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Abstract

Our main result is an existence and uniqueness theorem for Steiner triple
systems which associates to every such system a binary code — called the
“carrier” — which depends only on the order of the system and its 2-rank.
When the Steiner triple system is of 2-rank less than the number of points of
the system, the carrier organizes all the information necessary to construct
directly all systems of the given order and 2-rank from Steiner triple systems
of a specified smaller order. The carriers are an easily understood, two-
parameter family of binary codes related to the Hamming codes.

We also discuss Steiner quadruple systems and prove an analogous exis-
tence and uniqueness theorem; in this case the binary code (corresponding
to the carrier in the triple system case) is the dual of the code obtained from
a first-order Reed-Muller code by repeating it a certain specified number of
times.

Some particularly intriguing possible enumerations and some general open
problems are discussed. We also present applications of this coding-theoretic
classification to the theory of triple and quadruple systems giving, for exam-
ple, a direct proof of the fact that all triple systems are derived provided those
of full 2-rank are and showing that whenever there are resolvable quadruple
systems on v and on v points there is a resolvable quadruple system on uv
points.

*The author wishes especially to thank PauL CaMioN and PascaLE CHARPIN. The
research atmosphere that they have created at Projet Codes, INRIA surely contributed to
this investigation, which took place during the early months of 1995 while the author was
a visitor.
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The methods used in both the classification and the applications make it
abundantly clear why the number of triple and quadruple systems grows in
such a staggering way and why a triple system that extends to a quadruple

system has, generally, many such extensions.!

1 Introduction

The work we report on here began as an effort to understand the surprising
facts uncovered by a comprehensive computer study of the 80 Steiner triple
systems of order 6 (on 15 points) undertaken by Tonchev and Weishaar [22].
Among the results we establish, perhaps the easiest to state and prove is the
following:

A Steiner triple system on n points has 2-rank n — 1 if and only if its
binary code is the direct sum of an even code and a full code F). Moreover
we have n = 2r + 1 with the support of the full code the support of the unique
maximal subsystem on r points — the support of the even code being the
corresponding complementary oval.

This result explains why only one binary code arose from the sixteen
Steiner triple systems of 2-rank 14 and order 6 and immediately gives the
code’s weight enumerator.

But the result cited above was a relatively minor consequence of this in-
vestigation since it quickly evolved into a full-fledged investigation of Steiner
triple systems of deficient 2-rank — that is, 2-rank less than the number of
points of the system. In fact the work can be taken as a binary view of the
whole range of Steiner triple systems: we show in principle how to construct
recursively all Steiner triple systems of deficient 2-rank using the degenerate
system on one point and those systems of full 2-rank as a starting point.
Thus the systems of full 2-rank are seen as the building blocks? since, from
the binary point of view, Steiner triple systems of full 2-rank must be viewed
as unintelligible and hence taken as given facts of life.

The mandarins in the binary world peopled by Steiner triple systems are
the systems given by the points and lines of a projective geometry over the

LAMS Primary Classification: 05B07; Secondary Classification: 94B25.
?This will undoubtedly strike some readers as going a bit far in deciding what the

building blocks should be and, indeed, the vast majority of Steiner triple systems have full
2-rank.
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field F5 and the binary codes involved are the Hamming codes. Here the
2-rank is as deficient as it can possibly be: the 2-rank of the design of points
and lines of PGy_;(F) is 28 — 1 — k, or better, n — k, where n = 2% — 1 is the
number of points of this classical system. Our basic existence and uniqueness
theorem for Steiner triple systems of deficient 2-rank is the following:

For any admissible® n > T, writing n +1 = u x 2% with u odd, and
choosing an v with 1 < ¢ < k, there is a Steiner triple system on n points
with 2-rank n — k 4+ 1. Moreover, all triple systems on n points with 2-rank
n — k 4 ¢ share the same binary code.

The results presented here allow one, in principle, to construct all the
Steiner triple systems with the given deficient 2-rank. We did not allow
¢ = k in the existence theorem above for those are the systems with full
2-rank — which we cannot in general construct. Such systems do, however,
exist for n > 7 and we construct many such systems via Theorem 7.2. We
have honored the classical systems by leaving them unmentioned for those n
of the form 2% — 1.

In particular, then, we show that the binary code of a Steiner triple
system is completely determined by its 2-rank; this explains why Tonchev
and Weishaar found only five codes (one for each dimension between 11 and
15) among the 80 Steiner triple systems on 15 points.*

Some may wish to see this effort as a “constructive” redoing of a program
begun by Luc Teirlinck and brought to what seemed then to be a definitive
end by Doyen, Hubaut and Vandensavel when they proved their marvelous
theorem describing the modular ranks of Steiner triple systems. We will not,
however, use their results here; the reader need only know the basic facts
about codes and designs® to understand the material to follow.

3That is, n = 3,7 (mod 12). Note that necessarily k > 2.

*The computer study done by Tonchev and Weishaar also looked at the binary codes
given by the column spaces of the incidence matrices; these so-called point codes are a
complete invariant for the 80 triple systems. Thus the 80 incidence matrices of the Steiner
triple systems of order 6 have the remarkable property that their binary row spaces produce
only five essentially distinct codes of block length 15 while their binary column spaces
produce 80 essentially distinct codes of block length 35. This phenomenon may very well
be characteristic of Steiner triple systems in general. For a brief discussion of the matter
see [2, Section 7).

SEasily gleaned from Chapters 1 and 2 of [3] or, indeed, from almost any book discussing
designs and codes.
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Others may wish to see it as an elaboration of an ancient “doubling”
construction frequently attributed to Reiss, who in the Spring of 1856 gave
a proof of the fact that Steiner triple systems exist for all n = 1,3 (mod 6).
Again, the reader need not be familiar with the constructions necessary to
give such a proof.

So, we will be concerned throughout with Steiner triple systems of 2-rank
that is not maximal. It is surely true that such systems are rare and that
most Steiner triple systems on n = 3,7 (mod 12) points have full 2-rank. In
order for the rank to drop not only must the point set be of cardinality
congruent to 3 modulo 4, as we have insisted in the existence and uniqueness
result above, but the system must necessarily have subsystems of maximal
size. But, the smaller the 2-rank the closer the system is to the classical
system of points and lines of a projective geometry over the two-element
field and it makes sense to say something about such systems.

We will associate to each such system a binary code which we will call the
carrier. We will determine all possible carriers and show how to construct
all systems of deficient 2-rank from the carriers and systems of smaller order.
The carriers turn out to be a two-parameter family of easily understood
binary codes with enormous automorphism groups, and these codes visibly
exhibit the structure of the binary projective space attached to each Steiner
triple system of deficient 2-rank. Moreover, the carrier organizes the data
necessary to construct the Steiner triple systems of which it is the carrier and
makes it clear why the number of such systems grows in such a staggering
way with n.

One should expect a classification such as the one just described to reduce
a question about Steiner triple systems to the same question about those of
full 2-rank. As an illustration of just that we give a direct proof of a result
(Theorem 6.1) closely related to a result of Mendelsohn® that immediately
gives the following:

If Steiner triple systems of full 2-rank are derived then all Steiner triple
systems are derived.”

To be fair this leaves a lot unproved, but it is not entirely out of the ques-
tion that one could show that those with full 2-rank are derived. Moreover,

®Mendelsohn’s result (see [13]) is couched in the language of sloops and squiens; it very
well may be equivalent to our result.
TA Steiner triple system is derived if it extends to a Steiner quadruple system.
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the results we describe in Section 6 also show how to construct all Steiner
quadruple systems of deficient 2-rank, an easier task, and Theorem 7.2 yields
many derived Steiner triple systems of full 2-rank.

The reader looking for the flavor of the subject may want to read only
Section 2 and Section 8. The main technical development comes in Sec-
tion 3. The construction of all triple systems of deficient 2-rank is treated
in Section 4 and Section 5 discusses some particularly easy cases of the con-
struction. Section 6 includes an application to the question of which triple
systems are derived and initiates a discussion of Steiner quadruple systems.
We complete that discussion in Section 7 by stating and proving our ex-
istence and uniqueness theorem for quadruple systems of deficient 2-rank,
Theorem 7.1, and giving an application to resolvable Steiner quadruple sys-
tems. Section 8 mentions the “ternary” view of Steiner triple systems and
makes some concluding remarks.

2 Steiner triple systems of deficient 2-rank

Suppose we are given a Steiner triple system on a set S of cardinality n whose
binary code D is a proper subspace of E)". This implies that n is congruent
to 3 modulo 4 since the order, ”2;3, of the system must be even. If r is the
number of weight-one vectors in D then, of course, r < n. But much more

is true:

Proposition 2.1 Let S be the support of the set of weight-one vectors of
the binary code D of a Steiner triple system on the set S. Assume that S’
is a proper subset of S. Then either S' is empty and |S| = 2% — 1, with the
Steiner system the classical one of points and lines of PGr_1(F), or S is
the support of a subsystem® and D is the direct sum of the full binary code
on S" and a code C' of minimum weight two whose support is the complement

of S"in S.

Proof: If 5" is empty, then D must have minimum weight 3; moreover, the
minimum-weight vectors must be precisely the incidence vectors of the given

8A subsystem of a Steiner triple system is a set of points S’ with the property that if
a triple has two points in S’ its third point is also in S’ — so that the point set together
with the triples contained in it forms a Steiner triple system; we regard a one-point subset
as a subsystem, called the degenerate Steiner triple system.
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Steiner triple system. It follows (see, for example, [4]) that we have the
classical system.

Assume S’ is non-empty. Then, clearly, the full binary code on 5" is a
subcode of D and given any two distinct points of S’ the triple containing
those points must have its third point in S’ for otherwise there would be a
weight-one vector with a 1 not in S’. For the same reason the projection of
D onto the complement of S" must have minimum weight 2 and, obviously,
D is the direct sum of that projection and the full binary code on S’. O

Clearly the code ' of the Proposition is uniquely determined by the
Steiner triple system; we shall call this code the carrier of the Steiner triple
system. Its block length will be |S| — |9’ and its dimension will deter-
mine the 2-rank of the triple system — which is, of course, the dimension
of D: dim(D) = dim(C) + |S’|. Similarly the subsystem on S’ is uniquely
determined by the Steiner triple system; we shall call this subsystem the
trivializing subsystem since that part of D supported by S’ is of no use in
determining the underlying triple system. This trivializing subsystem may
very well be a Steiner triple system with deficient 2-rank; for example those
16 of the 80 systems of order 6 whose 2-rank is 14 must have, as we shall
soon see, the Fano plane as their trivializing subsystem.

Proposition 2.2 Let D be the binary code of a Steiner triple system on a
set S of cardinality n = 2r + 1. Suppose the Steiner triple system has 2-rank
less than n. Then, if S” is the support of the set of weight-one vectors of D,
|S'| < r with equality if and only if the carrier of the triple system is the full,
even-weight code on its support. In the case of equality the 2-rank is n — 1
and D is the direct sum of F} and the full even-weight subcode of F;*'.

Proof: It is well-known, and in any case very easy to see, that a proper
subsystem can have at most ”2;1 = r points and that, for such a maximal
subsystem.® every triple not in the subsystem meets its point set in one point.
Thus, when |S’| = r, the carrier contains all the vectors of weight two in its
support and, since D is not the entire ambient space, must be the full even-

weight code on r + 1 points. Conversely, if the carrier is the full even-weight

We remind the reader that the complement of the support of a maximal subsystem
has the property that every triple meets it in exactly two points if it meets it at all. Since
we have a design of even order the complement is, therefore, called an oval. For a more
complete discussion of ovals in designs see either [1] or [5].
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code on its support, then no triple of the system is contained in the support
of the carrier and hence every triple of the system must meet the trivializing
subsystem; this implies that the trivializing subsystem is maximal.O

Since the 2-rank of a Steiner triple system on n points with carrier C' is
n minus the codimension of (' in its ambient space, in order to characterize
the binary codes of those Steiner triple systems on n points with 2-rank n—1
we must still show that |S’| < 251 implies that the carrier has codimension
at least two in its ambient space. But this is a consequence of the following
easy coding-theoretic characterization of the even-weight subcode of F/*'.

Lemma 2.3 Let E be a binary [r+ 1,r] code with minimum weight at least
2. Then E is the even-weight subcode of F 1.

Proof: '° Consider E+. 1t is of dimension one and if its non-zero vector were

not the all-one vector j there would be vectors of weight one in E. Hence
E = (F;3)* is the even-weight subcode of Fy*'.00

We have now characterized the binary codes of those Steiner triple sys-
tems on n points of 2-rank n — 1 and hence explained why Tonchev and
Weishaar found only one such code for n = 15:

Theorem 2.4 A Steiner triple system on n points has 2-rank n — 1 if and
only if its binary code is the direct sum of an even code and a full code F) .
Moreover, it follows that n = 2r + 1, that the support of the full code is the
unique maximal subsystem of the given triple system, and that the even code
is the code of all even-weight vectors supported on the corresponding oval of
the system.

We need only remark that the uniqueness of the maximal subsystem is a
consequence of known results (see [9, 21]) but easily follows without recourse
to those results. In fact, we have the following, more general result:

Proposition 2.5 Let D be the binary code of a Steiner triple system of de-
ficient 2-rank and suppose there is a subsystem T such that the projection of

10The proof given here of Lemma 2.3 is due to John Dillon, who graciously read a
very early version of the manuscript. It carries over without change to an arbitrary field
and shows, in that case, that the code is monomially equivalent to the dual of the code
generated by the all-one vector.
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D onto the complement of the point set of T has minimum weight at least 2.
Then the trivializing subsystem is contained in the point set of T. In partic-
ular, the trivializing subsystem is contained in every maximal subsystem.

Proof: The proof is quite obvious since the projection must, clearly, be in
the carrier and for a maximal subsystem the projection must always be the
full even-weight subcode on the supporting oval.O

Actually, the trivializing subsystem is the intersection of all the maximal
subsystems but we will not need that fact in the development; it will become
apparent as we progress.

Writing the weight enumerator of a code of block length n as 3%, A; X,
where A; is the number of vectors of weight ¢ in the code, we have immedi-
ately:

Corollary 2.6 The weight enumerator of the binary code of a Steiner triple
system on n = 2r + 1 points and 2-rank n — 1 is

(1+X) Y (H 1)X” = SO X) (=X (X))

>0 21

3 The carrier

We have characterized the carrier in the codimension 1 case: it is the full
even-weight code on its support. We wish now to investigate the carrier in
the general case. We first of all determine the weight-two vectors in the
carrier.

Proposition 3.1 Let C' be the carrier of a Steiner triple system on n points
whose trivializing subsystem is a proper subsystem on r points. Then n—1r =
T"'; and the supports of the weight-two vectors
of C form a resolvable'* 1-(21,2,r) design. In particular C has rl vectors of

weight 2.

2l for some positive integer [ >

1That is, a resolution with r parallel classes of the given set of 2-subsets of the 2{-set.
Of course, if 2r4+1 = n, we are in the codimension 1 case and (' is the even-weight subcode
of 14;2]; the set of all 2-subsets of a 2/-set is always resolvable — in fact in many ways for

>3
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Proof: Clearly the weight-two vectors of ' coming from the triples of the
system meeting the trivializing subsystem in exactly one point yield a resolv-
able 1-design with parameters 1-(2/,2,7). We need only show that there are
no further weight-two vectors in . So suppose v were another weight-two
vector in (. Then there would be a triple of the system whose support cov-
ered the support of v and was disjoint from the trivializing subsystem. Thus
the sum of v and the incidence vector of the triple would yield a weight-one
vector in (', a contradiction.

Thus, knowing only the carrier allows one to know the order of the triple
system from which it came: since r is intrinsic to the carrier, we know from
the carrier alone that the system must have 2/ + r points and be of order
[+ 753. For any binary code ' — of even block length 2/ and of minimum
weight 2 — if the weight-two vectors yield a resolvable 1-(2[,2,r) design, we
shall call  the index of C'. Thus a binary code of index r and block length
21 will have precisely rl vectors of weight two and the index r of such a code
will clearly satisfy 1 < r < 2/ — 1. Note that when r = 2] — 1 we are in the
codimension 1 case already treated. For such a C' to be the carrier of the

binary code of a Steiner triple system we must, in addition, have r congruent

to 1 or 3 modulo 6. But the condition on the weight-two vectors of C is,
alone, very strong as the next proposition will show.

Proposition 3.2 Let C be a binary code of minimum-weight 2 and block
length v. Assume that the weight-two vectors of C' form a 1-(v,2,r) design.
Then, r + 1 divides v and the weight-two vectors of C generate a subcode
isomorphic to the direct sum of =5 copies of the even-weight subcode of
FE[ . If the 1-design is resolvable, then r must be odd and any resolution of
the 1-(v,2,r) design is built from — independently chosen resolutions of the
design of weight-two vectors of Fy 1.

Proof: Since the weight-two vectors of C' form a 1-(v,2,r) design, given any
coordinate e of C' there are precisely r weight-two vectors of €' with a 1 at
this coordinate. These r vectors generate an r-dimensional even subcode FE
of ' whose support is the r 4+ 1 coordinates supporting the given r vectors.
Thus E is isomorphic to the full even-weight subcode of Fy*!. It is easy to see
that this process partitions the set of coordinates of the code € into subsets
of cardinality r + 1 and gives all but the last assertion of the Proposition.
So suppose r were even. Let P be a parallel class of some resolution of the
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design. Then P would have at least one of its 2-subsets supporting a vector
with a 1 in the support of £ and a 1 outside the support of £. But then we
could produce a weight-two vector with a 1 at e and a 1 outside the support
of F, an impossibility. It follows not only that r is odd, but also that any
resolution of the design yields a resolution of the weight-two vectors of F.
Clearly, any independently chosen resolutions of the supports of the weight-
two vectors of the various even subcodes can be stitched together to give a
resolution of the 1-design.O

In particular, we have determined the binary code generated by the
weight-two vectors of a carrier of index r. Moreover, all resolutions of the
design given by the weight-two vectors of the carrier are obtained by piec-
ing together, however one wishes, % arbitrarily chosen resolutions of the
2-subsets of an (r 4 1)-set. As the reader might imagine the number of such
choices grows in a staggering way. Even when 2/ = r + 1 and we are in the
codimension 1 case already treated, the number of ways to choose just one

resolution of the design of 2-subsets of a 2[-set grows very quickly with [ (see

8, 14]).

Remark: If the trivializing subsystem of a Steiner triple system on n points
has r points, then, by the above Proposition, r 4+ 1 divides n 4+ 1. In fact, we
will show that the quotient is a power of 2, a crucial result.

Suppose C', of block length 2/ and index r, is the carrier of a Steiner
triple system. Then the trivializing subsystem and the weight-two vectors
of C' account for rl + T(TG_I) = rT""%l_l triples of the triple system. All other
triples, in number

é(Zl —r—1),

must have their incidence vectors in the carrier’s support and hence yield
weight-three vectors of the carrier (unless, of course, n = 2r 4+ 1 and hence
2l = r + 1 with C the full even-weight subcode of Fzzl). Moreover, any
weight-two vector in the carrier’s ambient space which is not in the carrier
has its support contained in the support of a unique triple disjoint from the
trivializing subsystem. Such a triple yields a weight-three vector of C' and,
in fact, other weight-three vectors in €' which are not incidence vectors of
the Steiner triple system at hand since any weight-two vector in C' whose
support meets the support of the triple non-trivially (in, therefore, precisely
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one point) gives another weight-three vector in C' whose support is not a
triple of the Steiner triple system. We have thus proved the following

Proposition 3.3 Let C' be the carrier of a Steiner triple system on n points
whose trivializing subsystem is a proper subsystem with r points. Then setting
n —r = 2l there are, among the weight-three vectors of C,

[

vectors with the property that no two of these vectors have supports meeting
in more than one point.

We remark that the proposition is operative only when 2/ > r 4 1.

Examples:

1) Observe that for [ = 1 (and hence r = 1) the [2,1] binary code C
of minimum weight 2 is unique and looks like a carrier, but is not since
the unique Steiner triple system on 3 points has 2-rank one and not two.
Nevertheless we will denote this simple code by C4 ; below.

2) A slightly more interesting example occurs when | = 2. Here there
is a unique resolution of the set of 2-subsets of a 4-set and the binary even-
weight subcode C' of E;' is a putative carrier of index 3. One can indeed (as
we shall see below in a more general context, Theorem 4.1) construct the
unique Steiner triple system on 7 points from the data but C' will not be the
carrier. This code is denoted by C31 below.

Our final example of this section is more pungent; although it too is not a
carrier, it will be a maquette for the carriers we will eventually characterize.

3) Consider the binary [6,4] code C' = Cy » with generator matrix

_ o O =
— o = O
_—_ 0 O

0
0
1
0

o O O =
o O = O

corresponding to the case [ = 3 and r = 1. Its weight enumerator is, visibly,
X+ 3X? +8X% +3X* + X°

and its weight-two vectors yield a resolvable 1-(6,2,1) design; thus C has
index 1. But, again, it is not the carrier of a Steiner triple system since
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that system would have to be the Fano plane, which has 2-rank four and not
five. One can construct the Fano plane from the code € simply by choosing
any four (4 = £(2/ —r — 1)) of the eight weight-three vectors satisfying the
criterion of the Proposition. That choice is essentially unique, as the reader
can easily verify. For example, a normalized choice is the following:

101010
100101
01 1001
010110

and the gross number of choices is two.

The automorphism group of C'is clearly the semi-direct product of Sym(3)
acting in the obvious way on the elementary abelian group of order 8 (viewed
as the direct product of three copies of the cyclic group of order 2). As we
shall later see, we should think of the cyclic group as Sym(2) and the Sym(3)
here should be thought of as the group of the projective line over F;, that
is as PG Ly(F3). For [ = 3 no other value for the index is possible since any
resolvable 1-(6,2, ) design with r > 1 generates the full even-weight subcode
of Fy and 5 is not congruent to 1 or 3 modulo 6.)

We now use Proposition 3.2 and the condition of Proposition 3.3 to com-
pletely describe all possible carriers.

Theorem 3.4 Suppose C' is the carrier of a Steiner triple system. Then
C s a code of block length 21, minimum weight 2, and index r for some

r =1,3 (mod 6). Moreover,

21 "
=2"—1
r+1
for some positive integer m, C is uniquely determined by r and m, and a
Steiner system with C' as its carrier must have Z% = 2" and its 2-rank must
be
n-+1

—m=n-—1 :
wem = n oy
Proof: We already know that r + 1 divides 2/; if 2] = r + 1 we are in the
codimension 1 case and C' is the full even-weight subcode of F*'. Herem = 1.
Assume, therefore, that r4+1 < 2[. Setting % = s we have that the subcode
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of C' generated by the weight-two vectors is isomorphic to the direct sum of s
copies of the even-weight subcode of Fy*! and that the s supports partition
the coordinates of C'. Let the set of these s supports be S. Since r + 1 < 2
we must have weight-three vectors in . Suppose v is such a weight-three
vector. Then it cannot have two 1s in any given S € § and hence defines a
triple of the set S. If {R, S, T} C § is such a triple, then every vector with
one 1 in each of R, S and T is a weight-three vector in €. In particular,
each such triple of § yields (r 4+ 1)* weight-three vectors of C'. If {R, S, T}
and {R,S,T'} are two such triples then T" = T" for, otherwise, we could
produce a weight-two vector in €' with one 1 in T and another in 7", an
impossibility. It follows from Proposition 3.3 that we have defined a Steiner
triple system on §. We next show that this triple system must be a classical
triple system coming from the design of points and lines of some PG,,_1 (F3)
and thus produce the m of the Theorem. Suppose the triple system just
defined on § is not such a classical system. Then some linear combination
of the triples produces a vector of weight one. Ordering each of the subsets
in § and mimicking that linear combination with weight-three vectors of C'
adjusted, say, flushright, we would produce a vector of weight one in ¢ —
which yields the desired contradiction.

Now, since such a classical triple system is uniquely determined by m
and since (' is generated by its weight-two and weight-three vectors, we
see that r and m uniquely determine C'. Determining the dimension of '
and hence the 2-rank of any triple system with (' as carrier is easy: the
classical triple system has 2-rank 27" — 1 — m and since there are 27 — 1 even
subcodes, each of dimension r, to take into account the dimension of C' is
r(2"™ — 1)+ 2" — 1 —m and the 2-rank of the triple system with C as carrier
is dim(C)+r = (r+1)2™ — (m + 1) and, since 2] +r = n, we are done.l]

The carrier determined by r and m will henceforth be denoted by

CT,m
and its properties described explicitly in the Theorem below.

Corollary 3.5 If a Steiner triple system has a trivializing subsystem on r
points, then the Steiner system is on n = (r 4+ 1)2™ — 1 points for some
positive integer m.

The proof just given yields more than the Theorem. It allows us to display
every possible carrier and determine its automorphism group:



THE ELECTRONIC JOURNAL OF COMBINATORICS 2(1995), #R9 14

Theorem 3.6 If C is a carrier of a Steiner triple system, then Ct is iso-
morphic to the code one obtains from the dual of the Hamming code on 27 —1
points by repeating it v + 1 times. We denote this carrier C by C, .. It is
of block length (r 4+ 1)s where r = 1,3 (mod 6) and s = (27 — 1) and enjoys
the following properties:

o The (r—+1)s coordinates of C, ., are split into s sets each of cardinality
r+1

o On the s sets is imposed a classical Steiner triple system

o A wvector of weight 2 is in C, ,, if and only if its support is contained
in one of the s sets

o A vector of weight 3 is in C,,, if and only if its support is such that
no two elements are in one of the s sets and the three sets that do have
a non-empty intersection with its support form a triple of the imposed
classical Steiner triple system

o C,,, is generated by its vectors of weight 2 and 3.

Corollary 3.7 The automorphism group of C, ., ts the semi-direct product
of PG L, (Fy) and the direct product of 2™ — 1 copies of Sym(r + 1) where

the projective group acts on the direct product in the obvious way.

Corollary 3.8 A carrier C, ,, has

r—+1
2

r(——)2" -1

vectors of weight 2 and

;2" -1 1)
3

(r+1)

vectors of weight 3.*

121t is, of course, easy to give the weight enumerator of each C., ,, and we will soon do
so — thus determining the weight enumerator of all binary codes of Steiner triple systems
of deficient 2-rank. We have given the number of vectors of weight 2 and 3 in the Corollary
simply to emphasize those aspects of the carrier that are important in the construction of
all Steiner triple systems of deficient 2-rank.
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We have taken the liberty in the statement of the Theorem to include
the binary code {0} as an honorary Hamming code of block length one.'? Tt
corresponds to the case m = 1 where we have, of course, simply the even-
weight subcode of Fy*'. Letting g be the all-one vector of length r + 1,
observe that the dual of the code F; 3, which is the dual of the Hamming
code of block length one repeated r 4+ 1 times, is precisely this even code. A
resolution of the 1-(r 4+ 1,2,r) design given by its weight-two vectors can, in
general, be had in many ways: for r = 1 or r = 3 just one, but for r = 7 six
and in 396 ways for r =9 — and then the combinatorial explosion arrives
[8].

A resolution of the 1-design given by C, ,, when m > 1 can be formed by
stitching together resolutions, chosen independently, for each of the 2™ — 1
even subcodes. To choose a collection of weight-three vectors of C, ,, sat-
isfying the hypothesis of Proposition 3.3 one must and can choose (r + 1)?
vectors, no two with two common 1s, for each of the triples, again indepen-
dently, of the imposed triple system and that is very easy. We describe all
possible choices next:

We think of the choice as an (r 4+ 1) x 3 array of square matrices of size
r + 1. The pigeon-hole principle forces one to have r + 1 1s in each column
of the array. Thus we can assume that in the first of the three columns of
matrices we have arranged matters so that the first matrix has 1s in its first
column with 0Os elsewhere, the second has 1s in its second column with 0s
elsewhere, etc. Then we may assume that the second column of matrices
is just the identity matrix repeated r + 1 times. Finally, the third column
consists of r 4+ 1 permutation matrices, Py, P, ..., P,y where Pin_l has no
fixed points for distinct ¢ and j. For example, we could take P, = Zi™1,
1 < < r+1, where 7 is the cyclic shift. This choice was that given in
the Example displaying the code C; 3, where there is only one choice up to
equivalence.

From the description of C, ,, in terms of the dual to the Hamming code
of block length s = 2™ — 1 one uses the MacWilliams transform to compute

13In fact, it deserves the name: it is a single-error correcting code of block length one
with every vector in the ambient space at distance 1 or less from a unique vector in the
code.
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easily its weight enumerator:

1
s+ 1

((1 _I_X)S(T+1) + 8(1 . XQ)(T+1)2(5—1)(1 _ X)T+1) ‘

Corollary 3.9 [If D is the binary code of a Steiner triple system on n points
of 2-rank n —m with a trivializing subsystem on r points, its weight enu-
merator is

1 n—r m n—Zr—1 7 7
2—m((1—|—X) =11 = X T (1= X)) (1 + X
Proof: We have that n = (r +1)2” — 1 with s = 2™ — 1 and that the binary
code of the triple system is the direct sum of C,,, and Fy.0

4 Constructing systems from a carrier

We begin by pointing out how to construct a Steiner triple system from a
putative carrier satifying the criterion of Proposition 3.3. It follows that each
of the codes C, ,, will define triple systems (which may possibly have larger
carriers) and that the number of systems C, ,,, constructs grows very fast as
r and m do.

Theorem 4.1 Suppose C is a binary code of block length 21, minimum
weight 2 and index r where r = 1,3 (mod 6). Suppose also that C' contains
a collection ofé(Zl—r — 1) weight-three vectors with the property that no two
have supports intersecting in more than one point. Then, given the following
data,

o A Steiner triple system on r points

o A resolution of the supports of the weight-two vectors of C into r par-
allel classes

o A bijection of the parallel classes of the above given resolution with the
points of the above given triple system

o A collection, possibly empty, of é(Zl —r — 1) weight-three vectors of C
with the property that no two have supports intersecting in more than
one point,
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there s a Steiner triple system on 2l + r points containing the given system
on r points as a subsystem. Moreover, if the Steiner triple system given in
the data is of 2-rank r, then the carrier of the constructed system is C, ,,
where 21 = (r + 1)(2™ — 1), and the trivializing subsystem is that Steiner
triple system; if the system on r points is of deficient 2-rank, then the carrier
may be larger and that will depend on the choice of the other data.

Proof: Let S’ be the set of cardinality r on which the Steiner triple system
of the data is given and T the set of coordinate places of the code C'. We
assume, of course, that S" and T are disjoint; we construct the sought for
triple system on the set S = S’ UT. Here are the triples on S:

e The given triples on 5’

e For each # € S’ corresponding, under the given bijection, to the parallel
class P of the given resolution the triples of the form {x} U P where
pPepP

o The triples from the supports of the selected weight-three vectors of C'

It is easy to see that no two of the 3-subsets we have described meet in more
than one point. Moreover, the number of these 3-subsets of S is
rir—1) 1 2l +rm)204+r—1)

[+ —— 4+ —20—r—1)=
rl + 6 -|-3( r ) 5

and we have a Steiner triple system on S. Let D be the binary code of
the constructed triple system. If the given triple system on S’ has 2-rank
r it is clear that it must be the trivializing subsystem since the projection
of D onto T is contained in C' and generated by the weight-two and chosen
weight-three vectors of (. If the given triple system on S” has 2-rank less
than r it may or may not be the trivializing subsystem but, because the
projection is contained in C, it will contain the trivializing subsystem by
Proposition 2.5.00

Remarks:

1) If the code C' is the full even-weight subcode of F' of maximal index
2l — 1 with [ not divisible by 3, then the construction proceeds without
recourse to any weight-three vectors of C' (and, in fact, there aren’t any).
All one needs is a resolution of the set of 2-subsets of a 2/-set and a Steiner
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triple system on 2/ — 1 points. There are always resolutions and always triple
systems (because of our restriction on /). This case of the construction goes
back at least as far as Reiss [17] and is very well-known; all Steiner triple
systems with a maximal subsystem are clearly so constructible, the carrier,
of course, is merely C,; and the maximal subsytem is on r points.

2) It is instructive to take a minimalist approach to this construction and
decide what transpires when one begins with the degenerate triple system
on one point and does not even assume that the carriers or Hamming codes
are known, but “discovers” both in the construction process. The degener-
ate triple system, yields the binary code {0} C F; which is the honorary
Hamming code of block length 1 which yields the carriers C, ;.

At this point we have but one triple system at our disposable and can
only use C 1; turning the crank yields the unique triple system on 3 points,
giving the Hamming code of block length 3 = 2? — 1 and hence the carriers
C, .

Now we have two triple systems at our disposal and we can use the one
on 3 points together with the carrier C'3; which yields only the Fano plane,
the unique triple system on 7 points; the Fano plane also arises from the
degenerate system and C' ;. Using the system on three points together with
C';5 5 yields all the systems on 15 points of 2-ranks 11, 12 and 13. We therefore
get the carriers C, 5 and C, 4.

The next turn of the crank yields, among other systems, the 23 triple
systems on 15 points with 2-rank less than 15, more carriers and so on. All
possible 2-ranks appear because one can fiddle with the data to make sure
that the triple system one uses becomes the trivializing subsystem.'* The
reader may want to show that, restricting the triple systems to only those
constructed at a given stage, only triple systems on n = 28 — 1 points can
be constructed and all will have deficient 2-rank between n — k and n — 1 .
It also follows from Theorem 6.1 that only derived triple systems will arise.
Although all 23 triple systems on 15 points with deficient 2-rank will appear,
that will cease to be true for the systems on 31 points since we have restricted
ourselves only to triple system the construction process produces. Thus we
will miss those on 31 points coming from the 57 systems on 15 points with

Y4This sort of fiddling has been used by Key and Sullivan [10] and by Phelps [16, Page
107] to alter one system to get another — but not in the systematic context we are
describing.
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2-rank 15.
3) A slightly less minimalist approach might admit, say, the classical
triple systems coming from affine geometries over F'3 — all of which have

full 2-rank — besides those constructed during the process. One would then
get the Steiner triple systems on 19 points of 2-rank 18, among others. Once
again, Theorem 6.1 shows that only derived Steiner triple systems will arise.

4) One could even envision admitting all Steiner triple systems of full
2-rank that are derived (thus, for example, admitting the two on 13 points,
the 57 on 15 points not produced by the minimalist approach, and those
produced by Theorem 7.2). Once again only derived systems result and, for
example, one obtains the Steiner triple systems on 27 points of 2-rank 26 and
all the triple systems on 31 points of deficient 2-rank.

5) Using the carrier C' = Cg; there is only one choice for the Steiner
triple system: the affine plane of order 3 of full 2-rank. In this case one
always gets C as the carrier and the affine plane of order 3 as the trivializing
subsytem. Here there are 396 distinct resolutions (up to equivalence under
Sym(10)) and simply using the group of the affine plane cuts the possible
number of Steiner triple systems on 19 points with 2-rank 18 to at most
332,640. Moreover, the data allow one to compute the exact number and
this has been done by Seah and Stinson [20]: there are 284,457. In this case
of Steiner triple systems of order 8 (on 19 points) the 2-rank is either 18
or 19 (from Theorem 3.4) and Brendan McKay estimates that the number
of Steiner triple systems is 11 or 12 billion. Thus, the vast majority have
full 2-rank. The combinatorial explosion of the number of resolutions of a
2l-set comes at | = 6. The precise number has been computed by Dinitz,
Garnick and McKay (see [8]); there are 526,915,620 up to equivalence under
Sym(12). It seems unlikely that anything but asymptotic results will be
available beyond 19 for the codimension 1 case.

6) Using the carrier Cy 5 of block length 30 with, again, the affine plane
of order 3 being the only choice for the trivializing subsystem, we must
choose on each of the three 10-sets a resolution of the set of 2-subsets. There
will be a choice of 396 possible resolutions for each of the set of 2-subsets
of the three 10-sets — and therefore a gross number of choices of (396)°.
The splicing will introduce a factor of (9!)* with the bijection boosting that
factor to (9!). There is still the choice of the weight-three vectors which will
introduce a another large factor, namely the number of ways to choose nine
(since we may assume the first is the identity permutation) fixed-point free
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permutations from Sym(10) such that the product of any one with the inverse
of any other is again fixed-point free. But, since all the automorphism data
is available, the calculation might conceivably be within reach and certainly
estimates, such as those given by Ferch and Stinson in [19], could be made.
If so, the number of Steiner triple systems on 39 points of 2-rank 37 would be
determined or estimated — that is Steiner triple systems on 39 points with
a trivializing subsystem on 9 points.

7) Observe that not only can one estimate the number of systems one
gets by the construction (knowing, of course, that every triple system with
the given 2-rank will be constructed) but, in principle, one can determine
the automorphism group of the constructed system from the automorphism
group of the trivializing subsystem and the subgroup of the known automor-
phism group of the carrier leaving the data invariant. Although it is known
that most Steiner triple systems have a trivial automorphism group, that
doesn’t prohibit there being automorphisms here since we are not able to
construct systems of full 2-rank — which dominate at every stage.

8) It is possible to generalize this construction somewhat so as to be able
to produce some Steiner triple systems of full 2-rank. To do so one partially
disregards the coding theory and imposes the triples of any triple system
on the various (r 4+ 1)-sets. The matter is more easily explained in terms of
Steiner quadruple systems and we do that in Section 7.

We summarize what we have proved in an existence and uniqueness the-
orem which captures, by Theorem 4.1 and Corollary 3.5, all Steiner triple
systems of deficient 2-rank. In particular, for n > 7 and m > 0 a Steiner
triple system on n points of 2-rank n — m has a binary code isomorphic to

C,m®F
and, of course, those of full 2-rank have simply F," as their binary code.

Theorem 4.2 Let n > 7 be congruent to 3 or 7 modulo 12 and set n +1 =
u X 28 with w odd. Then, for any choice of i with 1 < i < k there is a Steiner
triple system on n points of 2-rank n — k + 1. Any such Steiner triple system
has a binary code isomorphic to

, u2t—1
Coic14—i OF,

and all such Steiner triple systems can be constructed from C,qi_q 5—; and
Steiner triple systems on u2' — 1 points.
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Remarks:

1) When v = 1 one also has, of course, the Hamming code of block length
2% — 1 and 2-rank n — k, which is the binary code of the classical Steiner
triple system of points and lines of PGy_1(F3). We have already seen how to
construct, starting with merely the degenerate Steiner triple system, all the
Hamming codes and examples of the codes of the Theorem when « = 1. This
bootstrap exercise is reminiscent of the construction of the integers from the
emptly set.

2) Observe that when we add an overall parity check to the code C, ., 8 Fy
we get a certain smoothing and, in particular, we will have 2™ copies of the
even-weight subcode of Fy ™' underlying this extended code. As we will see
when we discuss Steiner quadruple systems we will have an overarching affine
geometry over F; involved and the first-order Reed-Muller code will take the
place of the dual of the Hamming code.

5 Carriers of index one and three

When the carrier is either C4 ,, or Cj,, there is only one choice available
for each of the first three data items described in Theorem 4.1: Clearly, the
choice of Steiner triple system is the degenerate triple system in one case and
the 3-point system in the other. For C4 ,, it is obvious that there is but one
resolution and one bijection. But, that is also true for C'5 ,, since the only res-
olution of the set of 2-subsets of {1,2,3,4} is {{12,34},{13,24}, {14,23}} on
which Sym(4) acts triply-transitively. Hence, the 2™ —1 symmetric groups on
r+1 = 4 elements can be used to “straighten” all the seams one has in piecing
together the unique resolutions of the 4-sets and Sym(3), the automorphism
group of the Steiner triple system on 3 points, can be used to “straighten”
the bijection with the three points of the triple system. Thus the Steiner
triple system one gets in these two cases rests entirely with the choice of the
weight-three vectors one chooses. In each of these cases the triple system
produced will be on 2! — 1 points and one can certainly choose triples so
as to produce the Hamming code; in fact, the Hamming code will clearly be
contained in any code one produces via Theorem 4.1. The only question is
whether or not, by properly choosing the weight-three vectors, we can get
others. The binary codes of the Steiner triple systems obtained will either be
the Hamming code H of block length 27! — 1, the code H & Fye where e is
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a weight-one vector,or H+ Fye+ Ff+F,g = HH F,eG F, f where e, f and
g are three weight-one vectors whose supports form a weight-three vector of
the Hamming code. In fact, this has already been thoroughly investigated by
Key and Sullivan [10] and, indeed, the data can be so chosen. We formalize
the discussion above in the following two propositions.

Proposition 5.1 If a Steiner triple system has a one-point trivializing sub-
system, then it is on 2™t — 1 points for some m > 2 and its binary code is
obtained from the corresponding Hamming code by simply adjoining a vector
of weight one.

Proposition 5.2 If a Steiner triple system has a three-point trivializing sub-
system then it is on 2™t — 1 points for some m > 2 and its binary code
is obtained from the corresponding Hamming code by simply adjoining two
weight-one vectors.

It should not be a difficult matter to determine all the Steiner triple
systems that arise in these two cases; we have not tried to do so. A more
interesting case arises when one takes the Fano plane as the trivializing sub-
system; here one employs the carrier C';,,, and there will be a choice available
both for the resolution of the set of 2-subsets of the 8-set, for the seams and
for the bijection. A computer study seems appropriate; all the Steiner triple
systems on 31 points of 2-rank 27, 28 and 29 could, perhaps, be enumerated.

Clearly one expects the number of triple systems to increase markedly
with ¢ as this parameter increases from 1 to £ — 1 in Theorem 4.2. We have
here a nice example of how lowering the rank constrains the systems being
discussed. Even for triple systems on 19 points one has billions of systems
of 2-rank 19 but only hundreds of thousands with 2-rank 18. (The Tonchev-
Weishaar study recorded one system of rank 12, five of rank 13, and sixteen

of rank 14.)

6 Applications

In November of 1852 when Steiner originally asked for those n for which there
was a Steiner triple system and for the number of such systems for each such
n, he also asked ' whether or not such systems extended to Steiner quadruple

15Question (b) of the infinite list of questions he posed: [18].
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systems, that is he asked, for any given Steiner triple system, whether or not
it was possible to introduce a collection of 4-subsets of the underlying set
with the property that no one of these 4-subsets contained a triple but every
3-subset not a triple was in a unique member of the introduced 4-subsets.

Now we would express Steiner’s question as follows: “Does every Steiner
triple system on n points extend to a Steiner quadruple system on n + 1
points?” or “Is every Steiner triple system derived?” since one gets such a
system from a Steiner quadruple system by suppressing a point and using
only the quadruples through that point. All classical systems are derived
and, in general, in many ways so; in particular, the unique systems on 3, 7
and 9 points are derived. Both triple systems on 13 points are derived as are
all 80 triple systems on 15 points; these results were computer generated. It
is widely believed that all Steiner triple systems are derived and an enormous
effort has gone into proving this result; for a survey of what is known about
derived systems see [16].

We make a contribution to the subject by reducing the question to those
Steiner triple systems with full 2-rank. But, more importantly, the proof
is very robust and sheds a lot of light on the question; the proof explicitly
displays the quadruple systems that are the extension and thus also clearly
shows why an enormous number of extensions arise. Here is what we prove:

Theorem 6.1 Any Steiner triple system whose trivializing subsystem is de-
rived is itself derived.

Proof: We assume the carrier of the system is C, ,,, and view the point set of
the system as s = 2" —1 disjoint (r+1)-sets and a disjoint r set in the obvious
way. We must define 4-subsets covering each triangle (i.e. a 3-subset which
is not itself a triple of the system) exactly once with none of the introduced
4-subsets containing a triple. On the r-set we use those 4-subsets that define
one of the trivializing subsystem’s extensions since the r-subset is the support
of the trivializing subsystem — which we are assuming is derived. Similarly,
we use (independently as always in this work) Steiner quadruple systems on
r + 1 points on each of the (r 4 1)-sets; these quadruple systems need have
no relation to the trivializing subsystem. These choices are rather obvious
ones; the first introduces
1

ﬂr(r — 1)(r —3)
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4-subsets and the second

ﬂ(r + L)r(r —1).

We next itemize some not quite so obvious choices:

e For each point p of the r-set, each choice of two, R and S say, of the
(r + 1)-sets, and each choice of Pr C R and Ps C S say, where Pp and
Pg are in the parallel class defined by p, we use the 4-subset Pr U Ps.

This introduces
s\, r+1,
(5)

e For each triple ¢ of the trivializing subsystem on the r-set, each p € ¢,
and each of the 2-subsets, P say, in the parallel class defined by p we
use the 4-subset P U, where t’ is the triple ¢t with p removed. This
introduces

4-subsets.

r+1
5

1
57“(7“ — 1)s(
4-subsets.

e For each triple {R, S, T} of the classical system on the (r + 1)-sets,
each point p of the trivializing subsystem, and every triple {x,y, 2}
of the constructed triple system, with z € R,y € S and z € T, we
use the three 4-subsets {z',y,z,p}, {x, 9, z,p} and {z,y, ', p} where
{z,2'},{y,y'} and {z,2'} are in the parallel class defined by p. This
introduces

1
55(5 — r(r + 1)2
4-subsets.

And finally we employ the classical system on the (r + 1)-sets to introduce
4-subsets with the property that they have one point in each of four (r + 1)-
sets. We pick, of course, four (r + 1)-sets corresponding to some extension of
the classical system. Any extension of the classical system will do, but, as we
shall see later, one gets a “nicer” quadruple system if one chooses the natural

extension arising from the points and 2-flats of AG,,(Fy). If {R,S,T,U} is
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such a 4-subset we will need to pick (r+ 1)? 4-subsets of the form {z,y, z, w}
with € R,y € S,z € T and w € U with no two meeting in more than
two points to insure that each of the 4 x (r + 1)3 of those 3-subsets of the
underlying point set that are contained in RU S UT UU — but with no two
points in an individual one of the (r 4 1)-sets — is covered exactly once. One
again can normalize the choice much as was done in picking the triples in
the construction given in Section 4. So, for example, the first column would
be (r + 1)* 1s followed by 0s, the second (r 4 1)? 0s followed by (r + 1)? 1s
followed by 0s, etc. through the (r + 1)-st column. Then, for the next three
columns against the 1s in column one we would put the same array as we
did for the triples; for the 1s in column two we can repeat with, say, a cyclic
shift on the last r + 1 columns consisting of the fixed-point free permutation
matrices. Here is an illustration for the case we have already treated with
r=1:

101 01010
1 01 00101
10011001
10010110
01 101001
01 100110
01 011010
01010101
This introduces |

ﬂs(s — (s =3)(r +1)°

4-subsets.

Since the triples of the constructed triple system either lie completely in
the r-set, have one point in the r-set and two points in some (r + 1)-set,
or three points distributed over three (r + 1)-sets defining a triple of the
classical system on the collection of (r + 1)-sets, one sees easily that no one
of the 4-subsets introduced contains a triple of the constructed Steiner triple
system.

Seeing that no two of the chosen 4-subsets meet in more than two points
is not difficult. One can then sum and find the right number of 4-subsets,
namely

i[s(r—l— D+rls(r+1)4+r—=1]s(r+1)+r—3]
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— or what may be more instructive and is, moreover, fun, actually see how
each triangle is covered. For example, if a triangle has two points in one
(r + 1)-set and one in the r-set one uses the doubleton to define a point p
in the r-set (which must be different from the point we were given) and uses
these two points of the r-set to get a triple ¢ of the trivializing subsystem and
then employs the second of the itemized prescriptions above. This completes
the proof.td

Corollary 6.2 [f all Steiner triple systems on n points and 2-rank n are
derived, then all Steiner triple systems are derived.

Proof: The proof is quite obvious and proceeds via induction on the order
of the triple system.

The Theorem is more robust than it first appears. For example it shows
that all Steiner triple systems on 31 points with 2-rank less than 31 are
derived since we know those of smaller order are. Even without one line of
computation the Theorem shows that all Steiner triple systems on 19 points
of 2-rank 18 are derived — but this was already known. As far as I know
it had not, however, been observed that all Steiner triple systems on 39
points of 2-rank 37 are derived, an immediate consequence of the Theorem
since the trivializing subsystem must be the affine plane over F'3 — although
this could have been seen via existing methods. In fact, the Theorem itself
could have been proved with existing methods since Kevin Phelps [15] had
shown that any system with a maximal derived subsystem was itself derived,
and combining this with Teirlinck’s notion of projective dimension [21] gives
the result. But the direct proof above is simple and exhibits explicitly an
enormous number of the extensions.

There is another point to be made about the proof: except for the arbi-
trarily chosen quadruple systems on the (r + 1)-sets and the 4-subsets given
to us on the r-set by our hypothesis, one sees easily that all the 4-subsets
chosen are contained in the linear span of the constructed Steiner triple sys-
tem. This is because we have chosen the design of points and 2-flats of an
affine geometry to extend the classical Steiner triple system on the (r 4 1)-
sets. But for this extraneous data the same thing is true since on each of
the (r + 1)-sets we see the full even-weight subcode and on the r-set the full
code. Thus we have the following
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Corollary 6.3 [f the trivializing subsystem of a Steiner triple system is de-
rived, then not only is the Steiner system derived, but the extension can be
so chosen that the binary code of the resulting quadruple system is simply
that of the Steiner system with an overall parity check added and its code s
given by 2™ full even-weight subcodes of Fy™' with the planes of the affine
geometry AG,,(Fy) imposed as those weight-four vectors with one 1 in each
of four of these even subcodes.

Both the Theorem and this Corollary were proved by Key and Sullivan
in the cases r = 1 and r = 3; these cases correspond to the degenerate triple
system and the one on three points, both of which are derived.!®

And the proof isn’t through yielding information: it can be read as a con-
struction vehicle for Steiner quadruple systems; as such it gives the following

Corollary 6.4 Given any 2™ Steiner quadruple systems on r + 1 points,
where m is a positive integer, there is a Steiner quadruple system on 27 (r+1)
points containing each of the given systems as subsystems, one on each of 2™
disjoint subsets of the constructed system. Moreover, the Steiner quadruple
system can be chosen so that its 2-rank is 2" (r + 1) —m — 1.

Such a construction in the case m = 1 has been known for a long time
and was used by Lindner and Rosa [11] to construct 31,021 Steiner quadruple
systems on 16 points. It should be clear to the reader why so many systems
arose. In this case the construction is, as our discussion clearly shows, essen-
tially Reiss’s “doubling” construction, but that does not seem to have been
explicitly acknowledged in the literature [12, Construction A*].

Since the binary code of a Steiner quadruple system is an even code, the
maximal 2-rank for a Steiner quadruple system on v points is v — 1 and if it is
v —1 its binary code is the full even-weight subcode of Fy'. The construction
we have just given constructs all Steiner quadruple systems of deficient 2-
rank.!” It would have been easier to classify Steiner quadruple systems of
deficient 2-rank first, but then we would have missed those Steiner triple
systems, if any, that are not derived. The carrier is constructed by taking
the first-order Reed-Muller code, repeating it 4 1 times, and then dualizing
as we shall soon see.

16The degenerate quadruple system has two points and no blocks.
1 .e. 2-rank strictly less than v — 1.
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Since the classification presented above should reduce a question about
Steiner triple systems to the same question about those of full 2-rank — as
we did above for Steiner’s question (b) — Kevin Phelps’s question of whether
or not every Steiner triple system on 2¥ — 1 points can be seen as the set of
weight-three vectors of a perfect binary code containing the zero vector (see
[2]) ought to be so reduced. In this case all such Steiner systems of deficient
2-rank are built from Steiner systems on 2° — 1 points for some ¢ < k and an
inductive proof should work. I have not tried to find such a proof.

7 Steiner quadruple systems

We already discused Steiner quadruple systems in Section 6 but we here want
to indicate how easy it is to begin, ab initio, and classify those of deficient 2-
rank. As a byproduct we describe a construction that produces many Steiner
quadruple systems of full 2-rank and hence many Steiner triple systems of
full 2-rank which are derived.

Given a Steiner quadruple system on n + 1 points'® the binary code
generated by the incidence vectors of the blocks is contained in the full even-
weight subcode of Fy"™' and full 2-rank means simply that the code of the
quadruple system is the full even-weight subcode and hence of 2-rank n. If
the 2-rank is strictly less than n then either the minimum weight of the code
is 4 — in which case n + 1 = 2™ and the Steiner quadruple system is the
the design of points and 2-flats of AG,,(F;) in direct analogy to the triple
system case — or else there must exist vectors of weight two in the code. If
v is such a vector, then using the quadruples of the system whose support
contains the support of v produces a parallel class of 2-subsets that are the
supports of the weight-two vectors one obtains. One sees easily from this
that the weight-two vectors of the code form a resolvable 1-design. If the
index of the code generated by the weight-two vectors is n we are in the
presence of a Steiner quadruple system of full 2-rank. When the quadruple
system is of deficient 2-rank we apply Proposition 3.2 and we find that the
code generated by the weight-two vectors is simply the direct sum of codes
isomorphic to the full even-weight subcode of Fy ™' where r is the index and

181e.,a 3-(n+1,4,1) design, frequently described as an S(3,4,n 4+ 1) in the literature.
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r+ 1 divides n + 1. Set
n-+1

r4+1

The quadruple system imposes a resolution on the 1-(n+41,2,r) design given
by the weight-two vectors of the code. Many of the vectors of weight four
with support the union of two weight-two vectors in the same parallel class
of this imposed resolution are the support of a quadruple of the system. All
other quadruples of the system have their four 1s distributed among four of

s+ 1=

the s + 1 sets of cardinality r + 1 given by Proposition 3.2. This imposes a
Steiner quadruple system on these s 4+ 1 sets and just as in the triple system
case, it must be the classical system of points and planes of AG,,(F3), with
s+ 1 =27 or else there would be unaccounted for weight-two vectors. One
sees immediately that the role of the carrier is played by the dual of the
code obtained from the first-order Reed-Muller code R(1,m) by repeating it
r + 1 times and this code becomes the binary code of the Steiner quadruple
system. Its rank is n — m. Thus we have proved most of the following

Theorem 7.1 For anyn = 1,3 (mod 6) writing n+1 = ux 2% and choosing
any v with 1 <@ < k there ts a Steiner quadruple system of 2-rank n — k +¢.
All Steiner quadruple systems of 2-rank n— k41 share the same code, namely
the dual of the code obtained by repeating the first order Reed-Muller code,
R(1,k—1), ux 2 times. Every Steiner quadruple system of 2-rank n —k +1
can be constructed from this code and Steiner quadruple systems of smaller
order.

Proof: We have only to describe the construction. In fact, we describe a more
general construction below which not only produces the quadruple systems
of the Theorem but also many of full 2-rank.

Remark: Computing the weight enumerator of the binary code of a Steiner
quadruple system on n + 1 = (r + 1)2™ points of 2-rank n — m poses no
difficulty. It is even easier than in the Steiner triple system case. We leave
the exercise to the reader.

The following construction for Steiner quadruple systems will produce
systems with full 2-rank at least when the ingredients have full 2-rank. Hence
it will produce many derived triple systems of full 2-rank.
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Theorem 7.2 Let r and s be integers congruent to 1 or 3 modulo 6 and
suppose given a Steiner quadruple system on s + 1 points, s + 1 Steiner
quadruple systems on r+1 points, and a resolution of the 1-((s+1)(r+1),2,r)
design given by the weight-two vectors of the direct sum of s+ 1 copies of the
full even-weight subcode of FyT'. Then there is a Steiner quadruple system
onn+1=(s+1)(r+1) points containing each of the given systems on r+ 1
points on disjoint supports. If the given system on s+ 1 points has 2-rank
s — m, then the constructed system will have 2-rank at most n — m. The
2-rank will be n — m whenever one of the quadruple systems on r + 1 points

has full 2-rank.

Proof: The proof, by now, will probably be quite clear to the reader but we
sketch it nevertheless. One chooses the underlying (s 4+ 1)(r 4+ 1)-set to be
s+ 1 disjoint (r 4 1)-sets and on each we impose one of the given quadruple
systems on r 4+ 1 points. This introduces

(51 1)(7“ + 1)27“4(7“ - 1)

quadruples. For each of the r parallel classes of the given resolution of the

1-design, each choice of two of the (r 4 1)-sets and each choice of a 2-subset
in each from the parallel class, we introduce the 4-subset that is the union
of the two 2-subsets. This introduces

s+1 (r + 1)2
"\ 2 2
quadruples. For each of the quadruples from the given quadruple system on
s+ 1 points we introduce (r + 1)3 4-subsets each with a 1 in each of the four

(r + 1)-sets given by the quadruple and no two meeting more than twice.
This introduces

(s+ 1)s(s—1)

24
4-subsets. It is a very simple matter to check that we have the desired Steiner
quadruple system. The rank calculation is easy since it is transparent that
the code of the constructed system is built from the direct sum of the even

(r+1)°

subcodes and the overarching quadruple system on s + 1 points.

Remark: We even allow s = 1 and r = 1 here, corresponding to the de-
generate quadruple system. In fact when r = s = 1 we simply produce the
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unique Steiner quadruple system on four points. For r =1 and s = 13, for
example, the quadruple systems on 28 points will have full 2-rank and thus
produce derived Steiner triple systems of full 2-rank.

Corollary 7.3 There are Steiner quadruple systems on 2™ points, and hence
derived Steiner triple systems on 2™ — 1 points, with full 2-rank for every
m > 3.

Proof: For m = 4 we cannot use the Theorem but there are precisely 57 such
triple systems. From then on the Theorem produces the systems — taking
r = 1, for example.O

One can even impose conditions on the ingredient quadruple systems to
force a condition on the constructed system. As an illustration of the method
we give the following construction of “resolvable” quadruple systems, i.e.
quadruple systems for which the quadruples can themselves be organized
into parallel classes. Here we must be in the even-order case: the quadruple
system must be on a set of points whose cardinality is congruent to 4 or 8
modulo 12.

Corollary 7.4 If there are resolvable quadruple systems on r+1 and s + 1
points, then there is a resolvable quadruple system on (r+ 1)(s + 1) points.

Proof: Since in the construction we can clearly piece the resolutions of the
systems on r + 1 points together and those quadruples given by resolution
of the weight-two vectors themselves form several parallel classes, we need
only worry about the overarching quadruple system on s + 1 points which
we, of course, assume is resolvable — just as we assume the systems chosen
on r + 1 points are. We need to show that we can organize the choice of the
4-subsets for each quadruple into parallel classes and then use the resolution
of the overarching system. We simply give an illustration for the case r = 1
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treated extensively above:

8 Conclusions

The reader familiar with the work of Teirlinck and of Doyen, Hubaut and
Vandensavel will surely be asking about a “ternary” view of Steiner triple
systems and, to be sure, such a view exists and the above program is easily
carried out. We leave as an exercise for the reader the task of exploring this
ternary world, making the appropriate definitions, and proving the analogous
results. We merely mention that one system is a mandarin in both worlds:
the Steiner triple system on 3 points is both the projective line over F, and
the affine line over F3. Note, however, that there are triple systems that are
welcome neither in the binary nor the ternary world. Such is the lot, for
example, of the two systems on 13 points.

The classification in the case of Steiner quadruple systems bears a su-
perficial resemblance to the ternary view of Steiner triple systems since the
mandarins in both cases are the affine geometries and instead of seeing a
“point at infinity” as we did in defining the trivializing subsystem one sees
an array of systems spread, much like parallel classes, on the point set —
just as in Corollary 6.4 — with a mandarin as overseer.

A more serious question concerns possible generalization to Steiner sys-
tems of the form S(¢,¢t 4+ 1,v) for t > 3. Here the reader will surely want
to consult Teirlinck’s work and perhaps also Cameron’s book [6], where the
matter is discussed. It does not seem likely, however, that anything further



THE ELECTRONIC JOURNAL OF COMBINATORICS 2(1995), #R9 33

can be said and ¢ = 3 seems to be the natural boundary — as Michel Dehon’s
work [7] indicates even when one goes to S\(¢,t + 1,v).

A mathematician dipping into the vast literature on the topic of Steiner
triple systems — as [ did when writing up the results described above — has
to be struck with the chaotic nature of many of the results and most of the
constructions and the lack of organizing principles. One can only hope that
the single construction that quite loudly presented itself for discovery as this
work developed will be a step in the direction of organization.
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