesees immediately that the role of the carrier is played by the dual of thecode obtained from the �rst-order Reed-Muller code R(1;m) by repeating itr + 1 times and this code becomes the binary code of the Steiner quadruplesystem. Its rank is n�m. Thus we have proved most of the followingTheorem 7.1 For any n � 1; 3 (mod 6) writing n+1 = u�2k and choosingany i with 1 � i < k there is a Steiner quadruple system of 2-rank n� k+ i.All Steiner quadruple systems of 2-rank n�k+i share the same code, namelythe dual of the code obtained by repeating the �rst order Reed-Muller code,R(1; k� i), u� 2i times. Every Steiner quadruple system of 2-rank n� k+ ican be constructed from this code and Steiner quadruple systems of smallerorder.Proof:We have only to describe the construction. In fact, we describe a moregeneral construction below which not only produces the quadruple systemsof the Theorem but also many of full 2-rank.2Remark: Computing the weight enumerator of the binary code of a Steinerquadruple system on n + 1 = (r + 1)2m points of 2-rank n � m poses nodi�culty. It is even easier than in the Steiner triple system case. We leavethe exercise to the reader.The following construction for Steiner quadruple systems will producesystems with full 2-rank at least when the ingredients have full 2-rank. Henceit will produce many derived triple systems of full 2-rank.



the electronic journal of combinatorics 2(1995), #R9 30Theorem 7.2 Let r and s be integers congruent to 1 or 3 modulo 6 andsuppose given a Steiner quadruple system on s + 1 points, s + 1 Steinerquadruple systems on r+1 points, and a resolution of the 1-((s+1)(r+1); 2; r)design given by the weight-two vectors of the direct sum of s+1 copies of thefull even-weight subcode of F r+12 . Then there is a Steiner quadruple systemon n+1 = (s+1)(r+1) points containing each of the given systems on r+1points on disjoint supports. If the given system on s + 1 points has 2-ranks � m, then the constructed system will have 2-rank at most n � m. The2-rank will be n�m whenever one of the quadruple systems on r + 1 pointshas full 2-rank.Proof: The proof, by now, will probably be quite clear to the reader but wesketch it nevertheless. One chooses the underlying (s + 1)(r + 1)-set to bes+1 disjoint (r+ 1)-sets and on each we impose one of the given quadruplesystems on r + 1 points. This introduces(s+ 1)(r + 1)r(r � 1)24quadruples. For each of the r parallel classes of the given resolution of the1-design, each choice of two of the (r + 1)-sets and each choice of a 2-subsetin each from the parallel class, we introduce the 4-subset that is the unionof the two 2-subsets. This introducesr s+ 12 !�r + 12 �2quadruples. For each of the quadruples from the given quadruple system ons+1 points we introduce (r+1)3 4-subsets each with a 1 in each of the four(r + 1)-sets given by the quadruple and no two meeting more than twice.This introduces (r + 1)3 (s+ 1)s(s� 1)244-subsets. It is a very simple matter to check that we have the desired Steinerquadruple system. The rank calculation is easy since it is transparent thatthe code of the constructed system is built from the direct sum of the evensubcodes and the overarching quadruple system on s+ 1 points.2Remark: We even allow s = 1 and r = 1 here, corresponding to the de-generate quadruple system. In fact when r = s = 1 we simply produce the



the electronic journal of combinatorics 2(1995), #R9 31unique Steiner quadruple system on four points. For r = 1 and s = 13, forexample, the quadruple systems on 28 points will have full 2-rank and thusproduce derived Steiner triple systems of full 2-rank.Corollary 7.3 There are Steiner quadruple systems on 2m points, and hencederived Steiner triple systems on 2m � 1 points, with full 2-rank for everym > 3.Proof: For m = 4 we cannot use the Theorem but there are precisely 57 suchtriple systems. From then on the Theorem produces the systems | takingr = 1, for example.2One can even impose conditions on the ingredient quadruple systems toforce a condition on the constructed system. As an illustration of the methodwe give the following construction of \resolvable" quadruple systems, i.e.quadruple systems for which the quadruples can themselves be organizedinto parallel classes. Here we must be in the even-order case: the quadruplesystem must be on a set of points whose cardinality is congruent to 4 or 8modulo 12.Corollary 7.4 If there are resolvable quadruple systems on r + 1 and s + 1points, then there is a resolvable quadruple system on (r + 1)(s + 1) points.Proof: Since in the construction we can clearly piece the resolutions of thesystems on r + 1 points together and those quadruples given by resolutionof the weight-two vectors themselves form several parallel classes, we needonly worry about the overarching quadruple system on s + 1 points whichwe, of course, assume is resolvable | just as we assume the systems chosenon r + 1 points are. We need to show that we can organize the choice of the4-subsets for each quadruple into parallel classes and then use the resolutionof the overarching system. We simply give an illustration for the case r = 1



the electronic journal of combinatorics 2(1995), #R9 32treated extensively above: 1 0 1 0 1 0 1 00 1 0 1 0 1 0 11 0 1 0 0 1 0 10 1 0 1 1 0 1 01 0 0 1 1 0 0 10 1 1 0 0 1 1 01 0 0 1 0 1 1 00 1 1 0 1 0 0 18 ConclusionsThe reader familiar with the work of Teirlinck and of Doyen, Hubaut andVandensavel will surely be asking about a \ternary" view of Steiner triplesystems and, to be sure, such a view exists and the above program is easilycarried out. We leave as an exercise for the reader the task of exploring thisternary world, making the appropriate de�nitions, and proving the analogousresults. We merely mention that one system is a mandarin in both worlds:the Steiner triple system on 3 points is both the projective line over F2 andthe a�ne line over F3. Note, however, that there are triple systems that arewelcome neither in the binary nor the ternary world. Such is the lot, forexample, of the two systems on 13 points.The classi�cation in the case of Steiner quadruple systems bears a su-per�cial resemblance to the ternary view of Steiner triple systems since themandarins in both cases are the a�ne geometries and instead of seeing a\point at in�nity" as we did in de�ning the trivializing subsystem one seesan array of systems spread, much like parallel classes, on the point set |just as in Corollary 6.4 | with a mandarin as overseer.A more serious question concerns possible generalization to Steiner sys-tems of the form S(t; t + 1; v) for t > 3. Here the reader will surely wantto consult Teirlinck's work and perhaps also Cameron's book [6], where thematter is discussed. It does not seem likely, however, that anything further
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