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Abstract

In this note, we analyze two random greedy processes on sparse random graphs
and hypergraphs with a given degree sequence. First we analyze the matching
process, which builds a set of disjoint edges one edge at a time; then we analyze
the independent process, which builds an independent set of vertices one vertex at
a time. We use the differential equations method and apply a general theorem of
Warnke. Our main contribution is to significantly reduce the associated systems of
differential equations and simplify the expression for the final size of the matching
or independent set.

Mathematics Subject Classifications: 05C65, 05C80, 05C85

1 Introduction

A matching in a hypergraph is a collection of vertex-disjoint edges. The algorithmic
theory of matchings in graphs is very well studied. In particular, Edmond’s Blossom
Algorithm provides a polynomial time algorithm to find the largest size matching in a
general graph (see e.g. [20]). However, for r > 3 the problem of determining whether a
given matching is maximum in a r-uniform hypergraph is NP-hard. An independent
set is a set of vertices containing no edge. The problem of determining whether a given
independent set is maximum in a r-uniform hypergraph is NP-hard for all r > 2.

In this paper we study the natural random greedy algorithms for producing matchings
and independent sets in hypergraphs. For both matchings and independent sets, we are
looking for a collection of objects that do not “conflict” with each other. The natural
random greedy algorithm is then to build our collection of objects one by one, at each step
choosing a random object that does not conflict with previous choices, until no such choice
is possible and we have a maximal collection. We will call the random greedy matching
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algorithm the matching process, and we will call the random greedy independent set
algorithm the independent process. See Algorithms 1 and 2 for details.

Input : Hypergraph
H = (V,E)

Output: Matching M
M = ∅;
while E 6= ∅ do

Select e ∈ E uniformly at
random;
M ←M ∪ {e};
E ←
E \ {e′ ∈ E : e′ ∩ e 6= ∅};

end
return M ;

Algorithm 1: matching process

Input : Hypergraph H = (V,E)
Output: Independent set I
I = ∅;
while V 6= ∅ do

Select v ∈ V uniformly at
random;
I ← I ∪ {v};
V ← V \
{v′ ∈ V : ∃e ∈ E, e ⊆ I ∪ {v′}};

end
return I;

Algorithm 2: independent process

1.1 The matching process

The performance of the matching process was analyzed on arbitrary (ordinary) graphs
by Dyer and Frieze [10], on dense random graphs by Tinhofer [27], and on sparse random
graphs by Dyer, Frieze and Pittel [11]. The analysis in [11] was extended to sparse
random hypergraphs in the Ph.D. thesis of Chebolu [8]. The algorithm was analyzed on
deterministic hypergraphs by Wormald [30], who proved that for a r-uniform, ∆-regular
hypegraph on n vertices where ∆→∞ sufficiently fast as n→∞, with high probability1

the matching process outputs a matching that covers all but o(n) vertices. Bennett and
Bohman [2] improved Wormald’s bound on the number of uncovered vertices assuming
the hypergraph satisfies a co-degree condition. However there is no reason to believe that
the analysis in [2] is optimal, and a folklore conjecture claims that there should be a better
bound:

Conjecture 1 (Folklore). For an r-uniform, ∆-regular hypergraph with ∆ → ∞ and
assuming some weak co-degree conditions, the fraction of unmatched vertices at the end
of the matching process should be

∆−
1
r−1

+o(1). (1.1)

See [2] for more discussion on this conjecture.
We now describe our random hypergraph model. Suppose ∆ = ∆(n) is a function of

n and
n = n(n) = (n1, n2, . . . , n∆) ∈ N∆

is a vector such that n∆ is positive2 and
∑∆

i=1 ni = n. Let H(n, r,n) represent the
probability space with uniform distribution over all r-uniform hypergraphs on n vertices

1We say a sequence of events An happens with high probability (whp), if limn→∞ P [An] = 1
2we use the convention 0 ∈ N
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with ni many vertices of degree i. In the special case when n∆ = n, H(n, r,n) represents
the random r-uniform, ∆-regular hypergraph and we denote this by H(n, r,∆).

Bohman and Frieze [4] studied matchings in the fixed degree sequence random
graph model, which in our terminology is the graph case H(n, 2,n) where the vector
1
n
n(n) is constant (i.e. the same for all n). In particular they analyzed the performance of

the Karp-Sipser matching algorithm and determined a sufficient condition on the degree
sequence in order for the random graph to have an almost perfect matching (i.e. a
matching that leaves o(n) vertices unmatched) w.h.p..

Our main result for the matching process is the following. From now on all asymptotics
are as n→∞.

Theorem 2. Suppose ∆ = o(n1/3). Let

d1 :=
1

n

∆∑
i=1

ini, d2 :=
1

n

∆∑
i=1

i(i− 1)ni, (1.2)

and suppose that d1, d2 = Θ(1). Let

f(x) :=
1

n

∆∑
i=1

nix
i, g(x) :=

1

dr−1
1

−
∫ 1

x

dz

(f ′(z))r−1
. (1.3)

Then with high probability the matching process run on H ∼ H(n, r,n) terminates with a
matching that covers all but

f(g−1(0))n+ o(n)

vertices.

Note that f is the generating function for the sequence (ni/n) (see [1] for another instance
in which the degree sequence generating function is used in the analysis of a greedy algo-
rithm). Note that in the fixed degree sequence case (i.e. when the vector 1

n
n(n) does not

depend on n) we have that f(x) is just a fixed polynomial. In that case the antiderivative
in the definition of g(x) can (at least in principle) be calculated using partial fractions.
Unfortunately, in general this antiderivative will be messy and involve logarithms and
arctangents, in which case one would probably resort to numerical methods to approxi-
mate g−1(0). However, the solution can be written explicitly in the case corresponding to
sparse regular hypergraphs:

Corollary 3. Suppose that r,∆ > 2 are fixed such that r + ∆ > 5. Then the matching
process run on H ∼ H(n, r,∆) produces a matching which covers all but(

1

(r − 1)(∆− 1)

) ∆
(r−1)(∆−1)−1

n+ o(n)

many vertices whp.
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Actually, we will also extend the above result to deterministic high-girth hypergraphs,
using a result of Krivelevich, Mészáros, Michaeli and Shikhelman [18] (see subsection 1.3.3
for a proof sketch). A Berge k-cycle is a sequence of k distinct vertices v1, . . . , vk and k
distinct edges e1, . . . , ek such that ei contains vi and vi+1 (indices modulo k). The (Berge)
girth of a hypergraph H is the smallest integer k such that H contains a Berge k-cycle
(we say the girth is infinity if no Berge cycle exists).

Corollary 4. For fixed r,∆ such that r + ∆ > 5, let Hn be a sequence of r-uniform
∆-regular hypergraphs with girth tending to infinity. Then Hn has a matching that covers
all but at most (

1

(r − 1)(∆− 1)

) ∆
(r−1)(∆−1)−1

n+ o(n)

vertices. Moreover, the matching process w.h.p. returns such a matching.

The main term in the above corollaries lends some credence to Conjecture 1. Indeed,
if ∆→∞ then (

1

(r − 1)(∆− 1)

) ∆
(r−1)(∆−1)−1

= ∆−
1
r−1

+o(1)

which is the same conjectured fraction from line (1.1).
In [9], Cooper, Frieze, Molloy and Reed used the small subgraph conditioning method

of Robinson and Wormald [25, 26] to prove that for r > 3,∆ > 2

lim
n→∞

P [H(n, r,∆) has a perfect matching] =

{
1 if r < σ∆

0 if r > σ∆

(1.4)

where σ∆ := log ∆

(∆−1) log( ∆
∆−1)

+ 1. Thus for any r, f(r) = min {∆ : r < σ∆} gives the

threshold of ∆ such that H(n, r,∆) has a perfect matching and for large r, f(r) ∼
er−1. Thus it is interesting to note that near this threshold, the greedy algorithm finds a
matching which, asymptotically in r, covers only (1− e−1 + o(1)) fraction of the vertices
even though there is a perfect matching w.h.p..

1.2 The independent process

The independent process, also referred to as the random greedy independent set algorithm
(see e.g. [2]) or random sequential adsorption in the realms of chemistry and physics (see
e.g. [23]), has been studied for many years. The algorithm was studied on the binomial
random graph (in the context of coloring) by Grimmett and McDiarmid [15], and Bollobás
and Erdős [6]. The algorithm was analyzed on random regular graphs by Wormald (see
[29, 31]) and on the fixed degree sequence graph model by Brightwell, Janson and  Luczak
[7].

Our main result for the independent process is as follows.
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Theorem 5. Suppose ∆ = o
(
n1/4/ log1/2 n

)
and that d1, d2 = Θ(1) (see line (1.2)). Let

f(x) be as defined in line (1.3). Let α = α(x), β = β(x) be the unique solution to the
system

α′ =
f ′(1− αr−1)

d1f(1− αr−1)
, β′ = − 1

f(1− αr−1)
, α(0) = 0, β(0) = 1. (1.5)

Then with high probability the independent process run on H ∼ H(n, r,n) terminates with
an independent set of size

β−1(0)n+ o(n) (1.6)

vertices.

Note that since rational functions have elementary antiderivatives, in the fixed degree
sequence case (when f is a polynomial) we have that α is the inverse of an elementary
function. Also we have that

β = 1−
∫ t

0

dτ

f(1− α(τ)r−1)
(1.7)

= 1−
∫ α(t)

α(0)

d1du

f ′(1− ur−1)
(1.8)

= γ(α(t)) (1.9)

where the second line follows from the substitution u = α(τ) and

γ(x) := 1−
∫ x

0

d1du

f ′(1− ur−1)
(1.10)

is an elementary function. So roughly speaking, both α, β are “close” to being elementary.
The proofs of Theorems 2 and 5 are applications of the so-called differential equations

method3. In each proof we will directly apply a general theorem of Warnke [28] to show
concentration a family of random variables that evolve with the process. In Section 2 we
will set up the analysis of each process, and for each process we will derive a system of
differential equations describing how our variables evolve with the process. In Section 3,
we will complete the proof of Theorems 2 and 5 by applying Warnke’s result. In section
4, we will use the first moment method to provide some bounds on the largest size of a
matching or independent set in a random regular hypergraph.

1.3 Connections to other results on the independent process

Theorem 5 has connections to two other recent results. Brightwell, Janson and  Luczak
[7] analyzed the independent process on the graph case H(n, 2,n) and determined the
size of the final independent set. Thus our Theorem 5 is (roughly speaking, ignoring

3Readers unfamiliar with the differential equations method should refer to the surveys [12] and [30]
or more specifically Theorem 10 in Section 3 of this paper.
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a few technical assumptions) a generalization of [7] and we expect that our formula for
the final size of the independent set should be the same as the one in [7] when r = 2.
In subsection 1.3.1 we show this is the case. Pippenger [24] and independently Lauer
and Wormald [19] analyzed the independent process on (deterministic) regular graphs
of high girth and found the expected size of the final independent set (Pippenger [24]
also did something similar for the matching process). Gamarnik and Goldberg [14] then
established concentration of the final size of the independent set or matching produced
by the processes (again working on regular graphs of high girth). Nie and Verstraëte [22]
also analyzed the independent process on regular hypergraphs of large girth. Since sparse
random regular hypergraphs have very few short cycles, it is natural to expect that the
final independent set obtained in the setting of [22] should be asymptotically the same as
ours. Indeed, in subsection 1.3.2 we will see that this is the case as well.

1.3.1 Graph case: Brightwell, Janson and  Luczak

Brightwell, Janson and  Luczak proved the following.

Theorem 6 (Brightwell, Janson,  Luczak [7]). Let (pk)
∞
0 be a probability distribution, and

let d1 =
∑∞

k=1 kpk ∈ (0,∞). Assume nk/n→ pk for each k and that
∑∞

k=1 knk/n→ d1 as
n→∞. Assume further that

∑∞
k=1 k

2nk = O(n).
Let τ∞ ∈ (0,∞] be the unique value such that

d1

∫ τ∞

0

e−2σ∑
k kpke

−kσ dσ = 1. (1.11)

Then w.h.p. the final size of the independent set produced by the process run on the random
graph H(n, 2,n) is (

d1

∫ τ∞

0

e−2σ
∑
k pke

−kσ∑
k kpke

−kσ dσ

)
n+ o(n) (1.12)

Of course the final size of the independent set on line (1.12) is asymptotically the same
as that on line (1.6). The forms these expressions take is an artifact of the methods used
to analyze the processes. It seems rather unsatisfying to say the expressions are obviously
equal because both theorems are true, so we will provide another calculation justifying
that they are equal, at least in the fixed degree sequence case (so we do not have to worry
about the convergence of f as n grows). Then note that we have f(e−σ) =

∑
k pke

−kσ

and similarly
∑

k kpke
−kσ = e−σf ′(e−σ). Thus, the definition of τ∞ in line (1.11) can be

rewritten as

d1

∫ τ∞

0

e−σ

f ′(e−σ)
dσ = 1

and then, subsituting u = 1− e−σ and using the fact that γ′(x) = − 1
f ′(1−x)

we have

d1

∫ 1−e−τ∞

0

1

f ′(1− u)
du = −γ(1− e−τ∞) + γ(0) = 1.
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Since γ(0) = 1 this implies that γ(1−e−τ∞) = 0 which can serve as an equivalent definition
of τ∞. Meanwhile, the coefficient of n in line (1.12) is equal to

d1

∫ 1−e−τ∞

0

f(1− u)

f ′(1− u)
du.

Substituting u = α(w) we get∫ α−1(1−e−τ∞)

0

dw = α−1(1− e−τ∞) = α−1(γ−1(0)) = β−1(0),

which is the coefficient of n on line (1.6).

1.3.2 Regular case: Nie and Verstraëte

Here we relate our result to that of Nie and Verstraëte [22]. Let H be a (deterministic)
∆-regular r-uniform hypergraph with n vertices. Let

h(x) := 1−
∑
n>0

(
n+ ∆− 2

∆− 2

)
x(r−1)n+1

(r − 1)n+ 1
. (1.13)

Let

f(∆, r) :=

∫ 1

0

(1− h−1(x)r−1)∆ dx. (1.14)

The main result in [22] is as follows.

Theorem 7 (Nie, Verstraëte). There exists a function ε(∆, r, g) such that for any fixed
∆, r we have that ε(∆, r, g) → 0 as g → ∞ with the following property. For r,∆ > 2,
g > 4, the expected size of the final independent set produced by the independent process
is in the interval

[(f(∆, r)− ε)n, (f(∆, r) + ε)n]

where ε = ε(∆, r, g).

Since random regular hypergraphs typically have few short cycles, we expect them to
be similar to large girth regular hypergraphs. In particular, we expect that in the regular
case f(∆, r) should be equal to β−1(0) (the coefficient of n in (1.6)). In the rest of this
subsection we justify that they are indeed equal.

First we would like to “simplify” f(∆, r) somewhat. Using (1.13) and Newton’s bino-
mial formula we have

h′(x) = −
∑
n>0

(
n+ ∆− 2

∆− 2

)
x(r−1)n = − 1

(1− xr−1)∆−1
. (1.15)

Now we turn to the definition of f(∆, r) in (1.14) and make the substitution u =
h−1(x). Then

du =
dx

h′(u)
= −(1− ur−1)∆−1dx.
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So we have

f(∆, r) =

∫ 1

0

(1− h−1(x)r−1)∆ dx =

∫ h−1(1)

h−1(0)

−(1− ur−1) du

=

∫ 0

h−1(0)

ur−1 − 1 du = h−1(0)− 1

r
h−1(0)r. (1.16)

It remains to show that the above is equal to β−1(0).
We turn to the system (1.5) in the ∆-regular case. We have d1 = ∆ and f(x) = x∆,

so

α′ =
f ′(1− αr−1)

d1f(1− αr−1)
=

∆(1− αr−1)∆−1

∆(1− αr−1)∆
=

1

1− αr−1
.

The above separable differential equation can be solved implicitly (using the initial con-
dition α(0) = 0) to obtain

α− 1

r
αr = t,

or equivalently

α−1(x) = x− 1

r
xr.

Now note that h and γ are the same function. Indeed, we know that h(0) = γ(0) = 1,
and by equations (1.7) and (1.15) we have that

γ′(x) = − d1

f ′(1− xr−1)
= − ∆

∆(1− xr−1)∆−1
= h′(x).

Now

β−1(0) = α−1(γ−1(0)) = α−1(h−1(0)) = h−1(0)− 1

r
h−1(0)r = f(∆, r)

as desired.

1.3.3 Krivelevich, Mészáros, Michaeli and Shikhelman

Krivelevich, Mészáros, Michaeli and Shikhelman [18] gave a very general analysis of the
independent process, showing in many cases (sequences of graphs) of interest that the
final size of the independent set can be approximated using an appropriate “limiting”
object (locally finite graph). While there is no formal statement or proof of a hypergraph
analog of the result in [18], the authors do show that, assuming such an analog is true, it
implies something very similar to Nie and Verstraëte’s result in [22]. Indeed, as noted in
[18], the local limit (see [18] for technical definitions) of a sequence of r-uniform ∆-regular
hypergraphs with girth tending to infinity is Tr∆, the infinite rooted r-uniform ∆-regular
loose tree. Informally this means that if we choose a vertex v in an r-uniform ∆-regular
hypergraph of girth say 3k, the ball of radius k around v is isomorphic to the ball of radius
k around a vertex of Tr∆. Using the limiting object Tr∆ to set up a differential equation
recovers the result of [22] (ignoring the precise error bound in the result).
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Similarly, we can obtain a result for matchings on r-uniform ∆-regular hypergraphs
of high girth using our Theorem 2 together with the result from Krivelevich, Mészáros,
Michaeli and Shikhelman [18]. Indeed, for any hypergraph H we define the line graph
L(H) to have vertex set E(H) where e1 is adjacent to e2 in L(H) if and only if e1∩e2 6= ∅.
Thus a matching in H is precisely an independent set in L(H). In fact, the matching
process run on H is precisely the independent process on L(H).

All of the applications given in [18] are to locally treelike graphs (i.e. graphs whose
local limit is a tree). However L(H) is typically not locally treelike (for example any
vertex of degree d in H gives us a d-clique in L(H)). Thus we cannot use Theorem 1.3 in
[18] to analyze the independent process on L(H). However, we can still use their Theorem
1.2 together with our own analysis to obtain a result. Let Hn be a sequence of r-uniform
∆-regular hypergraphs with girth tending to infinity. It is trivial to check that, using

the terminology from [18], that L(Hn)
loc→ (L(Tr∆), ρ) where ρ is an arbitrary vertex of

L(Tr∆). It is also not hard to see that L(H(n, r,∆))
loc→ (L(Tr∆), ρ). Thus, by Theorem

1.2 in [18], w.h.p. the size of the final independent set when the process is run on L(Hn)
is asymptotically the same as when the process is run on L(H(n, r,∆)). In other words,
w.h.p. the final matching produced by the matching process is asymptotically the same
when run on Hn and H(n, r,∆). Now using our Theorem 2 we have Corollary 4.

2 Setting up the analysis for the processes

We generate our random hypergraph H(n, r,n) as follows. Suppose the degree sum is
n
∑

i ini = rm (this serves as a definition of m). We will have two sets of points: a set A
which is the union of m disjoint sets of r points each (these sets will be called the edges),
and a set B which is the union of disjoint sets of points (called vertices), where for each
0 6 i 6 ∆ there are nin vertices containing i points. Note that |A| = |B| = rm. We
generate a uniform random pairing (a partition of A∪B into sets of size 2 each containing
one element from A and one from B). We interpret the pairing as a hypergraph as follows:
a vertex v is contained in an edge e if and only if there is a point in vertex v that is paired
with a point in the edge e.

We would like to restrict our attention to hypergraphs without “loops” (i.e. edges
that contain a vertex multiple times) or “multi-edges” (i.e. two edges consisting of the
same set of vertices). We call such hypergraphs simple. The main theorem in Blinovsky
and Greenhill’s paper [3] can help us here. Let

M0 =
∆∑
i=1

ni, M1 =
∆∑
i=1

ini, M2 =
∆∑
i=1

i(i− 1)ni.

The main result of [3] implies that if n,M1 →∞, M2 = O(M1) and ∆ = o
(
M

1/3
1

)
then

P [H(n, r,n) is simple] = Ω(1)

Note that we are not using use the most natural extension to hypergraphs of the
standard configuration model (see e.g. [3, 5, 17, 31]). In the standard configuration
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model we have only the set of points B (there is no set A), which we randomly partition
into sets of r points each. That partition determines the edges of the hypergraph. But a
moment’s thought reveals that this model is equivalent to the one we use in the present
paper (indeed, the neighborhoods of the edges in our set of points A give us a uniform
partition of B into parts of r points each). The reason for our choice of model is that
we would like to analyze the processes step-by-step by revealing only a small part of the
pairing at each step (often called the method of deferred decisions). In particular we
would like to have the ability to reveal only part of an edge without revealing the entire
edge (i.e. we reveal some but not all of the vertices in that edge). This is because in
the independent process we are allowed to choose several vertices all in the same edge, so
the method of deferred decisions guides us to reveal only what we need to know at the
time, i.e. which edges the chosen vertex v is in. It is not necessary to reveal an entire
edge unless that edge has r − 1 vertices in I (in which case the last vertex in that edge
must be removed from V ). Our choice of model does not seem to have any advantage
when analyzing the matching process, but for unity we use it there too since it is no more
difficult.

Each process (recall Algorithms 1 and 2) has a while loop, and we will call one iteration
of the while loop a step, so in the matching process a step means choosing one edge to
go into M , and in the independent process a step means choosing a vertex to go into
I. We will break each step into several pairings, where in this context a pairing means
revealing the partner of one point (we say that both points are paired after this).

2.1 Matching process

Our set up for the matching process is similar to that of Bohman and Frieze in [4] where
the Karp-Sipser algorithm is analyzed on random graphs with fixed degree sequence. To
execute one iteration of the while loop in Algorithm 1, we choose an edge e ∈ E and then
update E by removing any edge e′ that intersects e. When we analyze the algorithm we
will pair the points that are necessary in order to update E, plus a little bit more to aid
the analysis. Recall that E is a set of edges, and formally edges here are parts of the
partition of A (each of which consists of r points). So we choose one random such edge e
and then update E as follows. First we pair all the points in e to see which vertices are
incident with e. Then we pair all the points in those vertices since the partners of these
points are in edges e′ that must be removed from E. We then pair all the points in any
such edge e′ being removed from E, which will help us track random variables to analyze
the process.

At step j, say there are Yi = Yi(j) many vertices with exactly i unpaired points for
i = 1, . . . ,∆. In a slight abuse of notation we will let E = E(j) be the number of edges
in the set E at step j (we will often use the same notation for a set and its cardinality).
Let

M0 =
∆∑
i=1

Yi, M1 =
∆∑
i=1

iYi, M2 =
∆∑
i=1

i(i− 1)Yi.
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Then since the number of unpaired points in A is always the same as in B we have

rE(j) =
∆∑
i=1

iYi(j) = M1.

We will now start to set up our application of Warnke’s Theorem (see Theorem 10 for a
preview). We will write a system of differential equations intended to model the change
in each of our variables over one step. We will assume that we are at a step j where M1

is still linear, i.e. M1 = Ω(n). For i = 1, . . . ,∆, we have that the expected change in Yi
over one step (conditional on the current values of the Yi) is

E [Yi(j + 1)− Yi(j)|Y(j)]

= −r · iYi
M1

+ r
∆∑
k=1

kYk
M1

(k − 1)(r − 1)

(
(i+ 1)Yi+1

M1
− iYi
M1

)
+O

(
∆2

n

)
= −r · iYi

M1
+ r(r − 1)

M2

M1

(
(i+ 1)Yi+1

M1
− iYi
M1

)
+O

(
∆2

n

)
=

(
(i+ 1)r(r − 1)M2

M2
1

)
Yi+1 −

(
ir

M1
+
ir(r − 1)M2

M2
1

)
Yi +O

(
∆2

n

)
. (2.1)

Indeed, we account for the terms on the second line as follows. When we choose our
edge e to go into M , we pair the r points in e, each of which has a probability iYi+O(∆)

M1+O(∆)
=

iYi
M1

+ O
(

∆
n

)
of being paired with a vertex in Yi (note that each step involves pairing at

O(∆) points). That explains the first term, so we move on to explain the second term.
For each point in e that is paired to a point in a vertex v in say Yk, we pair the remaining
k − 1 points in v to determine which edges will be removed from E. Usually these k − 1
points in v will have partners that are in k − 1 distinct edges (the probability that two
would be in the same edge is O(∆/n)), so we proceed assuming this is the case. For
each edge e′ being removed from E we then pair the remaining r − 1 points of e′. So our
explanation for the second term is as follows. Each of the r points in e has a probability
kYk
M1

+ O
(

∆
n

)
of being paired to a point in a vertex v in Yk, and then with probability

1− O(∆/n) the other k − 1 points in v all have partners in distinct edges. We now pair
the remaining r − 1 points in each of these k − 1 edges, and the expected effect of each
such pairing on Yi is (i+1)Yi+1

M1
− iYi

M1
+O

(
∆
n

)
. And so the second line is justified. The third

line follows from the definition of M2 and the fourth line is just algebra.
As is usual in the differential equation method, we will prove that our random variables

are concentrated around deterministic counterparts. Letting t = j/n, we will heuristically
assume (and later formally show) that Yi(j) ≈ nyi(t),Mk(j) ≈ nmk(t) for some determin-
istic functions yi(t),mk(t). The expected one-step change in Yi (2.1) gives us differential
equations:

y′i =

(
(i+ 1)r(r − 1)m2

m2
1

)
yi+1 −

(
ir

m1

+
ir(r − 1)m2

m2
1

)
yi (2.2)

and initial conditions
yi(0) = ni/n, i = 1, . . . ,∆. (2.3)
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where of course

m0 =
∆∑
i=1

yi, m1 =
∆∑
i=1

iyi, m2 =
∆∑
i=1

i(i− 1)yi. (2.4)

We will now describe the solution to the above system. It turns out that it can be
expressed in terms of the following natural generating function: let

f(x) :=
∑
i

ni
n
xi, g(x) :=

1

dr−1
1

−
∫ 1

x

dz

f ′(z)r−1

and note that f(0) = 0 and f is strictly increasing on [0, 1], and so g is strictly increasing
on (0, 1]. In particular f restricted to [0, 1] has an inverse. Let

c(t) := f−1(1− rt), a(t) := f ′(c(t))r−1g(c(t))

Claim 8. The unique solution to the system (2.2) with initial conditions (2.3) is

yi =
ai

i!
f (i)(c− a), i = 1, . . . ,∆

where f (i) denotes the ith derivative of f , and functions with suppressed input are evaluated
at t (e.g. c− a means c(t)− a(t)).

Proof. We first check initial conditions. Note that c(0) = f−1(1) = 1. Therefore
a(0) = f ′(1)r−1g(1) = dr−1

1 · 1
dr−1

1

= 1 as well. Thus, evaluating the proposed solution yi
at t = 0 gives

yi(0) =
1

i!
f (i)(0) =

ni
n

by the definition of f . Now we check the differential equation (2.2). First we establish
some identities. If the yi are the proposed solution, then we have

m1 =
∑
i

iyi = a
∑
i

ai−1

(i− 1)!
f (i)(c− a) = af ′(c)

where the last inequality follows by noticing the Taylor series for f ′(x) centered at c− a.
Similarly we have m2 = a2f ′′(c). Also note that

c′ = − r

f ′(c)
(2.5)

and since g′(x) = 1
f ′(x)r−1 we have

a′ = (r − 1)f ′(c)r−2f ′′(c) ·
(
− r

f ′(c)

)
g(c) + f ′(c)r−1 ·

(
1

f ′(c)r−1

)
·
(
− r

f ′(c)

)
= − r

f ′(c)
− r(r − 1)f ′′(c)

f ′(c)2
· a
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and so

c′ − a′ = r(r − 1)f ′′(c)

f ′(c)2
· a. (2.6)

Now to check (2.2) we first take the derivative of the proposed solution:

y′i =
ai−1a′

(i− 1)!
f (i)(c− a) +

ai

i!
f (i+1)(c− a)(c′ − a′) (2.7)

and then we plug the proposed solution into the right side of (2.2) to get

(i+ 1)r(r − 1)f ′′(c)

f ′(c)2
· ai+1

(i+ 1)!
f (i+1)(c− a)−

(
ir

af ′(c)
+
ir(r − 1)f ′′(c)

f ′(c)2

)
ai

i!
f (i)(c− a). (2.8)

The reader can use (2.5) and (??) to verify that (2.8) equals (2.7).

2.1.1 Estimating the stopping point of the matching process

In this section we estimate the number of steps taken before the process terminates,
assuming that the random variables stay close to their trajectories. The process ends
when M1(i) = 0 and we assume that M1(i) ≈ m1(t)n = a(t)f ′(c(t))n, so we anticipate
that the final value of t is the smallest t such that either a(t) = 0 or c(t) = 0 (since
f ′(x) = 0 implies x = 0). But c(t) = f−1(1 − rt) = 0 implies that 1 − rt = f(0) = 0
so t = 1/r. If this were the final value of t it would mean we have an almost perfect
matching, so we anticipate that the actual final value of t is where a(t) = 0. Indeed,
note that g(1) = 1/dr−1

1 and g′(x) = 1/f ′(x)r−1 > 1/dr−1
1 for all x > 0. Thus g(x) = 0

for some value of x > 0 (and this implies that a(t) = 0 when c(t) = x which happens
before c(t) = 0). Since a(t) = f ′(c)r−1g(c) we see that a(t) = 0 occurs for a smaller value
of t than c(t) = 0. More specifically, a(t) = 0 occurs when g(c(t)) = 0 which is when
t = c−1(g−1(0)) = (1− g−1(0))/r. Thus we anticipate that the process runs until time

tend := (1− f(g−1(0)))/r.

If this is the case the number of unsaturated vertices in the end will be about

n− rtendn = f(g−1(0))n.

2.2 Independent process

One step in the independent process consists of the following. We choose the vertex v
to be inserted in our independent set I. Then we repeat the following for each point v̂
corresponding to v. We pair v̂ and then if its partner is a point in an edge e that now has
all but one point paired to partners that are in the independent set and the remaining
point of e is unpaired, we then pair the last unpaired point in that edge, whose partner
is in a vertex that will now be closed (no longer eligible for the independent set). When
a vertex becomes closed we pair all its points and then put all of the edges corresponding
to their partners into a set D of dead edges (formally we do not delete the dead edges,
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since we would like to defer the pairing of all their points until it is necessary). Since each
dead edge is incident with a closed vertex, the dead edge will never be the reason why
another vertex becomes closed. The edges that are not dead are live.

We let Vi be the set of vertices with i unpaired points, and Li be the set of live edges
with i unpaired points.

Let

M0 =
∆∑
i=1

Vi, M1 =
∆∑
i=1

iVi, M2 =
∆∑
i=2

i(i− 1)Vi.

We assume that we are at a step. We claim that all i = 1, . . . ,∆, we have

E [Vi(j + 1)− Vi(j) |V(j),L(j)] = − Vi
M0

−
∆∑
k=1

Vk
M0

· k · 2L2

M1

· iVi
M1

+O

(
∆4

n

)
= − Vi

M0

(
1 +

i · 2L2

M1

)
+O

(
∆4

n

)
. (2.9)

We now explain the first line above. The first term corresponds to the event that the
vertex v chosen to go into I is from Vi, which has probability Vi

M0
. The second term

represents the expected number of vertices in Vi that become closed: for each k we have a
probability of Vk

M0
that v is a vertex in Vk, in which case we pair its k points, each of which

has a probability 2L2+O(∆2)
M1+O(∆2)

= 2L2

M1
+ O

(
∆2

n

)
of being partnered with a point in an edge

that would cause a vertex closure (note that each step involves pairing at O(∆2) points).

Each vertex closure has a probability iVi+O(∆2)
M1+O(∆2)

= iVi
M1

+ O
(

∆2

n

)
of being a vertex in Vi.

The second line above follows from
∑

k kVk = M1.
Now we claim that for all i = 1, . . . , r, we have

E [Li(j + 1)− Li(j) |V(j),L(j)]

=
∆∑
k=1

Vk
M0

· k ·

(
(i+ 1)Li+1

M1

− iLi
M1

− 2L2

M1

·

(
∆∑
r=1

rVr
M1

· (r − 1) · iLi
M1

))
+O

(
∆4

n

)
=

(i+ 1)Li+1

M0

− iLi
M0

·
(

1 +
2L2

M1

· M2

M1

)
+O

(
∆4

n

)
=

(
i+ 1

M0

)
Li+1 −

(
i

M0

+
2iL2M2

M0M2
1

)
Li +O

(
∆4

n

)
. (2.10)

Indeed, to explain the second line note that for each k we have a probability Vk
M0

that v
will be in Vk, meaning the k points in v would immediately be paired. Each point v̂ of

v has a probability (i+1)Li+1+O(∆2)
M1+O(∆2)

= (i+1)Li+1

M1
+ O

(
∆2

n

)
of being paired to a point in an

edge of Li+1 which would then become an edge of Li; and similarly v̂ has a probability
iLi+O(∆2)
M1+O(∆2)

= iLi
M1

+ O
(

∆2

n

)
of being paired to an edge in Li which then moves to Li−1.

We may also lose edges in Li due to vertex closures: each point v̂ in v has a probability
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2L2+O(∆2)
M1+O(∆2)

= 2L2

M1
+ O

(
∆2

n

)
of triggering a vertex closure. For each vertex closure and

1 6 r 6 ∆ there is a probability rVr+O(∆2)
M1+O(∆2)

= rVr
M1

+ O
(

∆2

n

)
that the closed vertex is in

Vr, in which case we pair the other r − 1 points in the closed vertex, each of which has

a probability iLi+O(∆2)
M1+O(∆2)

= iLi
M1

+O
(

∆2

n

)
of being in Li. So the first line is explained. The

second line follows from the definitions of M0,M1,M2 and the third line is just algebra.
Again letting t = j/n, we will heuristically assume (and later formally show) that

Li(j) ≈ n`i(t),Mk(j) ≈ nmk(t) for some deterministic functions `i(t),mk(t). The ex-
pected one-step changes given in (2.9) and (2.10) give us differential equations:

v′i = − vi
m0

(
1 +

i · 2`2

m1

)
(2.11)

`′i =

(
i+ 1

m0

)
`i+1 −

(
i

m0

+
2i`2m2

m0m2
1

)
`i (2.12)

with initial conditions

vi(0) = ni/n, `r(0) = d1/r, `1(0) = · · · = `r−1(0) = 0 (2.13)

where of course

m0 =
∆∑
i=1

vi, m1 =
∆∑
i=1

ivi, m2 =
∆∑
i=1

i(i− 1)vi.

We will now describe the solution to the above system. Again we have attempted to
simplify it as much as possible. We again let

f(x) :=
∑
i

ni
n
xi

be the scaled degree generating function. Let α = α(t) be the unique solution to the
separable differential equation

α′ =
f ′(1− αr−1)

d1f(1− αr−1)
, α(0) = 0

and let β = β(t) be the solution to

β′ = − 1

f(1− αr−1)
, β(0) = 1.

Claim 9. The unique solution to the system (2.11), (2.12) with initial conditions (2.13)
is

vi =
ni
n

(1− αr−1)iβ

`i =

(
r
i

)
rdi−1

1

αr−if ′(1− αr−1)iβi

where functions with suppressed input are evaluated at t.
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Proof. The proof follows by direct substitution to lines (2.11) and (2.12). The LHS of
(2.11) evaluates to

ni
n

[
β′(1− αr−1)i − i(r − 1)αr−2(1− αr−1)i−1α′

]
=
ni
n

[(
− 1

f(1− αr−1)

)
(1− αr−1)i − i(r − 1)αr−2(1− αr−1)i−1

(
f ′(1− αr−1)

d1f(1− αr−1)

)]
(2.14)

Meanwhile, substituting our proposed solution we find that

m0 = βf(1− αr−1), m1 = β(1− αr−1)f ′(1− αr−1), m2 = β(1− αr−1)2f ′′(1− αr−1)

and so substituting the proposed solution to the RHS of (2.11) yields

−
ni
n

(1− αr−1)iβ

βf(1− αr−1)

1 +
i · 2(r2)

rd1
αr−2f ′(1− αr−1)2β2

β(1− αr−1)f ′(1− αr−1)


which after simplification matches line (2.14).

The LHS of (2.12) evaluates to(
r
i

)
rdi−1

1

[
(r − i)αr−i−1α′f ′(1− αr−1)iβi + αr−iif ′(1− αr−1)i−1f ′′(1− αr−1)(−αr−2)α′βi

+ αr−if ′(1− αr−1)iiβi−1β′
]

=

(
r
i

)
rdi−1

1

[
(r − i)αr−i−1

(
f ′(1− αr−1)

d1f(1− αr−1)

)
f ′(1− αr−1)iβi

+ αr−iif ′(1− αr−1)i−1f ′′(1− αr−1)(−αr−2)

(
f ′(1− αr−1)

d1f(1− αr−1)

)
βi

+ αr−if ′(1− αr−1)iiβi−1

(
− 1

f(1− αr−1)

)]

=

(
r
i

)
rdi−1

1

[
(r − i)αr−i−1βif ′(1− αr−1)i+1

d1f(1− αr−1)
− iα2r−i−2βif ′(1− αr−1)if ′′(1− αr−1)

d1f(1− αr−1)

− iαr−iβi−1f ′(1− αr−1)i

f(1− αr−1)

]
(2.15)

Meanwhile, substituting the proposed solution to the RHS of (2.12) yields(
i+ 1

βf(1− αr−1)

)(( r
i+1

)
rdi1

αr−i−1f ′(1− αr−1)i+1βi+1

)
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−

 i

βf(1− αr−1)
+

2i

(
(r2)
rd1
αr−2f ′(1− αr−1)2β2

)
· β(1− αr−1)2f ′′(1− αr−1)

βf(1− αr−1) ·
(
β(1− αr−1)f ′(1− αr−1)

)2


×

( (
r
i

)
rdi−1

1

αr−if ′(1− αr−1)iβi

)
which after simplification matches line (2.15).

2.2.1 Estimating the stopping point of the independent process

The process ends when M0(i) = 0 and we know that M0(i) ≈ m0(t)n = β(t)f(1 −
α(t)r−1)n, so we anticipate that the final value of t is the smallest t such that either
β(t) = γ(α(t)) = 0 or α(t) = 1 (since f(0) = 0). So the question is which of β−1(0) =
α−1(γ−1(0)) and α−1(1) is smaller. Note that since f ′(1) = d1 and f ′ is strictly increasing,
by (1.7) we have that γ(1) < 0. Since γ is decreasing this means that γ−1(0) < 1. Since
α is increasing we have that α−1 is also increasing and so α−1(γ−1(0)) < α−1(1). Thus we
anticipate that the process runs until time

tend := β−1(0)

and outputs an independent set of size roughly β−1(0)n.

3 Dynamic concentration and final proofs

We will use the following theorem from [28].

Theorem 10 (Warnke). Let ν, n > 1 be integers. Let D ⊆ Rν+1 be a connected and
bounded open set and let D+ be the set of points in D with only nonnegative coordinates.
Let (Fi)16i6ν be functions with Fi : D+ → R. Let F0 ⊆ F1 ⊆ · · · be σ-fields. Suppose
that the random variables ((Yi(j))16i6ν are nonnegative and Fj-measurable for j > 0.
Furthermore, assume that, for all j > 0 and 1 6 i 6 ν, the following conditions hold
whenever (j/n, Y1(j)/n, . . . , Yν(j)/n) ∈ D+

(i) |E [Yi(j + 1)− Yi(j)|Fj]− Fi(j/n, Y1(j)/n, . . . , Yν(j)/n)| 6 δ, where the function Fi
is L-Lipschitz-continuous on D+ (the ‘Trend hypothesis’ and ‘Lipschitz hypothesis’),

(ii) |Yi(j+1)−Yi(j)| 6 θ (the ‘Boundedness hypothesis’), and that the following condition
holds initially:

(iii) max16i6ν |Yi(0)− ŷin| 6 λn for some (0, ŷ1, . . . , ŷν) ∈ D+ (the ‘Initial condition’).

Then there are R = R(D, (Fi)16i6ν , L) ∈ [1,∞) and T = T (D) ∈ (0,∞) such that,
whenever λ > δmin{T, L−1}+R/n, with probability at least 1−2ν exp{−nλ2/(8Tθ2)} we
have

max
06j6σn

max
16i6ν

|Yi(j)− yi(j/n)n| < 3 exp{LT}λn
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where (yi(t))16i6ν is the unique solution to the system of differential equations y′i(t) =
Fi(t, y1(t), . . . , yν(t)) with yi(0) = ŷi for 1 6 i 6 ν, and σ = σ(ŷ1, . . . , ŷa) ∈ [0, T ] is
any choice of σ > 0 with the property that (t, y1(t), . . . , yν(t)) has `∞-distance at least
3 exp{LT}λ from the boundary of D for all t ∈ [0, σ).

3.1 Proof of Theorem 2

Proof of Theorem 2. We apply Theorem 10. For this application we have ν = ∆ and by
equation (2.1)

Fi(t, y1, . . . , y∆) =

(
(i+ 1)r(r − 1)m2

m2
1

)
yi+1 −

(
ir

m1

+
ir(r − 1)m2

m2
1

)
yi

where m1,m2 are still as defined in (2.4) and y∆+1 is always 0. For our initial condition
we have ŷi = ni/n. We will let the region D = D(ε) be

D :=

{
(t, y1, . . . , y∆) ∈ R∆+1 : −ε < t <

2

r
, yi > −ε, ε < m1 < 2

∆∑
i=1

ini/n

}

which is clearly open, bounded and connected, and for ε small enough contains the point
(0, n1/n, . . . , n∆/n) (where we have m1 =

∑∆
j=1 ini/n). Note that (see condition (i) in

Theorem 10 and equation (2.1)) we may use δ = O(∆2/n) = o(n−1/3). Since Fi can be
written as a rational function whose denominator ism2

1, we can takeR = O(1/m2
1) = O(1).

Also note that Fi is L-Lipschitz continuous for L = O(1/m3
1) = O(1) on D+. Since the

number of vertices incident with edges revealed in any single step is at most 2∆ − 1,
we can use θ = O(∆). We use T = 2/r = O(1). Thus, Theorem 10 gives us a failure
probability of at most

2ν exp{−nλ2/(8Tθ2)} = 2∆ exp{−Ω
(
nλ2/∆2

)
} = o(1)

assuming we choose, say λ = n−1/10.
Furthermore, we can see that the only way the solution to the system of differential

equations can ever leave D is at a point where m1 =
∑∆

i=1 izi = ε. Indeed, since a and c
are decreasing and a(0) = c(0) = 1 we have that a(t), c(t) 6 1 for all t and so

m1(t) = a(t)f ′(c(t)) 6 1 · f ′(1) =
∆∑
i=1

ini/n.

Also, clearly yi > 0 for all i. Thus, the only inequality defining D that our solution can
ever fail to satisfy is ε 6 rm1. We apply Theorem 10, and conclude that our discrete
random variables Yi(j) are well approximated by their continuous counterparts nyi(j/n),
for all values of j 6 tεn, where tε is the value of t such that m1(t) = ε (i.e. for values of
j corresponding to points in the region D defined above). Note that

m′1 = a′f ′(c) + af ′′(c)c′ 6 −r
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by equations (2.5) and (??). Since m1(tend) = 0 we have

tend −
ε

r
6 tε 6 tend.

We use this to bound the final size of the matching. If we run the process to step jε := tε ·n
then by Theorem 10 whp we arrive at some configuration with rM(jε) = εn(1 + o(1))
many points. At this point our matching already has jε = tεn > (tend − ε)n many
edges. Also, even if every edge remaining is added to our matching, the final matching
will have only εn(1 + o(1)) more edges. Thus the maximum possible number of edges
is (tend + ε+ o(1))n 6 (tend + 2ε)n. Altogether the final matching w.h.p. has between
(tend − ε)n and (tend + 2ε)n many edges. Since ε > 0 is arbitrary we are done.

3.2 Proof of Theorem 5

Proof of Theorem 5. We apply Theorem 10. Since we have two types of variables (Vi and
Li), when we check condition (i) we will use functions Fvi(t, v1, . . . , v∆, `1, . . . , `r) and
F`i(t, v1, . . . , v∆, `1, . . . , `r) to represent the approximate one-step change in Vi and Li,
respectively. For this application we have by equation (2.9)

Fvi(t, v1, . . . , v∆, `1, . . . , `r) = − vi
m0

(
1 +

i · 2`2

m1

)
where m0,m1,m2 are still as defined in (2.4) and `r+1 is always 0. By equation (2.10) we
have

F`i(t, v1, . . . , v∆, `1, . . . , `r) =

(
i+ 1

m0

)
`i+1 −

(
i

m0

+
2i`2m2

m0m2
1

)
`i.

For our initial condition we have by (2.13) that v̂i = ni/n, ˆ̀
r = d1/r, and ˆ̀

1 = · · · =
ˆ̀
r−1 = 0. We will let the region D = D(ε) be{

(t, v1, . . . , v∆, `1, . . . , `r) ∈ R∆+r+1 : −ε < t < 2, vi > −ε, −ε < `i <
d1

r
, ε < m0 < 2

}
which is clearly open, bounded and connected, and for ε < 1 contains the point

(0, n1/n, . . . , n∆/n, 0, . . . , d1/r) (where we have m0 = 1).
Note that (see condition (i) in Theorem 10 and s (2.9), (2.10)) we may use δ =

O(∆4/n). For the Lipschitz condition, note that m0 6 m1 6 ∆m0 and that Fvi , F`i can
be written as rational functions whose denominator is m0m

2
1 > ε3 on D. Thus Fi is L-

Lipschitz continuous (for some L = L(ε) = O(1)) on D. We have |Vi(j+1)−Vi(j)| = O(∆)
since at most one vertex is chosen for the independent set and at most ∆ become closed
in one step. Similarly we have |Li(j+ 1)−Li(j)| = O(∆2), and so we will use θ = O(∆2).
Thus, Theorem 10 gives us a failure probability of at most

2ν exp{−nλ2/(8Tθ2)} = O(∆) exp{−Ω
(
nλ2/∆2

)
} = o(1)

assuming we choose, say λ = 1/ log n.
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Furthermore, we can see that the only way the solution to the system of differential
equations can ever leave D is at a point where m0 =

∑∆
i=1 vi = ε. Indeed, the vi are

always initially nonnegative and v∆ is initially positive. By equation (2.11), each vi is
nonincreasing as long as they are all nonnegative and v∆ is positive. Let tε be the smallest
value of t such that m0(t) = ε.

Note that when m0 = βf(1−αr−1) = ε, since α is increasing and f is increasing, that
f(1 − αr−1) > κ := f(1 − γ−1(0)r−1) and κ is positive and depends only on the initial
degree distribution n. Therefore β 6 ε/κ and since β = γ ◦ α is decreasing, we have
tε > β−1

(
ε
κ

)
. Now since

β′ = − 1

f(1− αr−1)
∈
[
−1

κ
, 0

)
we have (β−1)′ ∈ [−κ, 0) and so

tend > tε > β−1
( ε
κ

)
> β−1(0)− ε

κ
· κ = tend − ε.

Thus w.h.p. the process lasts at least until step jε := tεn, at which point there are
(1 + o(1))εn open vertices. At that point our independent set already has size tεn >
(tend− ε)n, and even if all open vertices were ultimately added to the independent set, its
final size would be at most (tε + 2ε)n 6 (tend + ε)n. Thus w.h.p. the final independent
set has size between (tend − ε)n and (tend + ε)n and we are done.

4 Upper bounds for the regular case

In this section we provide some upper bounds for the likely size of the largest matching
and largest independent set in a random regular hypergraph. These bounds follow from
the first moment method.

4.1 Matchings

Let X be the number of matchings of size cn in the hypergraph H ∼ H(n, r,∆). Then
we have

E[X] =

(
∆n
r

cn

)
(n)rcn∆rcn(∆n− rcn)!

(∆n)!
. (4.1)

Indeed,
(∆n

r
cn

)
is the number of ways to choose our cn edges, and the probability that set

of edges forms a matching is calculated as follows: the rcn points in our matching edges
must choose distinct vertices to pair with (this can be done in (n)rcn ways); then in each
of the aforementioned vertices we must choose one of its ∆ points to pair with the point
from the matching edge, which can be done in ∆crn ways; then we pair the rest of the
points, and finally divide by the total number of ways we could have paired all the points.

Now by Stirling’s formula we have x! =
(
x
e

)x · exp{o(x)} as x→∞. We let

h(x) :=

{
x log x, x > 0
0, x = 0.
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Thus (4.1) becomes (
∆n
r

)
! n! ∆rcn (∆n− rcn)!

(cn)!
(

∆n
r
− cn

)
! (n− rcn)! (∆n)!

=

(
∆n
er

)∆n
r
(
n
e

)n
∆rcn

(
∆n−rcn

e

)∆n−rcn

(
cn
e

)cn ( ∆n
r
−cn
e

)∆n
r
−cn (

n−rcn
e

)n−rcn (∆n
e

)∆n

exp{o(n)}

which equals

exp

{[
h

(
∆

r

)
+ rc log ∆ + h(∆− rc)− h(c)− h

(
∆

r
− c
)
− h(1− rc)− h(∆)

]
n+ o(n)

}
(4.2)

To see (4.2), note that we can cancel a large power of n/e. Thus E[X] goes to 0 so long
as we choose c such that

h

(
∆

r

)
+ rc log ∆ + h(∆− rc)− h(c)− h

(
∆

r
− c
)
− h(1− rc)− h(∆) < 0.

At this point we must resort to numerical methods. For a few values of r,∆ we provide
in Table 2 some upper bounds on the maximum matching size in H(n, r,∆) that were
verified using the above inequality in Maple.

The tables below give bounds (which hold w.h.p.) on the maximum matching in
H(n, r,∆) for a few small values of r,∆. By Corollary 4 these bounds also hold for
hypergraphs of high girth. In Table 1, the (r,∆) entry b indicates that for any sequence
of r-uniform ∆-regular hypergraphs Hn with n vertices, Hn has a matching that leaves
at most bn+ o(n) vertices unmatched, given by the matching process.

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5
r = 3 0.250 0.250 0.239 0.227
r = 4 0.334 0.342 0.334 0.324
r = 5 0.397 0.411 0.406 0.397

Table 1: Upper bounds.

In Table 2 the (r,∆) entry b indicates that w.h.p. any matching in H(n, r,∆) must
leave at least bn+ o(n) vertices unmatched. Note that this implies there exist r-uniform
∆-regular hypergraphs of arbitrarily high girth such that every matching leaves bn+ o(n)
vertices unmatched.

4.2 Independent sets

First we discuss the possibility that H(n, r,∆) has an independent set matching a certain
trivial upper bound. In particular, note that for ∆ > 1, any independent set in a r-uniform
∆-regular hypergraph has size at most r−1

r
n. Indeed, the complement of an independent
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∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5
r = 3 0.081 0.052 0.029 0.012
r = 4 0.158 0.138 0.116 0.096
r = 5 0.222 0.211 0.192 0.174

Table 2: Lower bounds.

set is a vertex-covering of the edges. Since each vertex covers at most ∆ edges and there
are n∆/r edges to cover, any vertex-cover must have at least n/r vertices.

Now we will see that for certain r,∆ that w.h.p. H(n, r,∆) has an independent set of
size r−1

r
n (we assume r divides n of course). We accomplish this by showing that there is

a vertex-cover with n/r vertices. To see this, recall that our random hypergraph model is
generated from a random pairing of the points in A to the points in B, where A (resp. B)
is the union of disjoint sets we interpret as edges (resp. vertices). Note that we may swap
the roles of A and B to obtain H(n∆/r,∆, r) instead of H(n, r,∆). Now a vertex cover
of size n/r in H(n, r,∆) corresponds to a set of n/r edges in H(n∆/r,∆, r) covering all
the vertices, i.e. a perfect matching. Thus for fixed r,∆, it holds that w.h.p. H(n, r,∆)
has an independent set of size r−1

r
n if and only if it holds that w.h.p. H(n∆/r,∆, r) has

a perfect matching. Now we appeal to the result of Cooper, Frieze, Molloy and Reed [9]
(see equation (1.4)) to obtain the following corollary:

Corollary 11 (Corollary to [9]). For r > 2,∆ > 3 we have

lim
n→∞

P
[
α(H(n, r,∆)) =

r − 1

r
n

]
=

{
1 if ∆ < σr

0 if ∆ > σr

where σr := log r

(r−1) log( r
r−1)

+ 1.

Note, for example that w.h.p. α(H(n, r,∆)) = r−1
r
n when ∆ = 2 and r > 3, or when

∆ = 3 and r > 7.
Now we address the cases where w.h.p. α(H(n, r,∆)) < r−1

r
n. We will use the first

moment method. Let Y be the number of independent sets of size cn in H(n, r,∆). Then
we have

E[Y ] =
∑

s0+···+sr−1= ∆n
r

s1+2s2+···+(r−1)sr−1=∆cn

(
n

cn

)( ∆n
r

s0, . . . , sr−1

) ∏
06j6r−1

(
∆

j

)sj

 (∆cn)!(∆n−∆cn)!

(∆n)!
(4.3)

Indeed,
(
n
cn

)
is the number of ways to choose our cn vertices, and the probability that

set of vertices forms an independent set is calculated as follows. Let Sj be the set of
edges containing exactly j vertices from the independent set, and sj = |Sj|. So of course
Sr = ∅, the total number of edges is s0 + · · ·+ sr−1 = ∆n

r
and the number of points in the

independent set is s1 +2s2 + · · ·+(r−1)sr−1 = ∆cn. We designate our edges in
( ∆n

r
s0,...,sr−1

)
ways. For each j and each edge in Sj we then choose j of its points to be paired to points
in the independent set, accounting for the

∏
06j6r−1

(
∆
j

)sj
. Once that is done we just have
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to pair the ∆cn points in our independent set to the appropriate points on the other side,
and then pair off the other ∆n−∆cn vertex points.

The number of terms in (4.3) is only polynomial, so the sum will go to 0 if each
term is exponentially small. We fix some s0, . . . , sr−1 as described in the sum, and we let
xj := sj/n. Using Stirling’s formula, the corresponding term is

n!
(

∆n
r

)
! (∆cn)! (∆n−∆cn)!

(cn)! (n− cn)! s0! · · · sr−1! (∆n)!

∏
06j6r−1

(
r

j

)sj
= exp

{[
h

(
∆

r

)
+ h(∆c) + h(∆(1− c)) + x1 log

(
r

1

)
+ · · ·+ xr−1 log

(
r

r − 1

)
− h(c)− h(1− c)− h(x0)− · · · − h(xr−1)− h(∆)

]
n+ o(n)

}
(4.4)

where we have used Stirling’s formula, cancelled a large power of n/e. We let

f(x0, . . . , xr−1) := h

(
∆

r

)
+ h(∆c) + h(∆(1− c))− h(c)− h(1− c)− h(∆)−

∑
06j6r−1

xj log
xj(
r
j

)
be the coefficient of n in the exponent of (4.4). Let us summarize what we know so far.

If for some fixed ∆, r, c we have that f(x0, . . . , xr−1) < 0 for all x0, . . . , xr−1 satisfying

xj > 0, x0 + · · ·+ xr−1 =
∆

r
, x1 + 2x2 + · · ·+ (r − 1)xr−1 = ∆c (4.5)

then w.h.p. α(H(n, r,∆)) < cn. Thus we are interested in maximizing f subject to (4.5).

Claim 12. Fix r > 3, ∆ > 2, and 0 < c < r−1
r
. The maximum of f subject to (4.5) is

given by

h

(
∆

r

)
+ h(∆c) + h(∆(1− c))− h(c)− h(1− c)− h(∆)− ∆

r
log z1 − c∆ log z2

where z2 is the unique positive number such that

z2

[
(z2 + 1)r−1 − zr−1

2

]
(z2 + 1)r − zr2

= c

and

z1 =
∆

r [(z2 + 1)r − zr2]
.

Proof. First we prove that the maximum cannot occur at a point that has xk = 0 for any
k. Consider an arbitrary point (x0, . . . , xr−1) satisfying (4.5) and with xk = 0. Note that
we must have at least one positive xi. We consider two cases:

(i) there exist two distinct positive entries x`, xm > 0
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(ii) we only have one positive x` and xj = 0 for all j 6= `.

In case (i), we let ~x = (x0, . . . , xr−1) and let ~y = (y0, . . . , yr−1) where yk = 1, y` =
k−m
m−` , ym = `−k

m−` and all other coordinates are 0. Since yk is positive, for t > 0 small
enough we have that ~x+ t~y satisfies the constraints (4.5). Now note that for t > 0 small
enough

f(~x+ t~y)− f(~x)

= xi log
xi(
r
i

) + xj log
xj(
r
j

) − (xi + tyi) log
xi + tyi(

r
i

) − (xj + tyj) log
xj + tyj(

r
j

) − t log
t(
r
k

)
= O(t)− t log t > 0

where the last line follows from Lipschitz continuity of the terms xi log xi

(ri)
and xj log

xj

(rj)
.

We conclude that ~x is not optimal.
In case (ii), the constraints (4.5) give us

x` =
∆

r
=

∆c

`

so that c = `
r
. Since we assume 0 < c < r−1

r
we have ` 6= 0, r− 1. We now argue that ~x is

nonoptimal similarly to case (i). Choose m, k such that 0 6 m < ` < k 6 r−1, and again
let ~y = (y0, . . . , yr−1) where yk = 1, y` = k−m

m−` , ym = `−k
m−` and all other coordinates are 0.

Now since both yk, ym are positive, for t > 0 small enough we have that ~x + t~y satisfies
the constraints (4.5). Similarly to case (i) we find that f(~x+ t~y) > f(~x) for small positive
t as well. Thus, the maximum cannot occur at any point with any zero coordinates.

We use the method of Lagrange multipliers. At any maximum of f satisfying the
constraints (4.5) there must exist some λ1, λ2 such that

log

(
r

j

)
− log xj − 1 = λ1 + jλ2

which implies

xj =

(
r

j

)
e−1−λ1−jλ2 = z1

(
r

j

)
zj2 (4.6)

where z1 := e−1−λ1 and z2 := e−λ2 . Plugging the above into line (4.5) yields

∆

r
=

r−1∑
j=0

xj =
r−1∑
j=0

z1

(
r

j

)
zj2 = z1 [(z2 + 1)r − zr2] (4.7)

and

∆c =
r−1∑
j=0

jxj =
r−1∑
j=1

z1j

(
r

j

)
zj2 =

r−1∑
j=1

z1r

(
r − 1

j − 1

)
zj2 = rz1z2

[
(z2 + 1)r−1 − zr−1

2

]
. (4.8)
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Dividing (4.8) by (4.7) yields that

z2

[
(z2 + 1)r−1 − zr−1

2

]
(z2 + 1)r − zr2

= c (4.9)

and we can easily solve for z1 in (4.7) to get

z1 =
∆

r [(z2 + 1)r − zr2]
. (4.10)

Finally, note that for these xj (from (4.6)) we have

−
∑

06j6r−1

xj log
xj(
r
j

)
= −

∑
06j6r−1

z1

(
r

j

)
zj2 log

(
z1z

j
2

)
= −

∑
06j6r−1

z1

(
r

j

)
zj2 (log z1 + j log z2)

= −z1 log z1

∑
06j6r−1

(
r

j

)
zj2 − rz1z2 log z2

∑
06j6r−1

(
r − 1

j − 1

)
zj−1

2

= −z1 log z1 [(1 + z2)r − zr2]− rz1z2 log z2

[
(1 + z2)r−1 − zr−1

2

]
= −h(z1) [(1 + z2)r − zr2]− rz1h(z2)

[
(1 + z2)r−1 − zr−1

2

]
= −∆

r
log z1 − c∆ log z2

where on the last line we have used (4.9) and (4.10).

The tables below give bounds (which hold w.h.p.) on the maximum independent set
in H(n, r,∆) for a few small values of r,∆. In Table 3 the (r,∆) entry b indicates that
w.h.p. α(H(n, r,∆)) > bn + o(n) (and an independent set of that size is given by the
independent process). By Nie and Verstraëte [22] these bounds also extend to high-girth
hypergraphs.

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5
r = 3 0.614 0.567 0.531 0.503
r = 4 0.708 0.670 0.640 0.616
r = 5 0.765 0.733 0.708 0.688

Table 3: Lower bounds.

In Table 4 the (r,∆) entry b indicates that w.h.p. α(H(n, r,∆)) 6 bn + o(n). The
∆ = 2 column is the trivial bound (r− 1)/r (and we know these bounds are tight), while
the other columns are using Claim 12. Note that this implies the existence of r-uniform
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∆-regular hypergraphs of high girth whose independence number satisfies the same upper
bound.

∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5
r = 3 0.667 0.651 0.624 0.600
r = 4 0.750 0.744 0.724 0.706
r = 5 0.800 0.798 0.784 0.769

Table 4: Upper bounds.

5 Concluding remarks and Open questions

The most compelling open questions at the moment are about regular hypergraphs of
high girth. Tables 1 through 4 provide bounds on the matching number and independence
number.

Open Problem 13. How much can the entries in Tables 1 through 4 be improved?

Tables 1 and 3 can most likely be improved by analyzing algorithms slightly better than
the greedy algorithms. Tables 2 and 4 might also be improved by a more sophisticated
first-moment argument (see for example McKay [21]). It may also be of interest to try to
construct r-uniform ∆-regular hypergraphs of large girth whose independence number (or
matching number) is even smaller than H(n, r,∆). More precisely consider the following:

Open Problem 14. Fix some r > 3. Does there exist some ∆ = ∆(r) large enough
such that every sequence Hn of r-uniform ∆-regular hypergraphs on n vertices with girth
tending to infinity has a matching that covers all but at most o(n) vertices?

Recall that Cooper, Frieze, Molloy and Reed [9] proved that H(n, r,∆) w.h.p. has
a perfect matching for all ∆ large enough with respect to r. Note that for r = 2 it is
known that the answer to the above question is positive (for any ∆ > 1). Indeed, Bohman
and Frieze [4] showed that the Karp-Sipser algorithm produces a matching covering all
but o(n) vertices in random regular graphs. Since Karp-Sipser is a local algorithm, the
results of Hoppen and Wormald [16] apply, meaning that Karp-Sipser actually performs
approximately the same on all regular graphs of high girth (for an alternative, non-
algorithmic, approach to the same problem, see Flaxman and Hoory [13]). So for r = 2
the above open question can actually be settled with a local algorithm; thus it seems
worthwhile to try the same approach for r > 3.

We finish with a question about our main theorems:

Open Problem 15. Which conditions in Theorems 2 and 5 can be weakened? What are
the weakest assumptions necessary?
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