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Abstract

A k-uniform tight cycle is a k-uniform hypergraph with a cyclic ordering of
its vertices such that its edges are all the sets of size k formed by k consecutive
vertices in the ordering. We prove that every red-blue edge-coloured KT(L4) contains
a red and a blue tight cycle that are vertex-disjoint and together cover n — o(n)
vertices. Moreover, we prove that every red-blue edge-coloured K}({r’) contains four
monochromatic tight cycles that are vertex-disjoint and together cover n — o(n)
vertices.

Mathematics Subject Classifications: 05C65, 05C35, 05C70

1 Introduction

An r-edge-colouring of a graph (or hypergraph) is a colouring of its edges with r colours.
A monochromatic subgraph of an r-edge-coloured graph is one in which all the edges have
the same colour.

Lehel conjectured that every 2-edge-colouring of the complete graph on n vertices
admits a partition of the vertex set into two monochromatic cycles of distinct colours,
where the empty set, a single vertex and a single edge are considered to be degenerate
cycles. This conjecture was proved for large n by Luczak, Rodl and Szemerédi [16] using
Szemerédi’s Regularity Lemma. Allen [1] improved the bound on n by giving a different
proof. Finally Bessy and Thomassé [3] proved Lehel’s conjecture for all n > 1.

Similar problems have also been considered for colourings with a general number of
colours. In particular, a lot of attention has been given to the problem of determining
the number of monochromatic cycles that are needed to partition an r-edge-coloured
complete graph. Erdés, Gyarfas and Pyber [6] proved that every r-edge-coloured complete
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graph can be partitioned into O(r?logr) monochromatic cycles and conjectured that r
monochromatic cycles would suffice. Their result was improved by Gyarfas, Ruszinko,
Sarkozy and Szemerédi [11] who showed that O(r log r) monochromatic cycles are enough.
However, Pokrovskiy [17] disproved the conjecture and proposed a weaker version of the
conjecture that each r-edge-coloured complete graph contains » monochromatic vertex-
disjoint cycles that together cover all but at most ¢, of the vertices, where ¢, is a constant
depending only on r. Pokrovskiy [18] subsequently proved that we can take c3 < 43000
for large enough n.

Recently, generalisations of Lehel’s conjecture to hypergraphs have also been consid-

ered. For any positive integer k, a k-uniform hypergraph, or k-graph, H is an ordered

pair of sets (V(H), E(H)) such that E(H) C (V(kH)), where (i) is the set of all subsets

of S of size k. We abuse notation by identifying the k-graph H with its edge set E(H).

Hence by |H| we mean the number of edges of H. Let K be the complete k-graph on n
vertices.

In k-graphs there are several notions of cycle. For integers 1 < ¢ < k < n, a k-graph C'
on n vertices is called an ¢-cycle if there is an ordering of its vertices V/(C) = {vo, ..., vp-1}
such that E(C) = {{Vik—e)s - - -, Vige—o)4h-1}: 0 < i < n/(k — ) — 1}, where the indices
are taken modulo n. That is, an ¢-cycle is a k-graph with a cyclic ordering of its vertices
such that its edges are sets of k consecutive vertices and consecutive edges share exactly ¢
vertices. (Note that k — ¢ divides n.) A single edge or any set of fewer than k vertices is
considered to be a degenerate {-cycle. Further, 1-cycles and (k — 1)-cycles are called loose
cycles and tight cycles, respectively.

For loose cycles, Gyérfds and Sarkozy [9] showed that every r-edge-coloured com-
plete k-graph on m vertices can be partitioned into c¢(k,r) monochromatic loose cycles.
Sarkozy [19] showed that, for n sufficiently large, 50krlog(kr) loose cycles are enough.
For tight cycles, Bustamante, Corsten, Frankl, Pokrovskiy and Skokan [4] showed that
every r-edge-coloured complete k-graph can be partitioned into C(k,r) monochromatic
tight cycles. See [10] for a survey on other results about monochromatic cycle partitions
and related problems.

In this paper, we investigate monochromatic tight cycle partitions in 2-edge-coloured
complete k-graphs on n vertices. When k£ = 3, Bustamante, Han and Stein [5] showed
that there exist two vertex-disjoint monochromatic tight cycles of distinct colours cov-
ering all but at most o(n) of the vertices. Recently, Garbe, Mycroft, Lang, Lo and
Sanhueza-Matamala [7] proved that two monochromatic tight cycles are sufficient to cover
all vertices. However, these cycles may not be of distinct colours. First we show that for
all k£ > 3, there are arbitrarily large 2-edge-coloured complete k-graphs that cannot be
partitioned into two monochromatic tight cycles of distinct colours.

k)

Proposition 1. For allk > 3 and m > k+1, there exists a 2-edge-colouring of Klg(m+1)+1

that does not admit a partition into two tight cycles of distinct colours.

It is natural to ask whether we can cover almost all vertices of a 2-edge-coloured
complete k-graph with two vertex-disjoint monochromatic tight cycles of distinct colours.
The case when k = 3 is affirmed in [5]. Here, we show that this is true when k = 4.
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Theorem 2. For every e > 0, there exists an integer ny such that, for alln > ny, every 2-
edge-coloured complete 4-graph on n vertices contains two vertex-disjoint monochromatic
tight cycles of distinct colours covering all but at most en of the vertices.

When k£ = 5, we prove a weaker result that four monochromatic tight cycles are
sufficient to cover almost all vertices.

Theorem 3. For every e > 0, there exists an integer ny such that, for alln > ny, every 2-
edge-coloured complete 5-graph on n vertices contains four vertez-disjoint monochromatic
tight cycles covering all but at most en of the vertices.

To prove Theorems 2 and 3, we use the connected matching method that has often
been credited to Luczak [15]. We now present a sketch proof for Theorem 2. Consider a 2-
edge-coloured complete 4-graph K on n vertices. We start by a%)lying the Hypergraph
Regularity Lemma to the 2-edge-coloured complete 4-graph KV, More precisely the
Regular Slice Lemma of Allen, Béttcher, Cooley and Mycroft [2], see Lemma 11. We
obtain a 2-edge-coloured reduced graph R that is almost complete. A monochromatic
matching in a k-graph is a set of vertex-disjoint edges of the same colour. We say that it
is tightly connected if, for any two edges f and f’, there exists a sequence of edges ey, ..., e;
of the same colour such that ey = f, ¢, = f' and |e;Ne;pq| =k — 1 for all i € [t — 1].
Using Corollary 20, it suffices to find two vertex-disjoint monochromatic tightly connected
matchings of distinct colours in the reduced graph R. The main challenge is to identify
the ‘tightly connected components’ (see Section 2 for the formal definition) in which we
will find the matchings. To do so, we introduce the concept of ‘blueprint’, which is a 2-
edge-coloured 2-graph with the same vertex set as R. The key property is that connected
components in the blueprint correspond to tightly connected components in R.

We conclude the introduction by outlining the structure of the paper. In Section 2, we
introduce some basic notation and definitions. In Section 3, we prove Proposition 1. In
Section 4, we introduce the statements about hypergraph regularity and prove the crucial
Corollary 20 that allows us to reduce our problem of finding cycles in the complete graph
to one about finding tightly connected matchings in the reduced graph. In Section 5,
we give the definition of blueprint and setup some useful results. In Sections 6 and 7,
we prove Theorems 2 and 3, respectively. Finally, we make some concluding remarks in
Section 8.

2 Preliminaries

If we say that a statement holds for 0 < a < b < 1, then we mean that there exists a
non-decreasing function f: (0, 1] — (0, 1] such that the statement holds for all a,b € (0, 1]
with a < f(b). Similar expressions with more variables are defined analogously. If 1/n
appears in one of these expressions, then we implicitly assume that n is a positive integer.

We often write z; ... x; for the set {z1,...,z;}. Moreover, for each positive integer n,
we let [n] ={1,...,n}.
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Throughout this paper, any 2-edge-colouring uses the colours red and blue. Let H be
a 2-edge-coloured k-graph. We denote by H™¢ (and H"“¢) the subgraph of H on V(H)
induced by the red (and blue) edges of H. Two edges f and f’ in H are tightly connected if
there exists a sequence of edges ey, ..., e; such that e; = f, e, = f" and |e; Nejq| =k —1
for all ¢ € [t — 1]. A subgraph H' of H is tightly connected if every pair of edges in H’
is tightly connected in H. A maximal tightly connected subgraph of H is called a tight
component of H. Note that a tight component is a subgraph rather than a vertex subset as
in the traditional graph case. A red tight component and a red tightly connected matching
are a tight component and a tightly connected matching in H™4, respectively. We define
these terms similarly for blue.

Let H be a k-graph and S;W C V(H). We denote by H — W the k-graph with
VIH-W)=VH)\W and E(H-W) ={ec E(H):enW =2}. Wecall H—-W
the k-graph obtained from H by deleting W. Further we let HW] = H — (V(H) \ W).
Let I’ be a k-graph or a set of k-element sets. We denote by H — F' the subgraph
of H obtained by deleting the edges in F. We define Ny (S,W) to be the set {e €
(kf[‘/s‘) :eUS € H} and we define dy (S, W) to be its cardinality. Further we write Ny (.5)
and dg(S) for Ny (S,V(H)) and dg (S, V (H)), respectively. If H is 2-edge-coloured, then
we write NE4(S, W), di<d(S, W), Npue(S, W), d¥ue(S, W) for Nyrea(S, W), dgrea(S, W),
Nivre (S, W), dpowe (S, W), respectively. The link graph of H with respect to S, denoted
by Hg, is the (k — |S])-graph satistying V(Hg) = V(H) \ S and E(Hg) = Ny(S5).

For j € [k — 1], the j-th shadow of H, denoted by &?H, is the (k — j)-graph with
vertex set V(0?H) = V(H) and edge set

E(O'H) = {e € (Z(H)) : e C f for some f € E(H)}.

For the 1-st shadow of H, we also simply write OH instead of O'H
For p, o« > 0, we say that a k-graph H on n vertices is (1, ) dense if, for each i € [k—1],
we have dp(S) > p(,",) for all but at most a(7) sets S € (¥ H)) and dy(S) = 0 for all

other S ¢ (V(iH)).

Proposﬂzlon 4. Let 0 < o, < 1 and let H be a (p,«)-dense k-graph on n vertices.
Then |H| = (n—a)(}). Moreover if > 1/2, then H is tightly connected.

Proof. Note that

H=p X aus)z -0, Y -af}).

¥ el

Now suppose that p > 1/2. We show that H is tightly connected. Note that, for
S, 8" e (V(H)) with dy (S),dg(S") > 0, we have dg(S),dy(S’) = un > n/2 and thus

Ny (S)N Ny (S') # @.
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Let f = x;...2 and f' = y;...yx be two edges of H. Iteratively choose vertices
21y .., 2k—1 € V(H) such that

2 € Ny(z1.. . 2zic1®igr - ) DNy (21 Zic1Yiv1 - - - Uk)
for all i € [k — 1]. It follows that f and f’ are tightly connected. H

The following proposition shows that any k-graph that has all but a small fraction of
the possible edges contains a (1 — ¢, «)-dense subgraph. The proof was inspired by the
proof of Lemma 8.8 in [12]. A different generalisation of this lemma can also be found as
Lemma 2.3 in [14].

Proposition 5. Let 1/n < o < 1/k < 1/2. Let H be a k-graph on n vertices with

|H| > (1 - «) (Z) Then there exists a subgraph H' of H such that V(H') =V (H) and H’

is (1 — 204 201/4%)_dense.

Proof. We call a set S C V(H) with |S| € [k — 1] bad if dg(S) < (1 — a1/2)(k_"|5|). For
i € [k — 1], let B; be the set of all bad i-sets. For each i € [k — 1], we have

o))< (e 5 o< ()(2) ()

(")

i< (() =) ()

Let 8 = a'%*. For all j € {k— 1,k —2,...,1} in turn, we construct A; C (V(J.H))
inductively as follows. We set Ay_; = Bi_1. Given 2 < 7 < k — 1 and A;, we define
A C (‘;(_I?) to be the set of all X € (‘;(_I?) such that X € Bj_; or d4,(X) > /*n.

Claim 6. For alli € [k — 1], |A;| < B'(7). Moreover, if 1 <i < j<k—1 and a set
S e (V(H)) satisfies da,(S) = B0~ ( "), then S € A;.

This implies

Proof of Claim. We first prove the first part by induction on k£ —14. For i = k—1, we have
[Apoa| = B <2012(,2,) < B2,

Now suppose 2 < i < k — 1 and |4;| < 5°(7). By double counting tuples (X, w) with
X €A1\ Bi_; and X Uw € A;, we have (| A;_1| — |Bi_1]) 8/?*n < i|A;|. Hence

{ ; n
|A; ] <M|Ai|+|l3i_1| 51/2 5( )+2 1/2(‘_1)

:5i—1/2<7z:11>+2 1/2(2_ ) gi- 1( 1)

This proves the first part of the claim.

ot
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We now prove the second part of the claim. Fix i € [k — 1]. We proceed by induction
on j —i. For j =i+ 1, the statement holds by the definition of A;. Now let S € (V H))
and j > i+ 2 be such that d4,(S) > /2= ( n ) If S € B;, then S € A;. Recall that if

T e (‘;(_f?) \ A;_1, then d, (T) < "/*n. We have

s n
126 )(j_i) <da(S) < Y da(T > du(T)
Tifé‘le Te(”’”)\AJ :
= SCT

<ndy,  (S)+ ﬁl/Qnd(V@)\Ajfl(S)

< ’ 1/2 n
\ndAJq(S)—i_ﬂ n(j—i—l)’

dA.l(S>>51/2<f—i—1>(. n )

jg—t1—1

and thus

Hence by the induction hypothesis we have S € A,;. 0

For each j € [k—1], let F}; be the set of edges e € H for which there exists some S € A,
with S Ce. Let F = Uje[k_” F; and let H' = H — F. We will show that H’ is the desired

k-graph. For i € [k — 1], let S; be the set of all S € (V(Z.H)) such that dp(S) > Y% (" ).
Claim 7. Fori € [k — 1], |S;| < Y2(7).
Proof of Claim. For j € [k — 1], we have

n—j\ Caimé /n\ (n—j YEAVEL
m<al (i) " ()G9 -7 0) )

REYNIEEY 5j(];) (Z) Qkﬂ(z)

jelk—1] jelk—1]

Thus

Now, for ¢ € [k — 1], we have

|Sil B2k (k:) ko™
S oy ()

and thus |S;] < BY2("). O
Consider i € [k — 1]. Note that |S; U Bi| < 2o/ (7). Now let S € (V") \ (S, UB;).
As S & B;, we have dy(S) > (1 —a'/?)(,".). As S ¢ S;, we have

() = du(S) — dp() > du(5) - (")

—1
S (1 — ol/2 _ g1/2k n S (1 — 91/4K? n '
> g 1) s a1
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Consider X € ( (" ) with dg(X) # 0. We want to show that dgy/ (X) > (1—2041/4k2)(k’ii).
By the above, it sufﬁces to show that X & B, US;. Let e € H' with X C e. Since ¢ &€ Fj,
we have X ¢ A; and thus X ¢ B;. It remains for us to show that X ¢ S;. Assume the
contrary that X is contained in more that 51/%( Z) edges of F'. Let Y = Np(X), so
V| = pY2R(,",). Foreach Y € Y, fix a set Ay € |J,. 1A such that Ay C X UY and
let Ty = XNAy and Sy = Y\ Ay. If Ay C X, then Ay Q e € H', a contradiction. Hence
Ay \ X # @ for all Y € Y. Thus, for Y € Y, we have |Ty| < |Ay|—1 <k-—2. By an
averaging argument, there exist t € {0,1,..., k—2}, T € ()t(), a€lk—1],5¢€ (k A a)+t)
and 37 C Y such that, for all Y € )7, we have Ty =T, |Ay| =a, Sy = S and

> Y 1/2(k—1)< n )
’y’ g 2i(k = 1) (4" 0sr) > P a—t)

Since Y \ Ay = Sy = S and |[Ay| = a for all Y € Y, the Ay are distinct for all Y € V.
Recall that T C Ay € A, foreach Y € Y. If T = &, then t = 0 and so | A,| > ‘37‘ > 5(7)

contradicting Claim 6. If T # &, then we have d, (T ‘y‘ prAE=D (™). Claim 6
implies that 7" € A;. Since T' C X C e, we have e € F; contradicting the fact that

3 Extremal example

In this section, we prove Proposition 1, that is, we prove that, for & > 3, there exist
arbitrarily large 2-edge-coloured complete k-graphs that do not admit a partition into
two tight cycles of distinct colours.

A k-uniform tight path is a k-graph obtained by deleting a vertex from a tight cycle.
First we need the following proposition.

Proposition 8. Let k > 3, let P and C be a k-uniform tight path and tight cycle,
respectively. We have the following.

(i) If X andY partition V(P) such that |e NY| > 2 for alle € P, then 2(| X|—(k—1)) <
(k—2)|Y]|.

(ii) If X and Y partition V(C) such that [eNY| = 2 for all e € C, then 2|X| <
(k—2)|Y]|.

Proof. We first prove (i). Let M be a matching of maximum size in P. Since each edge
of P contains at least 2 vertices of Y,

|X|<|XﬂV(M)|+|V(P)\V(M)|g(k—2)|M|+k—1<w+k—l.

Now we prove (ii). Since |[eNY| > 2 and |e N X| < k — 2 for each edge e € C, we have

|eﬂX|
X|= -~ NX| == ny
K= 2 len X1 = g a0
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1 k—2 k—2
< - nNY|=-—21v]. O
T enYI= T

We are now ready to give our extremal example. Note that the case k = 3 of the
extremal example is already given in [7]. Recall that, in a k-graph, we consider a single
edge and any set of fewer than k vertices to be degenerate cycles.

Proof of Proposition 1. Let k>3, m > k+1and n=Fk(m+ 1)+ 1. Let X, Y and {z}
be three disjoint vertex sets of K of sizes (k—1m+k—2, m+ 2 and 1, respectively.
We colour an edge e in K" red if 2 € e and [eNY| 2 2 or z € e and [eNY| = 1.

Otherwise we colour it blue. Note that K4 — z has the following 3 monochromatic tight
components:

X XUY XUY
Blz(k)’BQZ{ee( . ):|eﬂY|>2},R:{e€< i >:|eﬂY|:1}.

Note that B; and Bs are blue and R is red. Suppose for a contradiction that Kff) can be
partitioned into a red tight cycle Cr and a blue tight cycle Cp.

First assume z € V(Cg). Since all the red edges containing z are in a red tight
component disjoint from R, we have |V (Cg)| < k. Hence |V(Cg)| = n — |V(Cg)| =
n—k>=kn>kand [V(Cg)NY| =|Y\V(Cg)| =2m+2—(k—1) > 1. So Cpis
not degenerate and Cg C By. Any edge e € Cp contains at least 2 vertices in Y. By
Proposition 8(ii), 2 |V(Cp) N X| < (k —2) |[V(Cp) NY]. It follows that

2k —1)m—-2=2(|X|—-(k—1)) < 2|V(C) N X]|
< (k=2 [V(Cs) N Y| < (k—2) V] = (k- 2)(m +2).
This implies that m < 2, a contradiction.
Hence, we may assume that z € V(Cg). This implies that Cr C R or |V (Cg)| < k—1.
Let TR — ‘V(CR) ﬁX|, Yr = ‘V(CR) ﬂY’, rp = ’V(OB) ﬂX’ and Yyp = |V(OB) ﬂY'

Let Pp be the tight path Cp — 2. Clearly |V (Pg) N X| = zp and |V(Pg) NY| = yp. Since
CrCRor |[V(Cg)| <k -1,

yR<maka|i_’lJ,k—1}:m<|Y|. (1)

Hence, V(Pg) NY # @ and |V (Pg)| = (n — 1) — km > k. We must have Pg C By. By
Proposition 8(i), we have that

2ap — (k1)) < (k- 2)ys. (2)

Thus

k k k
|V(PB)|=9$B+?JB<§yB+k‘—1<§|Y|+k—1:§(m—|—2)+k:—1

<mk=n-1-k.
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This implies that |V (Cg)| > k. Hence Cr C R and thus
TRr = (k — 1)yR (3)
Since zp+2p = |X|=(k—1)m+k—2and yr +yp = |Y| = m + 2, (2) implies
(k—2)(m+2—yr) > 2(|X| —2r — (k- 1))
—o((k— 1ym 4k — 2 (K — yn— (k1))

which implies yg > m — 1. If yg = m — 1, then (3) implies that zgr = (k — 1)(m — 1)
and thus zp = 2k — 3 and yg = 3. Let Pg = vy ...v9. Either the edge vy ...v; or the
edge vgy1 ... v, contains at most one vertex of Y, a contradiction to Pg C By. Thus
we may assume yr > m and since yg < m by (1), we have yg = m. By (3), we have
xgr = (k—1)m and thus zp = k — 2 and yp = 2. Hence, Cp is a copy of K,gl_?l that has a
blue edge containing z and at least two vertices of Y, a contradiction. O]

4 Hypergraph regularity

In this section, we give the formulation of hypergraph regularity that we use, following
closely the presentation of Allen, Béttcher, Cooley and Mycroft [2]. A hypergraph H is
an ordered pair (V(H), E(H)), where E(H) C 2V, Again, we identify the hypergraph
H with its edge set E(#H). A subgraph H' of H is a hypergraph with V(H') C V(H)
and E(H') C E(H). It is spanning if V(H') = V(H). For U C V(H), we define H[U]
to be the subgraph of H with V(H[U]) = U and E(H[U]) = {e € E(H): e C U}. We
call H a complex if ‘H is down-closed, that is if e € H and f C e, then f € H. A k-
complez is a complex with only edges of size at most k. We denote by H(®) the spanning
subgraph of H containing only the edges of size i. Let P be a partition of V() into parts
Vi,...,Vs. Then we say that a set S C V(H) is P-partite if |SNV;| < 1 for all ¢ € [s].
For P' = {V,,,...,V;,} € P, we define the subgraph of H induced by P’, denoted by
H[P'] or H[V},, ..., V;], to be the subgraph of H[|J P’] containing only the edges that are
P’-partite. The hypergraph H is P-partite if all of its edges are P-partite. In this case
we call the parts of P the vertex classes of H. We say that H is s-partite if it is P-partite
for some partition P of V(H) into s parts. Let H be a P-partite hypergraph. If X is a
k-set of vertex classes of H, then we write Hy for the k-partite subgraph of #®*) induced
by |J X, whose vertex classes are the elements of X. Moreover, we denote by Hx< the
k-partite hypergraph with V(Hx<) = JX and E(Hx<) = Uxcx Hx. In particular, if
H is a complex, then Hx< is a (k — 1)-complex because X is a set of size k.

Let 7 > 2, and let P; be a partition of a vertex set V into ¢ parts. Let H; and H;_; be a
P;-partite i-graph and a P;-partite (¢ — 1)-graph on a common vertex set V', respectively.
We say that a P;-partite i-set in V' is supported on H;_; if it induces a copy of the complete
(¢ — 1)-graph Ki(i_l) on i vertices in H; ;. We denote by K;(H;_1) the P;-partite i-graph
on V' whose edges are all P;-partite i-sets contained in V' which are supported on H;_;.
Now we define the density of H; with respect to H;_1 to be

|K;(H;_1) N H;|
A ) = )
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proportion of Pi-partite copies of K" in H;_; which are also edges of H;. More generally,

if Q =(Q1,Q,...,Q,) is a collection of r (not necessarily disjoint) subgraphs of H; i,
we define K;(Q) = J;_, Ki(Q;) and

w0~ G

if |K;(Q)| >0 and d(H; | Q) = 0if |K;(Q)| = 0. We say that H; is (d;, e, r)-reqular with
respect to H;_1, if we have d(H; | Q) = d; + ¢ for every r-set Q of subgraphs of H; 4
with |K;(Q)| > ¢ |K;(H;-1)|. We say that H; is (e, r)-regular with respect to H;_; if there
exists some d; for which H; is (d;, e, r)-regular with respect to H; ;. Finally, given an
i-graph G whose vertex set contains that of H; 1, we say that G is (d;, e, r)-reqular with
respect to H; , if the i-partite subgraph of G induced by the vertex classes of H; i is
(d;, e, r)-regular with respect to H;_ ;. We refer to the density of this i-partite subgraph
of G with respect to H; 1 as the relative density of G with respect to H;_;.

Now let s > k£ > 3 and let H be an s-partite k-complex on vertex classes Vi,..., V.
For any set A C [s], we write Vy for (J,., Vi. Note that, if e € H for some 2 < i < k,
then the vertices of e induce a copy of K~ in H~Y. Therefore, for any set A € ([‘z]),
the density d(H®[V,4] | HE=V[V,]) is the proportion of ‘possible edges’ of H¥[V,4], which
are indeed edges. We say that H is (dy, ..., ds, ek, &, r)-reqular if

(a) forany 2 <i< k—1and any A € ([f]), the induced subgraph H¥[V,] is (d;, e, 1)-
regular with respect to H~1[V,], and

(b) for any A € ([Z]), the induced subgraph H*)[V,] is (dg, ey, 7)-regular with respect
to H(k_l)[VA].

Ford = (dg,...,dy), we write (d, ek, €, 7)-regular to mean (dy, . .., ds, e, €, 7)-regular. We
say that a (kK — 1)-complex J is (to, t1,€)-equitable if it has the following properties.

(a) J is P-partite for some P which partitions V() into ¢ parts, where ¢ty < t < tq, of
equal size. We refer to P as the ground partition of J, and to the parts of P as the
clusters of J.

(b) There exists a density vector d = (dg_1,...,ds) such that, for each 2 <7 < k — 1,
we have d; > 1/t; and 1/d; € N, and J is (d, ¢, ¢, 1)-regular.

For any k-set X of clusters of 7, we denote by Jx the k-partite (k — 1)-graph (Jx<)®b
and call Jx a polyad. Given a (to, t1,€)-equitable (k — 1)-complex J and a k-graph G on
V(J), we say that G is (e, 7)-reqular with respect to a k-set X of clusters of J if there
exists some d such that G is (d, eg, r)-regular with respect to the polyad Jx. Moreover,
we write dg; ;(X) for the relative density of G' with respect to Jx; we may drop either
subscript if it is clear from context.

We can now give the crucial definition of a regular slice.

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(1) (2023), #P1.13 10



Definition 9 (Regular slice). Given ¢,&, > 0,7,t9,t; € N, a graph G and a (k — 1)-
complex J on V(G), we call J a (to,t1,¢,¢e,7)-reqular slice for G if J is (to,t1,€)-
equitable and G is (e, 7)-regular with respect to all but at most e (Z) of the k-sets of
clusters of 7, where t is the number of clusters of 7.

If we specify the density vector d and the number of clusters ¢ of an equitable complex
or a regular slice, then it is not necessary to specify ¢y and ¢; (since the only role of
these is to bound d and t). In this situation we write that J is (-, -, €)-equitable, or is a
(+,+, &, e, r)-regular slice for G.

Given a regular slice J for a k-graph G, we define the d-reduced k-graph Rdj (G) as
follows.

Definition 10 (The d-reduced k-graph). Let & > 3. Let G be a k-graph and let J be a
(to, t1,€, e, 7)-regular slice for G. Then, for d > 0, we define the d-reduced k-graph RJ (G)
to be the k-graph whose vertices are the clusters of 7 and whose edges are all k-sets X
of clusters of J such that G is (g, r)-regular with respect to X and d*(X) > d.

We now state the version of the Regular Slice Lemma that we need, which is a special
case of [2, Lemma 10].

Lemma 11 (Regular Slice Lemma [2, Lemma 10]). Let k > 3. For all positive integers to
and s, positive € and all functions r: N — N and ¢: N — (0,1], there are integers t
and ng such that the following holds for all n > ng which are divisible by t1!. Let K be
a 2-edge-coloured complete k-graph on n vertices. Then there exists a (k — 1)-complex J
on V(K) which is a (to,t1,e(t1), e, 7(t1))-regular slice for both K™ and K"ve.

Given a 2-edge-coloured complete k-graph H we want to apply the Regular Slice
Lemma to H™ and HP™¢. The following lemma shows that in this setting the union of
the corresponding reduced graphs Ry (H™) U R (HP"¢) is almost complete.

Lemma 12 ([7, Lemma 8.5]). Let k > 3. Let K be a 2-edge-coloured complete k-graph and
let J be a (-, €, ep,r)-reqular slice for both K™% and K. Lett be the number of clusters
of J. Then, provided that d < 1/2, we have |Rd‘7(Kred) URT(KP™M)| > (1—2e)(;)-

Proof. Since J is a (-, ¢,¢&p,7)-regular slice for both K™ and KM there are at least
(1 — 2ex)(;) k-sets X of clusters of J such that both K™ and K™ are (e, r)-regular
with respect to X. Let X be such a k-set. Since K™ and K™ are complements of each

other, we have dj..cq(X) + djue(X) = 1. Hence d}...a(X) = 1/2 or djn.(X) = 1/2 and

thus, since d < 1/2, we have X € R (K™4) U R (KPue). 0

Let H be a k-graph. A fractional matching in H is a function w : E(H) — [0, 1]
such that for all v € V(H), w(v) = > . gpecw(e) < 1. The weight of the fractional
matching is defined to be ) ., w(e). A fractional matching is tightly connected if the
subgraph induced by the edges e with w(e) > 0 is tightly connected in H. The following
result from [2] converts a tightly connected fractional matching in the reduced graph into
a tight cycle in the original graph.
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Lemma 13 ([2, Lemma 13]). Let k,r,ng,t be positive integers, and let ¥, e, ex, dy, ..., ds
be positive constants such that 1/d; € N for each 2 < i < k—1, and such that 1/ng < 1/t,

i<<1,5<<€k,d]f,1,...,dg and €k<<'¢,dk,l.

No r k
Then the following holds for all integers n = ng. Let G be a k-graph on n vertices, and J be
a (-, e ex,1)-reqular slice for G with t clusters and density vector (dy_1, . ..,ds). Suppose
that Ri(G) contains a tightly connected fractional matching with weight p. Then G
contains a tight cycle of length € for every { < (1 — ¥)kun/t that is divisible by k.

We use the following fact, lemma and proposition to prove Lemma 18 which is a
stronger version of Lemma 13 that allows us to control the location of the tight cycle.

Fact 14 ([2, Fact 7]). Suppose that 1/my < ¢ < 1/t1,1/t0, 5,1/k < 1/3 and that J is a
(to, t1,€)-equitable (k — 1)-complex with density vector (dg_1,...,ds) whose clusters each
have size m = myq. Let X be a set of k clusters of J. Then

k—1

K(Tx)® )] = (1% Bym* [T ).

1=2

Lemma 15 (Regular Restriction Lemma [2, Lemma 28]). Suppose integers k,m and reals
Q, &, &k, dg,...,dy >0 are such that

1 1
— KL eKep,dp_q,...,dy and ep <L a, —.
m k
For any r,s € N and dy, > 0, set d = (d,...,ds), and let G be an s-partite k-complex
whose vertex classes Vi, ..., Vs each have size m and which is (d, ey, €,7)-regular. Choose
any V! C V; with |V!| = am for each i € [s]. Then the induced subcomplex G[V/U---UV/]

is (d, \/x, Ve, T)-reqular.

The following proposition shows that a refinement of a regular slice is also a regular
slice.

Proposition 16. Let 1/m < ¢ < 1/N,1/tg,1/t1,1/k < 1/3. Let J be a (ty,t1,¢)-
equitable (k — 1)-complex with density vector (dx_1,...,ds) and clusters Vi,..., V; each
of size m. Let V;1,...,Vin be an equipartition of V; for each i € [t]. Then there exists
a (Nto, Nty,\/€)-equitable (k — 1)-complex J with density vector (dk—1,...,d3), ground
partition {V; ;: i € [t],j € [N]} and JVi,... Vil =J.

Proof. We construct j from J as follows. Let the ground partition of j be {Vi;: i €
[t],j € [N]}. Starting with the edges of J we iteratively add additional edges at random
as follows. For each 2 < i < k—1, beginning with ¢+ = 2, we add each i-edge that contains
two vertices that are in vertex classes with the same first index and is supported on the
(1 — 1)-edges independently with probability d;.
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We now show that with high probability jlis the desired (k — 1)-complex. Note that
it suffices to show that with high probability J is (d, v/, /€, 1)-regular.

Let T = U,y JY) and A" = (d;,...,dy). For i € [k — 1], let B; be the event
that J< is not (d<%, /2, \/, 1)-regular. Note that By = @. Consider 2 <i <k —1 and
A€ ([t]X[N]) Let B; 4 be the event that J®[V,] is not (d;, v/z, 1)-regular with respect to
j(i 1) [VA]

Claim 17. Fori € [k—1] and A € ([t X[N]) we have P [BLA | ﬂ] = e~ Um) g5 m — co.

Proof of Claim. Assume B;_; holds. Let A = {(rj,s;): j € [i]}. Define A= {rj:j €
[4)}. If the r; are distinct, then the claim holds by Lemma 15 with G = J[V3] and

« = 1/N. If not all the r; are distinct, then ‘Ki(j(i_l)[VA])‘ > 1 (Hi._l d(.j)) (m/N)i, b

2 j=2"j

Fact 14. Thus for each subgraph Q of 7D [V,] such that | K;(Q)| > vz ’Ki(j@_l) (Val)|,
a Chernoff bound implies that

P [dTOWAl | Q) # d: + VE| B

—P [Hj@[VA] N Ki(Q) ‘ d; | Ki(Q |‘
<2exp (—% (f) di |K2(Q)|> < 2exp (_%if
<o (457 (1) () ) < e

Since there are at most 20™" " choices for Q, the claim follows by a union bound. O

>|\m}

KTV D

Note that if J is not (d,/z, \/z, 1)-regular, then there exists some i € [k — 1] and
A€ ([t]xi[N]) such that B; 4 holds. Further by choosing ¢ minimal we can ensure that B;_;
holds. Thus, by a union bound and Claim 17, we have

[.7 is not (d, v, Ve, 1) regular] % Z ]P’[BLA ﬂm]

i=1 pg(lX IV

Z Z P B | Bi—1] = o(1). n

i=1 pg(19xXIN)
The following lemma is a strengthening of Lemma 13. We believe the constant

and the corresponding condition could be removed if one were to go through the proof of
Lemma 13 to prove a stronger result.
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Lemma 18. Let 1/n < 1/r,e € g, di_1,...,ds and e K &’ < ¢, dy, 5,1/k < 1/3 and
1/n < 1/t such that t divides n and 1/d; € N for all 2 <i < k— 1. Let G be a k-graph
on n vertices and J be a (-, &,ex,1)-regular slice for G. Further, let J have t clusters
Vi, ..., Vi all of size n/t and density vector d = (dy_1,...,ds). Suppose that the reduced
graph Rdjk(G) contains a tightly connected fractional matching ¢ with weight p. Assume
that all edges with non-zero weight have weight at least B. For each i € [t], let W; C V;

be such that |W;| = ((1 — 3€")o(Vi) + €' )n/t. Then G [U
length ¢ for each { < (1 —)kun/t that is divisible by k.

icpy) Wi| contains a tight cycle of

We first explain the main ideas of the proof. We would like to find a regular slice
for G" = G[U,cy Wil so that we can then apply Lemma 13 to G'. The issue is that not
all vertex classes in G’ have the same size. To get around this we take a refinement of
the original partition and use Proposition 16 to find a new regular slice with that ground
partition. The reduced graph for this new regular slice will be a blow up of the original
reduced graph. We can find a corresponding tightly connected matching in this new
reduced graph. Then we simply apply Lemma 13.

Proof of Lemma 18. Let m = n/t and m = |e'm/2]. For cach i € [t], let V; C V;
V, < ¢m/2. By Lemma 15, J[Vi,..., Vi is (-,-,V&)-
equitable with density vector (dg_1,...,ds). Let N = |m/m| and, for each i € [t],
let N; = [(1 —3e)e(Vi) + )N| < [|[W;|/m]. For each i € [t], let Vi1,...,V;n be
an equipartition of V; such that Vit,-.,Vin, € W, Let W = {Vij:ie€lt],j € [N}
and ¢ = ‘W‘ By Proposition 16, there exists a (-, -,£'/4)-equitable (k — 1)-complex J*
with density vector (di-1,...,dz) and ground partition {V;;: i € [t],j € [N]} such that
IVa,... . Vil = T*Vi,...,Vi]. Let J = Jx, that is J is the (k — 1)-complex contained
in J* induced by the vertex classes in W,

Let G be the subgraph of G[|J W] obtained by removing all edges contained in k-tuples
of density less than dj, and in irregular k-tuples. We show that Jis a regular slice for
G. Let X be a set of k clusters of 7. If the k£ clusters in X are all contained in distinct
clusters of J that form a regular k-tuple of density at least dj, then let Y denote the
k-set of these clusters. Note that (GUJ)[Y]is ((d, dk_1, ..., ds), €k, €, r)-regular, for some
d > dj, — g, and thus, by Lemma 15, (GU J)[X] is ((d, dy_1, . . ., ds), VEk, VE, T)-regular.
Hence G is (d, /g, r)-regular with respect to (Jx<)* V. Note that, for all other k-sets of
clusters X, the k-partite subgraph of G induced by the clusters in X is empty For these
k-sets of clusters, G is (0, /€, 7)- regular with respect to the polyad (j <)V, Thus J
is a (-, \/Ex, €'/, r)-regular slice for G

Note that R = R (G) is a blow-up of Rdjk (G). Consider the tightly connected

d,—2\/2%
fractional matching ¢ on Rjk (G) with weight p. We construct a tightly connected match-

ing on R as follows. For each e € Rdjk (G), we will pick a matching M, in R of size
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o(e) = [ (1 —3¢")p(e)N|. Note that, for each ¢ € [t],

S 3(e) < L((1 = 3¢)o (Vi) + )N | = N.. (4)

edV;

For each vertex V; in Rdjk (G) and each edge e € Rdjk (G) that contains V;, we choose
disjoint sets I;. C [V;] such that |; [ = ¢(e). This is possible by (4). Recall that R is
a blow-up of RdJk(G). For each edge e = {V;,,V,,,..., Vi, } € Rdjk(G), the subgraph R.
of R induced by the set of edges {{V;, j,,..., Vi, }: j1 € Iihe,;. ., Jk € I;, ¢} is a balanced
complete k-partite k-graph. Pick a perfect matching M, in R.. Let M = UeERdjk @) Me..
Note that M is a matching of size

Yo de)= > [(1=3"pe)N] = > ((1—-3)e(e)N —1)
eG’RdJk ©) eeng (@) eGRdJk ©)
©(e)>0

> (1 =3 )uN — u/p = (1—35 _Niﬁ) N
> (1—3¢ — /BN = (1 — VE)uN > (1 — 2\/9)/%.

In the second inequality above we used the fact that since ¢ is a fractional matching with
weight p and all edges have weight at least [, there are at most p/f8 edges of positive
weight. Since R is a blow-up of Rdjk (G), M is tightly connected. We conclude by applying
Lemma 13 with &, 7, n, 1,92, "4, /ex, dx — 2y/Ex, di_1, - - -, da, T, G, £ playing the roles of
k,r,ng, t, Y, e ek, di, ..., do, T, G, L. O

For the next result, we need the following definition.

Definition 19. Let u;(5,¢,n) be the largest u such that every 2-edge-coloured (1 —¢,¢)-
dense k-graph on n vertices contains a fractional matching with weight p such that all
edges with non-zero weight have weight at least § and lie in s monochromatic tight
components. Let pj(8) = lminf, o liminf, . p3(5,e,n)/n. Similarly, let p;(5,¢,n)
be the largest p such that every 2-edge-coloured (1 — ¢,¢)-dense k-graph on n vertices
contains a fractional matching with weight u such that all edges with non-zero weight
have weight at least 5 and lie in one red and one blue tight component. Let uj(8) =
liminf, o liminf, . u;(8,e,n)/n.

The following is the crucial result that reduces finding cycles in the original graph to
finding tightly connected matchings in the reduced graph.

Corollary 20. Let 1/n < n,(,1/k,1/s with k > 3. Let K be a 2-edge-coloured complete
k-graph on n vertices. Then the following hold.

(i) K contains s vertex-disjoint monochromatic tight cycles covering at least (u;(8) —
n)kn vertices,
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(ii) K contains two vertex-disjoint monochromatic tight cycles of distinct colours cover-
ing at least (u;(B) — n)kn vertices, and

(iii) K contains a monochromatic tight cycle of length € for any ¢ < (up(B) — n)kn
divisible by k.

Proof. We prove the first statement. The other two statements can be proved similarly
(where for the third statement we additionally make use of the fact that Lemma 18 also
allows us to control the length of the resulting cycle). Without loss of generality assume
that n < 1/3. Let d, = 1/2 and 1/t) < ¢ < € < ¢ < 1n,0,1/k,1/s. Note that
wi(B,e,t) = (ui(B) — n?)t for all t > t5. We choose functions £(-) and r(-) where £(-)
approaches zero sufficiently quickly and r(-) increases sufficiently quickly such that for
any integer t* > to and ds, ..., dg_1 = 1/t* we may apply Lemma 18 with £(¢*) and r(¢*)
playing the roles of € and r, respectively. We apply Lemma 11 to obtain ny and ;.
Let € = £(t1) and r = r(t1). Let ny > ng be large enough such that for all n > n; and
d, . ..,dx_1 = 1/t; we may apply Lemma 18. Let ny = n;+t;!. We show that the theorem
holds for all n > ny. Let K be a 2-edge-coloured comIN)Iete k-graph on n vertices. Letn < n
be the largest integer such that ¢;! divides n. Let K be a complete subgraph of K on n
vertices. Note that m > ny. By Lemma 11, there exists a (to, t1, &, €k, r)-regular slice J for
both K™ and KP¥. TLet ¢ be the number of clusters of J and let (dr—_1,...,ds) be the
density vector of 7. Let H = Rdjk (K™d) U Rdjk (KPMe) be a 2-edge-coloured k-graph such
that R (K™)\RJ (K"°) € H™ and R (KP*)\RJ (K*!) C H"°. By Lemma 12, we
have ‘f]‘ > (1—2¢y) (li) By Proposition 5, there exists a (1— (25k)1/(4k2+1), (26k)1/(4k2“))—

dense subgraph H C H with V(H) = V(H). Since e, < &, H is (1 —¢, £)-dense. Let ¢ be
a fractional matching in H of weight p = pi(8,¢,t) = (u5(8) — 2n*)t such that all edges
with non-zero weight have weight at least § and lie in s monochromatic tight components
Ky,...,K, of H. For each j € [s], we define a fractional matching ¢, in H by setting
w;i(e) = p(e) if e € K; and ¢(e) = 0 otherwise. For each j € [s], let p; be the weight
of ;. 1t follows that >,y = p.

Let Vi, ..., V; be the clusters of J. For each i € [t] and j € [s], we define

w; ;= max{z pile) — se' €'}
eeH
Vi€e

For each i € [t], let V;1,...,Vis be disjoint subsets of V; such that |V;;| = [w; n/t].
By Lemma 18, there exist tight cycles C,...,Cs in K such that, for all j € [s], |C;| =

(1 =n*)ukn/t, C; C K [Uiem Vi,j} and C; has the same colour as K;. Hence Cy, ..., Cj
are vertex-disjoint and together cover

(1= pkn/t = (1 =) (ui(B) — n*)kn = (ui(B) — n)kn

vertices of K. O
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5 Blueprints

Let H be a 2-edge-coloured k-graph. We define what we call a blueprint for H which is
an auxiliary graph that can be used as a guide when finding connected matchings in H.
A form of the notion of a blueprint for & = 3 already appeared in [13].

Definition 21. Let ¢ > 0, £k > 3 and let H be a 2-edge-coloured k-graph on n vertices.
We say that a 2-edge-coloured (k—2)-graph G with V(G) C V(H) is an e-blueprint for H,
if

(BP1) for every edge e € G, there exists a monochromatic tight component H(e) in H
such that H(e) has the same colour as e and dag ey (€) = (1 — )n and

(BP2) for e, e’ € G of the same colour with |[eNe'| =k — 3, we have H(e) = H(€').

We say that e induces H(e) and write R(e) or B(e) instead of H(e) if e is red or blue,
respectively. We simply say that G is a blueprint, when H and e are clear from context.
For S € (Zg)), all the red (blue) edges of a blueprint containing S induce the same
red (blue) tight component, so we call that component the red (blue) tight component

induced by S. Note that any subgraph of a blueprint is also a blueprint.

Example 22. Let & > 3 and let n be a positive integer. Let A and B be disjoint vertex
sets with |[AU B| = n. Let K(®¥)(A, B) be the 2-edge-coloured complete k-graph with
vertex set AU B where an edge e is red if and only if |e N A] is even (and blue otherwise).
Let H be K*)(A, B) and let G be K*~2(A, B) with colours reversed. If ¢ > =2, then G
is an e-blueprint for H. Indeed, for an edge e € G we can set H(e) ={f € H: |fNA| =
len Al +1}.

The main aim of this section is to prove the following lemma that establishes the
existence of blueprints for 2-edge-coloured (1 — &, a)-dense graphs.

Lemma 23. Let 1/n < e < a < 1/k < 1/3. Let H be a 2-edge-coloured (1 — €, )-dense
k-graph on n vertices. Then there exists a 3/e-blueprint G, for H with V(G,) = V(H)
and |G.| = (1 — a — 24k/2)(,",). Moreover, if k > 4 and ¢ < «, there exists a

(1 — V/AE=2241) 1/@E=22+D)Y_dense spanning subgraph G of G,.

We need a few simple preliminary results to prove Lemma 23. For a 2-graph G, we
denote by §(G) the minimum degree of G. First we show that any 2-edge-coloured 2-graph
with large minimum degree contains a large monochromatic connected subgraph. This
proposition is implied by [8, Lemma 1.5] but we include a proof for completeness.

Proposition 24. Let 0 < § < 1/6 and let F' be a 2-edge-coloured 2-graph with |V (F)| < n
and 6(F) = (1 — B)n. Then there exists a subgraph F' of F' of order at least (1 — B)n
that contains a spanning monochromatic component and 6(F") = (1 — 26)n.
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Proof. Let F’ be an induced subgraph of F' of maximum order that contains a spanning

monochromatic component. Assume without loss of generality that F” contains a spanning
red component. Let S =V (F') and S = V(F) \ V(F’). Since §(F) > (1 — 8)n, we have
that |S| > (1 — 5)n/2. Suppose, for a contradiction, that |S| < (1 — S)n. Note that all
edges between S and S are blue. If 6(F) — [S| + 1 > |S| /2, then each pair of vertices

in S has a common neighbour in S and so there is a blue component strictly containing S
which contradicts the maximality of F’. Therefore

0(F) =S|+ 1< [S]/2=(IV(F)[ = 18)/2 < (n = |S])/2.

Hence
S| 2 26(F)—n+2=22(1—-F)n—n+2=(1-20)n+2.

But now every pair of vertices in S has a common neighbour in S, since E’ = |V(F)| -
|S| < 26n and so

—|IS|+1>1=Bn-28n+1=(1-38)n+1>n/2
Thus S U Ng(S) is spanned by a blue component. But since
|SUNR(S)| = 6(F) = (1 - B)n,
we have a contradiction. It is easy to see that 0(F") > (1 — 25)n. O

Proposition 25. Let 1/n < v < 1/9. Let F' be a 2-graph with |V (F)| < n and |E(F)| >

(1—7) (Z) Then there exists a subgraph of F' with minimum degree at least (1 — 3,/7)n.

Proof. Let W = {v € V(F): d(v) < (1 —2,/7)n}. We have that

(1 —2y)n* < 2|E(F Z d(v) < n*—2An|W|.

veV(F

This implies that |W| < /yn. Let F* = F — W. It follows that 6(F*) > (1 — 2,/7)n —
W (1= 3/9)n. 0

Corollary 26. Let 1/n < ¢ < 1/324. Let F be a 2-edge-coloured 2-graph with |V (F)| <n
and |E(F)| = (1—¢)(3). Then there exists a subgraph F' of F of order at least (1 — 3\/_)n
that contains a spanning monochromatic component and §(F') = (1 — 6+/2)n.

Proof. By Proposition 25, there exists a subgraph F* of F' with 6(F*) > (1 —3y/¢)n. We
conclude by applying Proposition 24 with F' = F* and = 3/c. O]

5.1 Proof of Lemma 23

Now we show that for any (1 — ¢, «a)-dense 2-edge-coloured graph we can find a dense
blueprint.
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Proof of Lemma 23. Let F' = 0*H. Since H is (1 — ¢, a)-dense,

E(F) = {e e Ck/(—HQ)) :dp(e) > O} = {e € <Z(_HQ)> tdu(e) > (1—¢) (Z)}

EEl=a-af,",) )

and

We now colour each edge e of F' as follows. Note that the link graph H, is a 2-graph. We
induce a 2-edge-colouring on H, by colouring the 2-edge f € H, with the colour of the
k-edge e U f € H. By Corollary 26, there exists a monochromatic component in H, of
order at least (1 — 34/e)n. Let K, be such a component chosen arbitrarily. We colour the
edge e according to the colour of K. If e is red in F', then we define R(e) C H to be the
red tight component containing all the edges e U f where f € K.. If e is blue in F'| then
we define B(e) analogously.

In the next claim we show that, for each S € (‘2(_%)), almost all edges in F' of the same
colour containing S induce the same monochromatic tight component in H.

Claim 27. For each S € (‘2(_?), there exist T™4(S) C N*4(S) and TPue(S) C NPve(S)

with [T™4(S)| > |N4(S)| — 6y/En and [TP(S)| = |[NP(S)| — 6y/zn such that, for all
y1, 92 € IU(S), R(SUy1) = R(SUys) and, for ally), ys € TP(S), B(SUy;) = B(SU,).

Proof of Claim. We only prove the statement for Ni¥4(S) as the proof of the statement
for NP'ue(S) is analogous. Assume |N}ed(5)} > 64/en (or else we simply set [™4(S) = @).
Let D be the directed graph with vertex set N%4(S) and edge set

E(D) =A{y1y2: 1h € V(Ksuy,)}-

Note that, for y,y2 € E(D), there exists an edge in R(S U ys) containing S U yiy2. So
if 12 is a double edge (that is, y1ys2, y2y1 € E(D)), then R(S U y;) = R(S Uys). For
y € NF4(S),

dp(y) = |N}r«§d(s) N V(Ksuy)’ = ’Nf:ed(SH — 3Ven,

since |V (Kguy)| = (1 — 3+/¢)n. Hence the number of double edges in D is at least

NES)| (INE(S)] — 8vEn) — L [NE(S)[* = L [N(S)] (|VE(S)] ~ 6/Em)

Thus there exists a vertex yo € N*4(S) that is incident to at least | N}*4(S)|—64/en double
edges. Let I™(S) = {yo} U {y € NU(9): yyo,yoy € E(D)}. Note that |T(S)| >
|N34(S)| — 6y/En and R(S Uy) = R(S Uyp) for all y € I™4(S). O

Consider the multi-(k — 2)-graph D* with

V(H)

E(D*):{SUy:SE (k—s

),y e rd(s)u Fblue(S)} .
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Note that

B = 3 M) uTe(S)| > S (de(S) - 12v/En)

se(W%) se(W%)

> (k—2)|F| —24k\/2(k” )

-2

Observe that every edge of D* is an edge of F'. Every edge in D* has multiplicity at
most k — 2. So at least |F| — 24k\/§(kf2) edges e € (‘2(_[?) have multiplicity £ — 2 in D*.
Let G, be the (k—2)-graph on V(H) such that e € G, if and only if e has multiplicity k—2
in D*. So, by (5), |Gs| = |F| — 24ky/2(,",) = (1 — oo — 24k+/2) (")

We now show that G, is a 3/z-blueprint for H. Consider any e,¢’ € G™¢ with
lene|=k—3. Let S=ecne,y=¢\Sandy =e\S. Since e,¢’ € G, we have
v,y € I™4(S) and so R(e) = R(SUy) = R(SUY) = R(¢). Further, for e € G4, we
have dag(e(e) = |V(K.)| = (1 — 3y/)n. Analogous statements hold for edges of Gb"e.

If £ > 4 and ¢ < «, then |G,| > (1 — 2&)(,:2) and thus by Proposition 5 there
exists a subgraph G C G, such that G is (1 — ozl/(4(k_2)2+1),al/(4(k_2)2+1))—dense and
V(GQ)=V(G,) =V(H). O

5.2 Some lemmas about blueprints

Let H be a k-graph and G be a blueprint for H. We write H(G) for |J, . H(e). We
write G for the subgraph of H(G) with edge set

E(G")={e€ H(GQ): f Ce for some f € G},

that is, the subgraph of H(G) obtained by deleting all edges that do not contain an edge
of G. Note that this also defines (G')* for any subgraph G’ of G as a subgraph of a
blueprint for H is also a blueprint for H. Moreover, note that G is a subgraph of H,
not of G. For a red tight component R, and a blue tight component B, in H, we denote
by R*~2 and B*~2 the edges of G that induce R, and B,, respectively.

We prove some lemmas that we will use several times later on. Roughly speaking, the
following lemma says that if S is a set of k& — 4 vertices of H contained in many edges
of both R*=2 and B*~2, then S is contained in an edge of R, or B,.

Lemma 28. Let 1/n < e < a <K 1. Let H be a 2-edge-coloured (1 — €, a)-dense k-graph
on n vertices and G a 3+/e-blueprint for H. Let R, and B, be a red and a blue tight
component of H, respectively. Let U C V(G) and S € (154) such that

dpi-2(S,U), dgi-2(S,U) = e'/*n®.

Then there exist x,2',y,y € U such that SUzx’ € R¥=2, SUyy' € B2, SUxa'y € OR,,
SUyy'z € 0B, and S Uxz'yy' € H. In particular, (RF=2)* U] U (BT [U] # @.
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Proof. Let Xg, = {z € U: dpr—2(SU,U) > e2n}and Xp, = {x € U: dgr-2(SUx,U) >
£'/2n}. Note that

e'n? < dge2(S,U) Zde 2(SUz,U) < n|Xg, | +e¥n?
:J:EU

Thus [Xg, | > (eV/* — e¥/?)n > 1e¥/n. Similarly, [Xp,| > $e¥/n.
For each x € Xp,, let

= {ye Xp,: SUyy € B*? and SU xyy € OB, for some y € U}
= U NBf_Q(S Uy') N Nyg, (SUzy).

y'eU

For each y € Xp,, there exists ¢ € U with SUyy’ € B¥=2. By (BP1), dop, (SUyy', XR,) >
| Xr.| — 3v/en. Hence each y € Xp, is contained in at least | Xg,| — 3y/en of the sets Y.
By averaging, there exists an x € X, such that

1> | Xp | > =t
2| X el > ge

(| Xr.

Y| >

n.

*

~8

Fix such an € Xy,. For each y € Y,, choose a vertex y' € U such that S Uyy € B¥2
and SUzyy' € 0B.. Let X = Npe2(SUx,U), so [X]| > el/2n, since x € Xp,. For each
y € Y, since H is (1 — €, a)-dense, there are at least |X| — en vertices 2’ € X such that
SUzxx'yy € H. Thus, by averaging, there exists a vertex 2’ € X and a set Y, C Y, with

7|5 (Xl=em Yl

1
Y 1/4
Z T 2IX] | T

2

such that S U zz'yy’ € H for all y € Y,. Fix such an 2/ € X. Since S U z2’ € R2 we
have that

‘NaR* (S U za")

(—a 3\/_)n>0

Choose y € Nyg, (SUzx') NY,. We have SUzz’ € R¥=2, SUyy € B¥2, SUza'y € OR.,
SUuzyy € 0B, and S U xx'yy’ € H as required. O

The following lemma shows that if we have a vertex set 17" &€ (Z(_Gg)) such that di¢4(T")
and d2'°(T)) are both large, then T is contained a lot of sets in 9R N B, where R and B
are the red and blue tight components induced by the red and blue edges incident to 7',
respectively.

Lemma 29. Let 1/n < e <1, k>3 and 0 > 5+/c. Let H be a 2-edge-coloured k-graph

on n vertices and G a 3+/e-blueprint for H. Let T € (‘2(_]?) Let SPve C NE(T) and
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Sred C NEYT) be such that |SP|,|S™| > dn. Then there exists a vertex y € S such
that, for

red red .
e ={resS*: TUry e OR(TUx)NIB(T' Uy)},

we have ‘F26d| > (0 — 6y/€)n. Moreover, if 6 > '/°, then }F;ed| > (1—e'/4)|Smd|. The
same statements hold when the colours are reversed.

Proof. Let mpe = [SP"| and myeq = [S™]. If § < £/°, then we may assume that
Mplue = Myed = |On| by deleting vertices in SP™¢ and S if necessary. Let D be the
bipartite directed graph with vertex classes SP"® and S such that, for each y € SPue
and z € S™, we have N (y) = Nyp(T Uy) N S™ and NJ(z) = Nyg(T U z) N SPlue,
Since G is a 3+/e-blueprint for H, we have that

’E<D)‘ 2 mblue(mred - 3\/577’) + mred<mblue - 3\/271)

= 2Tnblueaned - 3\/gn(mblue + mred)-

Thus the number of double edges in D is at least mpuered — 3v/ER(Mplue + Mireq). For
each y € S™ let Ty, = {z € S™: zy,yz € D}. Hence there is some vertex y € SPu°
such that

ue re o—06 if § < £l/9
|Fy| = Myed — 3\/gn (M) > {( \/g)n7 1 e,

Mplue Mrea(1 — Y/4), otherwise.

Note that if xy, yz € D with z € S*d and y € SP!°, then TUzy € OR(TUz)NIB(T Uy).
Hence I'y C erd and thus the lemma follows. O]

Roughly speaking, in the next lemma we consider the following situation. Let R
be a red tight component in H, G be a blueprint for H and Rz C G™¢ be such that
H(Rg) € R. We pick a maximal matching in Rf, and let U be the remaining vertices
of H not in this matching, so R%[U] is empty. Then the lemma implies that the number of
monochromatic tight components in U is less than what we would expect. In particular,
if k£ = 4, then the edges in G|U] induce only two monochromatic tight components in H.

Lemma 30. Letk >4 and1/n < e € o,0 <K n <K 1. Let H be a (1—¢, a)-dense k-graph
and G a 3+/e-blueprint for H. Let R be a red tight component in H. Let Rg C G™ be
such that H(Rg) C R. Let U C V(H) be such that |U| > nn/2 and RLU] = @. Let
S e (154) be such that the link graph Gs of G satisfies GYU] C (Rg)s and 6(Gs[U]) =
\U| — dn. Then there exists a subgraph Js of Gs[U] such that |Jg| > |Gs[U]| — 76"/*n?
and H(SUe) = H(SU¢€) for all e,e’ € Jg of the same colour. In particular, if k = 4,
then the edges in J induce only one red and one blue tight component in H. The same
statement holds when the colours are reversed.

Proof. Set Jyd = G%4[U]. Note that for e,¢/ € J¥4, we have e,¢/ € (Rg)s and thus
H(SUe)=H(SU¢€) = R since H(Rg) C R. Therefore to prove the lemma, it suffices
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to prove that there exists J5" C G¥"[U] such that |J5| + [ 5| > |Gs[U]| — 76"*n?
and H(SUe) = H(SU¢) for all e, e’ € J&e.

For simplicity we assume k£ = 4 and S = @. It is easy to see that an analogous
argument works in the general case. Thus for the rest of the proof, we omit the subscript S.

Let K = G[U]. If |Kblue‘ < 20'/2n?, then we are done by setting J""® = @ as

‘Jred| — |Kred| — . }Kblue’ > ‘K‘ . 251/2n2 > |K| . 751/4712.
Now assume | K| > 2(51/2n2. Let X = {z € V(K): d?*(x) > dn}. We have that
26"%n* < |KPM) <Y dR(x) < n| X+ on.
xelU
Thus | X| > §/2n. Let D be the digraph with vertex set X such that, for each x € X,
Np(z) = Np(z, X) U {2’ € Ni$(z, X): a2’y € ORN OB(zy) for some y € N (z)}.
We now bound §(D) as follows. If d%¢4(z, X) > on, then by applying Lemma 29 (with
x, Nove (2, U), N&4(z, X), d playing the roles of T, S, 54 §) we deduce that
{2’ € N (z, X): za’y € OR(xa') N OB(xy) for some y € N (z)}|
( 1/4)dred(l' X)
Recall that R = R(xa') for all ' € Ni¢d(x, X), | X| = §'/?n and € < 6. Hence
dp(w) > dg*®(z, X) + (1 = eV)di (2, X) = (1 = /) (dg*(w, X) + dig (2, X))
= (1 —e"dg(z,X) > (1 =/ (|X] - 0n) > (1 —25"2)|X].
On the other hand, if d*¢(z, X) < dn, then
dp(z) = (2, X) = | X| — on — & (2, X) > | X| — 26n > (1 —26'2) | X].

Therefore, we have 6t(D) > (1 — 26Y/2)|X| and so |E(D)| > (1 —20"2)|X|* > 2(1 —
261/2) (‘)2“). Let F be the graph with vertex set X in which x2’ forms an edge if and only
if it forms a double edge in D. Note that [F| > (1 —46"/2)('¥). By Proposition 25, there
exists a subgraph F* of F with §(F*) > (1 — 65'/*)|X|. Clearly, F* is connected.

Let JPe = {zz’ € KPe: x € V(F*)}. We have

Jred U Jblue |K| Z dblue |X \ V(F*)| n
z'eU\X

> |K| — on® — 66Y4n? > |GU]| — 76'/*n>.

We now show that B(x,21) = B(xa2y) for all 2121, 2920 € JP°. Since F* is connected and
d jome(x) > 0 for all x € V(F™), it suffices to consider the case when zy29 € F*. If 129 €
KPe then @121, 1129, T220 € GP"® and so B(wx121) = B(w129) = B(229), since G is a
blueprint. Now assume that x12o € K™, Since z115 € F* C F, there are y; € NP(xy)
and yp, € NP(x5) such that 120y, € OR N OB(11y1) and x120y2 € AR N OB(w2y0).
Let w € Ny(z122y1) N Ny (z122y2) N U. Since RL[U] = &, we have z129y1u, 11202you €
HPve Hence, B(z1y,) = B(xay2). Moreover, since 2191, 2121, ToYa, Ta2o € GPU°, we have
B(x1z1) = B(x1y1) = B(x2y2) = B(w229) as required. O
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6 Monochromatic connected matchings in K7(14)

In this section, we prove that every almost complete red-blue edge-coloured 4-graph H
contains a red and a blue tightly connected matching that are vertex-disjoint and together
cover almost all vertices of H.

Lemma 31. Let 1/n € ¢ € a < n < 1. Let H be a 2-edge-coloured (1 — €, a)-
dense 4-graph on n vertices. Then H contains two vertex-disjoint monochromatic tightly
connected matchings of distinct colours such that their union covers all but at most 3nn

of the vertices of H.

Note that this implies p}(1l,e,n) > (1 — 3n)n/4 for 1/n < ¢ < n < 1. Hence
wi(1) > 1/4. Therefore, together with Corollary 20, Lemma 31 implies Theorem 2.

To prove Lemma 31 we first need the following lemma which chooses the initial tight
components in A in which we find our tightly connected matchings.

Lemma 32. Let 1/n < e K a < n < 1. Let H be a 2-edge-coloured (1 — &, )-dense 4-
graph on n vertices. Suppose that H does not contain two vertex-disjoint monochromatic
tightly connected matchings of distinct colours such that their union covers all but at
most 3nn of the vertices of H. Then, there exists a red tight component R in H, a
blue tight component B in H, a 3+/e-blueprint G for H with §(G) > (1 — a'/**)n and a
matching My in RU B such that the following holds, where Wy =V (G) \ V(My).

(i) R(e) = R and B(¢') = B for all edges e € G™V (M) U Wo] and all edges
e e Gblue[V(Mg)lue) U WO];

(11> MO C (Gred>+ U (Gblue)-‘r’
(iii) (G [Wo] U (GPe)H W] is empty.

Proof. By Lemma 23, there exists a 3/e-blueprint Gy for H with V(Gy) = V(H) and
|Go| = (1 — a —964/¢) (g) > (1 —4a) (Z) By Corollary 26, there exists a subgraph G
of Gy of order at least (1 — 6y/a)n that contains a spanning monochromatic component
and §(G1) = (1 — 12y/a)n. Note that that Gy is also a 3+/e-blueprint for H.

We assume without loss of generality that (G; contains a spanning red component.
Since G is a blueprint, all the red edges in G; induce the same red tight component R
in H. Let Rt = (G&Y)* C R. Let M be a matching in R* of maximum size. Let
U=V(Gi)\V(M).

Thus |U| = nn (or else |V(M)| = |V(G1)| — |U] = (1 — 2n)n, a contradiction).
Moreover, RT[U] = @. Since 6(G;) > (1 — 12y/a)n, we have 6(G1[U]) = |U| — a'/3n.
Hence, by Lemma 30 (with 4,U, @, a'/? playing the roles of k, U, S,§), there exists a
subgraph J of G1[U] such that |J| > |G1[U]| — 2a/*3n?, such that H(e) = H(¢') for all
e,e’ € J of the same colour. Let Gy = (G; — GYM™[U]) U J and B = B(e) for e € J"ue.
Note that [Ga| = (1 — /') (%). By Proposition 25, there exists a subgraph G of G such

that §(G) = (1 — a/*%)n.
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Let W = V(G) \ V(M). Next, we show that (i) and (i) hold but with M, W
instead of My, Wy. Note that MP"" = & so (ii) holds by our construction. Since
Gred C G4 and GEY is connected and a blueprint, R(e) = R for all e € G™. Note
that GPUe[V (MPve) U W] = GPe — V(M) C GYe[U] = JP¢, so B(e) = B for all e €
GPle[V (MPe)y U W]. Hence (i) holds. We now add vertex-disjoint edges of (G*4)*[W]U
(GP")F[W] to M and call the resulting matching M,. We deduce that M, satisfies

(i)—(iii). O
We now prove Lemma 31.

Proof of Lemma 31. Suppose the contrary that H does not contain two vertex-disjoint
monochromatic tightly connected matchings of distinct colours such that their union
covers all but at most 3nn of the vertices of H. We call this the initial assumption.
Apply Lemma 32 and obtain a red tight component R, a blue tight component B in H, a
3v/e-blueprint G for H with §(G) > (1 — a'/3%)n and a matching M, in R U B satisfying
Lemma 32(i)—(iii).

We now fix G, R and B. We use the following notation for the rest of the proof. For
a matching M in RU B, we set

W =W(M)=V(G)\V(M),
Wiea = Wiea(M) = {w € W': P8 (w) < 8/en},
Wblue = Wblue(M> = {"LU eW: dg?ﬁ/[/] (U)) < 8\/577,}

Note that |[W| > nn by the initial assumption. Without loss of generality, |Wye(Mo)| <
|Wred(M0>|~
We define M be the set of matchings M in RU B such that

(i) R(e) = R and B(€') = B for all edges e € G™4[W] and €’ € GPe[V (MPhe) u W],
(11/) Mblue g (Gblue)+’
(iii’') (GT)T[W] U (GPe)*[W] is empty.

Note that (i') and (ii') are weaker statements of those in Lemma 32(i) and (ii), so M, € M.
Let M’ be the set of M € M also satisfying

(iV') [Whine| < [Wreal-

Observe that M, € M’ so M’ is nonempty.
Let v = 10a'/%°. We now show that, for all M € M, W,eq and Wi, partition W, and
moreover one of them is small.

Claim 33. Let M € M. The following holds:
(a) for all w € W, either er‘Bﬁ,V}(w) < Ty/en or dglﬁ,‘f/] (w) < Ty/en,

(b) Wiea and Whye partition W,
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(c) either [Wie| < yn or [Wied| < 1.
In particular, if M € M', then |Wye| < yn.

Proof of Claim. Suppose that w € W satisfies drceﬁ,v] (w), dg}ﬁ,‘f,](w) > 7y/en. By Lemma 29
(with 7\/5,11},]\756[%[,] (w),Ngl[‘I}e/](w) playing the roles of 6,7, S, SPu¢) there exist z €
Ng’ﬁm(w) and y € Ngl[l‘ﬁf}] (w) such that wry € OR N IJB. In particular, dy(wzy) # 0 and
thus dy(wzy) > (1 — €)n, which implies that there exists a vertex w’ € W such that
ww'zy € H. Note that ww'zy € (G*)T[W] U (G*)*[W] contradicting (iii’). Hence,
min{dgeﬁ/v](w),dgf%(w)} < 7y/en. Since 6(G) = (1 — a'/3%)n implies that §(G[W]) >
W | — a3 > 164/en, we deduce that (a) and (b) hold.

Recall that |[W| > nn > 2yn. So one of Weq and Wy, has size greater than ~yn.
Suppose both are (that is, (c) is false). Since 6(G) > (1 — a'/3%)n = (1 —~v/10)n, we have
that there are at least

|Wblue| (|Wred| - ’Yn/lo - 8\/571) 2 |Wblue| (|Wred| - 7”/5) > 3 |Wred| |Wblue| /4

blue edges between Wy, and Wieq and similarly there are at least 3 |[Wieq| |[Whiue| /4 red
edges between Wype and Wieq. Thus e(Wieq, Whine) > [Wied| |[Whine|, & contradiction. I

Let M, € M’ be such that (|M,|,|M:*¢]) is lexicographically maximum. We write
W* W Wihe for W(M,), Wiea(M.), Whie(M.), respectively.

The next claim shows that almost all 4-edges in H[W*| are blue and they form a tight
component. Indeed, this follows from the fact that almost all edges in G[W*] are red and

thus almost all triples in W* are in OR.

Claim 34. There exists a blue tight component B’ in H such that the number of triples
zyz € (Mgd) N OB’ with dp(vyz, Wihy) = [Wiy| — en is at least (1 — o'/31) (V).

Proof of Claim. Let T be the set of triples zyz € (Wg}d) N OR such that 2y € G*4. Note
that, for any z € W7, y € Ng4(x, W*,) and 2z € Nyr(zy, W), we have zyz € T. Thus

1 * * *
|T’ > 5 |Wred| (|Wred| - a1/30n - 8\/571) (lWredl - 3\/gn)
E 1/30 *
> W edl (1 B 20 n) > (1 _ 041/31) (W;zed>

3! |Wr*ed|

as [Wrty = nn/2. By (iil’), we have that if zyz € T and w € Ngy(xyz, WS,), then
wryz € HPM. For zyz € T, let B(zyz) be the maximal blue tight component containing
all the edges zyzw, where w € Ny(zxyz, W} ,). We say that zyz generates the blue tight
component B(xyz). It suffices to show that all zyz € T generate the same blue tight
component. First we show that triples that share two vertices generate the same blue tight
component. Note that, for xyz;,zyzs € T, we have dg(zyz1, Wry), dg(zyze, Wry) =
Wil —en > |WZ,y| /2 and thus there exists w € Ny(xyz1) N Ng(ryze) NWE,. Since the
edges wryz; and wryz, are blue, it follows that B(zyz) = B(xyzs).

J
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Now let z1y121, Toyazo € T, where 2191, Zoys € G™4. Let wy € Nygr(z1y1)NNar(z2y2)N
Ngrea(x1) N Ngrea(z2) N W and we € Npgr(xiwi) N Nog(zowy) N WE,. It follows that
T1Y W1, T1W We, TowqWe, Tayowy € T. Hence B(xi1y121) = B(riyaw) = B(riwiwy) =
B(zowjwy) = B(xayow1) = B(xayszs). Let B’ be the unique blue tight component

generated by all triples zyz € T. O

The previous claim and a greedy argument imply that there is a matching MP’
in B'[W*] that covers all but nn of the vertices in W*. Thus we may assume that
|MPe| > nn/4, otherwise |V(MIdUMP)| > n — 3nn, which is a contradiction to
the initial assumption. To complete the proof, we will show that in fact B’ = B, imply-
ing M and MP"e U MP" are tightly connected matchings, a contradiction to the initial
assumption.

We now pick a special edge e* € MPe. Its special property that we desire is stated
in Claim 36.

k0% ko ok

Claim 35. There ezist an edge e* = vivivivy € MM and distinct vertices wy, . .., wy,
wh, ..., w) € Wk, such that, for each j € [4],

T

(a) all the red edges of G incident to vi induce R, or
(b) viw; € G and v;w;w; € IR N IB.

Proof of Claim. For each edge e € MM let v¢, v, vS, v§ be an enumeration of its vertices.
It is easy to see that there exists MM C MPe with ‘M}’lue‘ = ‘Mflue| /16 such that for
each j € [4] we have that either

(a/) for all e € MP™, there is a red edge in G between v§ and W, or

(b') for all e € M, all edges in G between v§ and W, are blue.

re

Let .J; be the set of j € [4] such that (a’) holds and J = [4]\ J;. Since each vertex in W},
is incident to a red edge of GG that induces R and G is a blueprint for H, we have that, for
all e € MP™ and all j € Jy, all the red edges incident to v§ induce R. For every j € J,
we have that

(G l{ugs e € MY} W] = M| (IW3] = at/%0n) > (1= o/t [MPe] W),

Thus there exists w; € Wy, such that w;v¢ is blue for at least |MPMe| (1 — a'/%2) of
the vertices vf, with e € MPe, Tt is easy to see that we can choose the w; to be
distinct. Hence there exist distinct vertices wy, ws, w3, wy € Wi, and MPUe C MP with
| M| = |MPhe| /2 > nn/128 such that for all j € J> and all e € MP™® we have that
w;v; € GPlue,

For j € Jp, let V; = {v¢: e € M}™} and note that dp"®(w;,V;) = |M3™| > nn/128
and di¥%(w;, Wr4) = nn/2. For each j € Jo, we apply Lemma 29 with colours reversed and
wj, Vj, Nr*;d playing the roles of T, SP¢ S d where ~r*ed denotes W, with all previously

. . - ’ * blue
chosen vertices removed. Thus, we find distinct w} € W\ {wy, w2, w3, wy} and Mz™e C
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MPe with ‘M;luﬂ = {M;’lue| /2 such that, for all j € J;, and all e € MY we have that
vjw; € G and viwjw; € ORNIB. We complete the proof by choosing e* = vivviv] €
M3 and a distinct vertex w) € Wy for each j € Jy. O

Let W' =Wr \{wy,...,wg,wy, ... wi}.

Claim 36. The 4-graph R[e* UW’] is empty and Ble* UW'] does not contain two vertex-
disjoint edges each containing an edge of GP™. In particular, there do not exist two
vertez-disjoint edges fi and fo in (RU B)[e* UW'] each containing an edge of G'.

Proof of Claim. First suppose there exist two vertex-disjoint edges f1, fo € Ble* U W]
each of which contains an edge of GP'"®. By the maximality of |M,|, both f; and f, must
intersect e*. For simplicity, we only consider the case that e*\ (f1 U fo) = {v]} (the other
cases can be proved similarly). By Claim 35, we have that all red edges of G incident
to v} induce R or viw; € GP and viw,w) € ORN IB.

First suppose that viw; € GP™ and viw,w) € ORNIB. Let w} € Ny (viwwi, W*\
(f1Ufs)) and f5 = viwwiw. Let M’ = (M. \{e*})U{f1, fa, f3}. Note that W (M") C W*.
Since |W| = nn > 3yn and |W5,.| < yn by Claim 33, we deduce that M’ satisfies (iv’).
Hence M’ € M’ contradicting the maximality of |M,|.

Now assume that all the red edges of GG incident to vj induce R. Let M be a matching
in R U B containing (M, \ {e*}) U {f1, fo} satisfying (ii’) and (iii’). We now show that
M € M’, which then contradicts the maximality of |M,|. Recall that v; € e* € MP"®, so

WS (W (fLU fo)) U{of} and V(M) UW C V(M) U™ (6)

Together with our assumption on v}, M satisfies (i'). Hence M € M. Forallw € WnNWW*

red?

blue (6) blue . Claim 33(a)
e (w) < dgfiy(w) + o] < TVen+1<8Ven,

and a similar inequality holds for all w € WNW},,.. This implies that Wy, € Wi, U{v*}.
Since |W| = nn > 3yn and |W},.| < yn by Claim 33, we deduce that M satisfies (iv’).
Hence, M € M’ as required, a contradiction.

Therefore, Ble* UTW'] does not contain two vertex-disjoint edges each of which contains
an edge of GP"°. If R[e* UW’] contains an edge f, then a similar argument holds with f
replacing {f1, fa}. Note that if |M| = |M.|, then we obtain a contradiction by showing
that |Mred| < [Mred|. O

Since e* € MM C (GP°)T | we may assume without loss of generality that vivi €
G, The following claim shows that one of the vertices v} and v} has small blue degree
in G to W’ (and thus it has large red degree to W').

Claim 37. We have d2(vi,W’) < 3yn or d2e(vy, W) < 3yn.

Proof of Claim. Suppose to the contrary that we have d2" (v, W’), d2e(vs, W') > 3yn.
By Claim 36, it suffices to show that we can find two vertex-disjoint edges f; and f,
in (RU B)[e* UW’] each containing an edge of G™™°. Tt is easy to see that we can
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greedily choose vertices x € NZWe(vi, W), 2’ € N&4(z, W) N Nyp(viz, W’) and 2" €
Nagr(zx',W') N Ny (vizz',W'). Set f1 = viza’z”. By our construction, vizx’ € OB and
1.0

xa'x” € OR implying f; € (RUB)[e* UW’]. Similarly there exists an edge fo = viyy'y” €
(RU B)le* U W] disjoint from f; with y,v',y" € W'. O

Without loss of generality assume d2"(vi, W) < 3yn and so d5d(vi, W') > |W'| —
a3, Let w € Nyg(vivy) N NE(vf) "W, w' € NE4(w) N Nag(viw) N Ny (viviw) N W'
and w” € Ng(viww', W’). (We can find these vertices greedily one by one.) By Claim 34,
we may further assume that ww'w” € dB’. By construction, we have that viww’ € OR
and thus Claim 36 implies that both vjviww’ and vjww'w” are blue. Since viviw € 0B,
we deduce that vivjww’, vjww'w” € B and so ww'w” € 0B implying that 0BN OB’ # @.
Therefore B = B’ as required. [

7 Monochromatic connected matchings in Kr(f)

The aim of this section is to prove the following lemma which shows that 2-edge-coloured
dense 5-graphs can be almost partitioned into four monochromatic tightly connected
matchings.

Lemma 38. Let 1/n < ¢ < a < n < 1. Let H be a 2-edge-coloured (1 — ¢, a)-
dense 5-graph on n vertices. Then H contains four vertex-disjoint monochromatic tightly
connected matchings such that their union covers all but at most 3nn of the vertices of H.

Note that this implies ui(1,e,n) > (1 — 3n)n/5 for 1/n < ¢ < n < 1. Hence
pa(1) > 1/5. Together with Corollary 20, Lemma 38 implies Theorem 3.

We use the following notation throughout this section. Let H be a 2-edge-coloured
5-graph and let G be a blueprint for H. Given a red tight component R C H, we write R?
for the edges of GG that induce R. We use analogous notation for blue tight components.

Let H be a 2-edge-coloured dense 5-graph. We first apply Lemma 23 to H to get a
blueprint G for H. Since G is 2-edge-coloured dense 3-graph, we can apply Lemma 23
again to G to obtain a blueprint for G, which is a 2-coloured 1-graph. The following
lemma summarises the structural information about H that we obtain in this way.

Lemma 39. Let 1/n < e < a < 1. Let H be a 2-edge-coloured (1 — ¢, «)-dense 5-graph
on n vertices. Then there exists a 3-graph G with V (G) = V (H), two disjoint subsets V¢
and VP of V(H), a red tight component R C H and a blue tight component B C H
such that the following properties hold.
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Proof. By Lemma 23, there exists a (1 — a!/*", a!/37)-dense 3,/z-blueprint G for H with
V(G) = V(H). We apply Lemma 23 to G and obtain a a'/™-blueprint J for G with
|J| > (1 — a'/™)n. Note that, as a blueprint for a 3-graph, .J is a 1-graph. Hence each
edge of J contains precisely one vertex. By the definition of a blueprint all the red edges
of J induce the same red tight component Rg of G. Let V™ = |JJ™. Since Rg is
a red tight component of G all its edges induce the same red tight component R of H.
Define V"¢ and B analogously. O

Two edges f and f’ in H are loosely connected if there exists a sequence of edges
e1,...,6e such that e; = f, e, = " and |e;Ne;qq| = 1 forall ¢ € [t — 1]. A subgraph H’
of H is loosely connected if every pair of edges in H’ is loosely connected. A maximal
loosely connected subgraph of H is called a loose component of H.

We now prove Lemma 38. The proof works by first finding a maximal matching in
RUB, where R and B are the components given by Lemma 39, and then finding maximal
connected matchings in the remaining vertices.

Proof of Lemma 38. Assume, for a contradiction, that such matchings do not exist. We
call this the initial assumption. Apply Lemma 39 and obtain V' VPue ¢ R3 R B B
and let V* = Vredy VPlue Since there are only few vertices in V(H) \ V* we ignore these
vertices from the start and construct our matchings in H[V*].

We begin by choosing a matching M C (R U B)[V*] of maximum size. Let U =
V*\ V(M). Note that we have R[U| = B[U| = @ and |U| > nn by the initial assumption.
Let U = U N V™ and UM = U N VPUe The following claim shows that if U*ed
and U™ are both large, then G[U] must contain many edges in R* or many edges in B3.

Claim 40. If [U™], |U"°| > o!/*n, then

max{|R*[U]],

BS[UH} > % |Ured| |Ub1ue} |U| . 3(){1/155”3‘

Proof of Claim. Define a bipartite graph K, with vertex classes U™ and U such that
x € U™ and y € UP™ are joined by an edge if and only if 2y € OR? N 0B3. Recall that
dors(7) = (1 — a/™)n and dyps(y) = (1 — a¥/™)n for all x € U™ and y € UP™. Hence

|K0| > {Ubluel }Ured} o 041/75712.

Since G is (1 — a'/37 a!/37)-dense, we have dg(zy,U) > |U| — a/*™n for xy € K,. We
now colour the edges of K such that zy € Ky is red if dgs(zy,U) > |U| — 2a/™n and
blue if dps(zy,U) > |U| — 2a"/™n. Since Ky C OR* N OB3, if vyz € G with 2y € Ko,
then zyz € R3*U B3. Hence it suffices to show that almost all edges of K| are of the same
colour. Indeed, if we have that at least |U™*¢| |U"¢| — 3a!/**n? edges of Kj are red, then
we have

|R3[UH > %(‘Ured‘ ‘Ublue| . 3a1/154n2)(|U| . 2a1/76n) > % }Uredl }Ublue‘ |U| . 3&1/155713.

We show that each edge xy € K| is coloured either red or blue. It suffices to show that
either dps(zy, U) < o¥™n or dgs(zy,U) < o/™n. Indeed if dps(zy, U),dps(zy, U) =
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a/™n, then by Lemma 29, there exists u,u’ € U such that zyu € R?, zyu’ € B? and
zyuuy' € OR N OB. For any v’ € Ny(zxyuu',U), we would have zyuu'v” € R[U] U
B[U], a contradiction to the maximality of M. Moreover, by Lemma 28, we have that
min{d% (u), dp*(u)} < a/™n for all u € U.

Let K; be the graph obtained from K, by, for each u € U, deleting all red edges
incident to u if d%¢?(u) < o'/™n and all blue edges incident to u if d%"¢(u) < o'/™n. Note
that | K| > ‘Ured‘ ‘Ublue| — a/"p? and that, in K, each vertex is incident to only edges
of one colour. It is not too hard to see that by deleting at most 2a'/***n? additional edges,
we can obtain a subgraph K, of K; for which each vertex has degree 0 or large degree.
More precisely, for all v € U4,

dy,(u) > |Ub1ue‘ — 3a3%p or dy, (u) =0
and, for all v € UPe,
dr,(u) = |Ured| — 3028, or dy, (u) = 0.

Since each vertex is incident to only edges of one colour and any two vertices in U™ that
have non-zero degree have a common neighbour this implies that all edges in Ky are of
the same colour. Since |Kp| > |U™| |UP| — 3a!/*'n?, this concludes the proof. O

The following claim shows that there is a red tight component R, and a blue tight
component B, of H such that almost all the edges in G[U] induce one of these components.

Claim 41. Let v = o'/""0 There exists a red tight component R, and a blue tight
component B, of H such that

(i) |R2[U]| > ‘Gred[UH _ 8”)/1/5713 and |B§[U]| > ‘Gblue[UH _ 871/5713,
(i) [(R3UB3)[U]| = (1 —~*°) (lg‘) and
(iii) R, = R or B, = B.

Proof of Claim. First we show that, for each u € U, there exists J, C G,[U], where G,
is the link graph of G at u, such that |J,| > |G,[U]| — a*/*n? and R(e Uu) = R(e’' U u)
for e, ¢’ € J*4 and B(eUu) = B(e’ Uu) for e, ¢’ € JPle.

To show this fix v € U. Without loss of generality assume that v € U™. By
Lemma 39, dyps(u,U) > |U| — a'/™n. Let U, = Npgs(u,U). Clearly, |U,| > nn/2 and
G™[U,] € R2. Moreover, for all z € U,, we have dg(uz) > 0 and thus, since G is
(1 — a3 a'/37)-dense, dg(uz) = (1 — a'/37)n. It follows that §(G,[U.]) = |U.| — a/*"n.
Thus by applying Lemma 30 with R?, u, U,,a'/" playing the roles of Rg, S, U, d, there
exists J, C G,|U.| C G,[U] such that

|Ju‘ > ’Gu[U*H . 7a1/148n2 > ‘GU[U” . O'/1/75712 . 7a1/148n2 > ‘GU[U” . a1/149n2

and HuUe) = H(uU¢) for e, e € J, of the same colour.
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Now consider the auxiliary multi-3-graph D =, ., {e Uu: e € J,}. Note that

uelU

DI =" 17l = Y (IGLU] = o/*n?) > 3|G[U]| — o/ 40,

uelU uelU

Let F' be the subgraph of G[U] for which e € F'if and only if e is an edge of multiplicity 3
in D. Since G is (1 — /3", a'/37)-dense, Proposition 4 implies that |G| > (1 —2a/%7)(5).

Hence
)= (151) 2 () = (41) 20 (7)

1/37
3 7\ 3 3

Therefore |F| > |G[U]| — o'/*n% > (1 — a1/150)(|g|). Recall that v = o!/1119 By
Propositions 4 and 5, there exists a (1 — '/%, 4'/5)-dense subgraph F C F with V(ﬁ) =
V(F) = U and, by Proposition 4, |F 1 - 271/5)(“;‘). Hence ‘ﬁred‘ > }Gred[UH —
2915n3. Let S™ = {x € U: dpwea(®) = 67/°n?}. Let F*d be the subgraph of Fred
consisting of all edges that contain a vertex in S™¢. Note that |Fged| > ‘ﬁ red| _ Gy1/on3 >
}Gred[UH _ 871/5713.

We claim that all the edges in F*! induce the same red tight component R, in H.
Let e,¢/ € Frd with u € eN¢’. Note that e\ u, ¢’ \ u € J* and so R(e) = R(¢/). Hence
edges in the same loose component of Fred induce the same red tight component in H.
In particular, since Ff*d C F™d for u € S™, all the edges in N prea(u) induce the same
red tight component R(u) of H.

Let u,v € S™. We want to show that R(u) = R(v). We may assume that v and v are
in distinct loose components L and L' of F' fred , respectively. In particular, any edge of F
that intersects both V(L) and V(L') is in Fblue. If u,v € V™ then dgps(u), dops(v) >
(1 — a¥/™)n implying R(u) = R = R(v). Thus we may assume that one of u and v is
in VPe say v € VPe, Let T'p(u) = {u' € V(L): dp(uv) = 4Y°n} and ' (v) = {v' €
V(L'): dp/(vv') = v/°n}. Tt is easy to see that |['z(u)|, |z (v)| = 57"/°n. Let D' be the
bipartite directed graph with parts I';,(u) and 'z (v) such that, for v’ € I'r(u),

N (') = {v' € Tp(v): ud'v' € FP'" and uu'v"v' € 8R(uu’u") N OB (uu'v')
and uu'v"vv" € H for some u” € Np(uu')},
and, for v' € I'/(v),
N (') = {u' € Ty(u): vv'u’ € FP" and v'v € OB and vv'v"u’ € OB N OR(vv'v")

and vv'v"uu’ € H for some v" € N (vv')}.

By Lemma 29, the fact that F is (1 — 7*/%,%/%)-dense and the fact that H is (1 — e, a)-
dense, we have, for v’ € I'f(u),

dh, () = [Tp(v)] =40 — Y4 —en > T (v)] /2.
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Similarly, also using the fact that dygs(v) = (1 — a'/™)n, we have, for v’ € 'z, (v),
df, (') = |Tp(uw)| —7Y°n — o ™n — e —en > |Tp(u)| /2.

It follows that D’ contains a double edge uw'v', where v € I'r(u) and v € T';/(v). Let
v’ € Np(uu') and v € Np(vv') be the vertices that are guaranteed to exist by the
definition of D’. Since u'v € dB3, we have that vv'u € B? and thus also uu'v’ € B3.
As B[U] = @, we have vv'v"uu/, uv/u"vv’ € H™ and thus R(uuw'v”) = R(vv'v”). Hence
R(u) = R(v). We define F™® and B, in an analogous way. This proves (i).

Note that (ii) follows from (i) using the facts |U| > nn and |G[U]| > (1 — a'/3®) (7)),
which were noted earlier in this proof.

We will now prove (iii). We distinguish between two cases.

Case 1: }Ured| , ‘Ub1“e| > ~1/13p,

By Claim 40, we have max{|R*[U]|,|B3[U]|} > 3|U™ ‘Ublue| |U| — 3a!/1%°n3.  Since
% ‘Ured‘ ‘Ublue’ |U| _ 3a1/155n3 > %72/137]713 _ 3a1/155n3 > 2,}/1/6n37 we have Ri N R3 7& o
or B3N B?+# @ and thus R, = R or B, = B.

Case 2: }Ubl‘“’! < ~AY13n or ‘Ured‘ < /13,

Say |UM¢| < 4Y¥n. Then |U™| = [U| — [UP™] > |U| — y"/"n. Let Q* = {T €
(U) : (g) NOR? # @}. Since dor(u,U) > |U| — a/™n for u € U4, there can be at most

3
}U red} o?/™n? triples that intersect U™ and are not in Q°. Hence

|Q3} > (’?) . |Ub1ue}3 . |Ured| 2/ ™n2

U U
> (|3|> _73/13713 EPRTLCICEN (|3|) _ 271/5713_

Note that [R*[U]| > |Q N G™[U]| > |G*4[U]| — 2v"/°n®. Therefore, we have R, = R. [

We define R, = RU R, and B, = BU B,. Note that, by Claim 41(iii), R, U B, is the
union of at most three monochromatic tight components. Let M, be a maximal matching
in (R, U B,)[V*| containing M. Let W = V*\ V(M,). Since M C M,, we have W C U.
By the initial assumption, we have |WW| > nn. Note that (R, U B,)[W]| = @ and, since
W C U, (R.UB,)[W] > (") = 4/6n3. The following claim shows that almost all the
edges in G[W] are of the same colour.

Claim 42. We have |R3[W]| = () — 0% or |B3W]| = (1) — 41/%n3.
Proof of Claim. Let G, = R3U B2. We define

Wiea = {u € W: dg,(u, W) = 2an® and dgs(u, W) < an®},
Wite = {u € W: dg, (u, W) = 2an® and dgs(u, W) < an®},
Wo = {u € W:dg, (u, W) < 2an?}.

Since (R, U B,)[W]| = @, by Lemma 28, Wieq, Whie and Wy partition W. Let J be the
subgraph of G..[W] obtained by deleting all red edges containing a vertex in Wy, U W
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and all blue edges containing a vertex in Wyeq U Wy. Note that |J| > |G.[W]| — 2an® >

(1 _71/7)(|v§/|) and J C ( red)U(ngue). Hence

()< (E) )

Suppose that [Wie|, [Woie| < (1 — a/®)|[W]. By (7), we may assume without loss of
generality assume that |[W,.q| = |W| /2. Noting that  — 2®+ (|W| — )3 is an increasing
function for = > |W| /2 we have

Wie Whine 1 1
<| d|)+(| . |) g(lWredI + [ Whne|?) < 6(|Wred| + ([W] = [Wieal)®)

3 3
3
< ((1 _ 71/8)3 + 73/8) H/Z’ < (1 _ 71/7) (’V;/‘),

a contradiction to (7).

Hence at least one of W,eq and Wiy, has size at least (1 — +'/8)|W|. Without loss of
generality assume |[Weeq| = (1 —~4Y/®) |W/|. Note that any edge of J contained in Wieq is
in R3, hence

R > 7] = W\ Wl 2 > <|V3V|> 8

This proves the claim. U

Now assume without loss of generality that |R3[W]| > (") —7'/%n?. Note that almost
all edges in H[W] are blue (otherwise there would have to be an edge in R.[W], which
would contradict the maximality of M). More precisely, we have

) > SR ] - 3vEn W] - e > 1= 20 (1)

1/1010 1/1010)

-dense tightly connected sub-
> (1 - 271/1010)0‘2/'). By an

easy greedy argument, there exists a matching M’ in HY" that covers all but at most nm
of the vertices in W. The matching M’ U M, covers all but at most 3nn of the vertices
of H. This contradicts the initial assumption. O

By Propositions 4 and 5, there exists a (1 — )Y
graph HPUe of HPMe[|V] with V(H) = W and ‘ITI blue

8 Concluding Remarks

For k > 3, let f(k) be the minimum integer m such that, for all large 2-edge-coloured
complete k-graphs, there exists m vertex-disjoint monochromatic tight cycles covering
almost all vertices. Note that f(k) is well defined by [4] but the bound is very large. It is
easy to see that f(k) > 2 for all k > 3. Indeed, consider the k-graph H = K*)(A, B) given
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in Example 22 with |A| = 22-1n. Note that H[A] is a red tight component. Moreover,
note that any tight cycle contained in a monochromatic tight component other than H[A]
covers at most about a third of the vertices of H and any tight cycle in H[A] leaves all 3
vertices in B uncovered. Hence no monochromatic tight cycle covers almost all vertices
in H. We have f(3) = 2 by [5]. Theorems 2 and 3 imply f(4) = 2 and f(5) < 4,
respectively. In general, we believe that f(k) = 2 for all k. However, we believe that new
ideas may be needed as indicated by again considering the k-graph H = K®)(A, B) with
|A| = %n (as above). If H contains two vertex-disjoint monochromatic tight cycles of
distinct colour covering almost all vertices, then one of the two cycles must lie entirely
in the red tight component H[A]. However, this tight component is not induced by any
edge in the blueprint of H (which is K*=2 (A, B) with colours swapped). Thus we ask

the weaker question of whether one can bound f(k) by some suitable function of k.
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