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Abstract

A drawing of a graph G, possibly with multiple edges but without loops, is radial
if all edges are drawn radially, that is, each edge intersects every circle centered at
the origin at most once. G is radial planar if it has a radial embedding, that is,
a crossing-free radial drawing. If the vertices of G are ordered or partitioned into
ordered levels (as they are for leveled graphs), we require that the distances of the
vertices from the origin respect the ordering or leveling.

A pair of edges e and f in a graph is independent if e and f do not share a
vertex. We show that if a leveled graph G has a radial drawing in which every
two independent edges cross an even number of times, then G is radial planar. In
other words, we establish the strong Hanani-Tutte theorem for radial planarity. This
characterization yields a very simple algorithm for radial planarity testing.

Mathematics Subject Classifications: 05C62,05C10,68R10
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1 Introduction

Radial planarity was first studied by Bachmaier, Brandenburg and Forster [3]. Radial
and other layered layouts are a popular visualization tool (see [4, Section 11],[10]); early
examples of radial graph layouts can be found in the literature on sociometry [21]. This
paper continues work begun in “Hanani-Tutte for Radial Planarity” [17] by the same
authors; some material will be revisited in order to make the current paper self-contained.

In a leveled graph, every vertex is assigned a level in {1, . . . , k}. A curve is radial
if it intersects each circle centered at the origin at most once. A radial drawing of a
leveled graph visualizes the levels as concentric circles centered at the origin, with the
level corresponding to the distance of the circles from the origin, and such that every edge
is radial. A leveled graph is radial planar if it admits a radial embedding, that is, a radial
drawing without crossings, that respects the leveling. Radial planarity generalizes level
planarity [9] in which levels are visualized as vertical lines instead of concentric circles
and radially-drawn edges are drawn as x-monotone curves. Figure 1 shows a radially
embedded graph.
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Figure 1: A radial embedding of a leveled graph with five levels.

We previously established the weak Hanani-Tutte theorem for radial planarity: a
leveled graph G is radial planar if it has a radial drawing (respecting the leveling) in
which every two edges cross an even number of times [17, Theorem 1]. Our main result is
the following strengthening of the weak Hanani-Tutte theorem for radial planarity, also
generalizing the strong Hanani-Tutte theorem for level-planarity [16]:

Theorem 1. If a leveled graph, possibly with multiple edges but without loops, has a radial
drawing in which every two independent edges cross an even number of times, then it has
a radial embedding.

In order to put the theorem in the context of previous developments, we remark that
neither Theorem 1 nor the strong Hanani-Tutte theorem [8, 29] for ordinary planarity
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follow from each other, since the edge-drawing style is severely restricted in the radial
version. The strong Hanani-Tutte theorem for level planarity [16] is a special case of
Theorem 1, which we use as the stepping stone in its proof. The main challenge in
extending the level version to the radial version comes from the presence of homologically
non-trivial cycles over Z/2Z in the drawing from the hypothesis of the theorem.

The weak variant of a Hanani-Tutte theorem makes the stronger assumption that every
two edges cross an even number of times. Weak variants often lead to stronger conclusions.
For example, it is known that if a graph can be drawn in a surface so that every two edges
cross evenly, then the graph has an embedding on that surface with the same rotation
system, i.e. the cyclic order of ends at each vertex remains the same [7, 23]. This, in a
way, is a disadvantage, since it implies that the original drawing is combinatorially already
an embedding, so that weak Hanani-Tutte theorems do not help in finding embeddings.
On the other hand, strong Hanani-Tutte theorems are often algorithmic. Theorem 1 yields
a very simple algorithm for radial planarity testing (described in Section 5) which is based
on solving a system of linear equations over Z/2Z, see also [25, Section 1.4]. Our algorithm
runs in time O(n2ω), where n = |V (G)| and O(nω) is the complexity of multiplication of
two square n × n matrices. Since our linear system is sparse, it is also possible to use
Wiedemann’s randomized algorithm [30], with expected running time O(n4 log2 n) in our
case.

Bachmaier, Brandenburg and Forster [3] showed that radial planarity can be tested,
and an embedding can be found, in linear time. Their algorithm is based on a variant
of PQ-trees [6] and is rather intricate. It generalizes an earlier linear-time algorithm for
level-planarity testing by Jünger and Leipert [20]. Angelini et al. [2] devised a conceptually
simpler algorithm for radial planarity testing with running time O(n4) (quadratic if the
leveling is proper, that is, edges occur between consecutive levels only), by reducing the
problem to a tractable case of Simultaneous PQ-ordering [5].

We prove Theorem 1 by ruling out the existence of a minimal counter-example. By
the weak Hanani-Tutte theorem [17, Theorem 1] a minimal counter-example must contain
a pair of adjacent edges crossing an odd number of times. Thus, [17, Theorem 1] serves as
the base case in our argument (mirroring the development for level-planarity). In place of
Theorem 1 we establish a stronger version, Theorem 6, which we discuss in Section 4.

We refer the reader to [28, 24, 25, 17, 27] for more background on the family of
Hanani-Tutte theorems, but suffice it to say that strong variants are still rather rare, so
we consider the current result as important evidence that Hanani-Tutte is a viable route
to answer graph-drawing questions.

2 Terminology

For the purposes of this paper, graphs may have multiple edges, but no loops. For the
definitions of graph theoretical notions such as cycle, path, walk, and component including
those pertaining to graph embeddings such as a face and its boundary walk we refer the
reader to [11]. An ordered graph G = (V,E) is a graph whose vertices are equipped with a
total order v1 < v2 < · · · < vn. We can think of an ordered graph as a special case of a
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leveled graph, in which every vertex of G is assigned a level, a number in {1, . . . , k} for
some k. The leveling of the vertices induces a weak ordering of the vertices.

For convenience we represent radial drawings as drawings on a (standing) cylinder.
Intuitively, imagine placing a cylindrically-shaped mirror in the center of a radial drawing
as described in the introduction, e.g., the left illustration in Figure 2 shows the cylindrical
drawing of the leveled graph in Figure 1.1 In practice, we will work with flat representations
of the cylinder, as shown on the right of the same figure.
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Figure 2: (left) A cylindrical embedding of the leveled graph Figure 1; (right) a flat
representation of the same cylindrical embedding.

A drawing of a graph is its representation on a surface in which vertices are represented
as distinct points and edges as simple curves joining their respective end vertices. We
assume that a drawing is non-degenerate, that is, edges do not overlap (they intersect at
most finitely often) and edges do not pass through vertices in a drawing. Abusing notation,
we denote by a vertex v and an edge e both the objects in the (abstract) graph as well as
their representations in its drawing.

We work on the cylinder C = S1 × (0, 1) = {(cos θ, sin θ, ℓ) : θ ∈ R, ℓ ∈ (0, 1)}. A point
can be specified as (θ, ℓ) for convenience. A curve on the cylinder is radial if it has the
form θ = f(ℓ) for some function f with interval domain. A drawing of a leveled graph on
the cylinder is radial if the ℓ-coordinates of the vertices respect the leveling, and every
edge is drawn radially.

Let ℓ(X) denote the projection of any X ⊆ C to its ℓ-coordinate on the interval (0, 1).
For an ordered graph H with a given drawing, we allow maxH to be either maxV (H), its
vertex of maximum level, or its maximum ℓ-coordinate max ℓ(H), and likewise for minH;
note that for a radial drawing of a graph, the maximum ℓ-coordinate occurs at its vertex
of maximum level (and likewise for minimum).

1This transformation is well-known in the history of art as “cylindrical mirror anamorphosis”.
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Given a graph G with subgraph G′ and a radial drawing D(G) of G, let D(G′) be the
drawing restricted to G′ (i.e., treat D as a function from G as a topological space to the
cylinder).

Given vertices u, v with u ⩽ v in a graph G on the cylinder, let G[u, v], G[u, v), G(u, v],
and G(u, v) denote the subgraphs with ℓ-coordinates between ℓ(u) and ℓ(v), including
endpoints as indicated.

In a radial drawing of a graph, an upper (lower) edge at v is an edge incident to v for
which min e = v (max e = v). A sink (source) is a vertex with no upper (lower) edges.

Given a radial drawing of a graph G on the cylinder C, if there is a simple curve γ
from the bottom of the cylinder S1 × 0 to its top S1 × 1 such that C does not intersect
the drawing of G, then we can cut C along γ, unroll C \ γ so that it is flat, and rotate the
drawing so that the circle levels turn into vertical line segments. The resulting drawing of
G is called an x-monotone drawing. We will always work with vertical levels whenever we
discuss x-monotone drawings.

The rotation at a vertex in a drawing (on any surface) of a graph is the cyclic, clockwise
order of the ends of edges incident to the vertex in the drawing. The rotation system is the
set of rotations at all the vertices in the drawing. For radial drawings, we define the upper
(lower) rotation at a vertex v to be the linear order of the ends of just the upper (lower)
edges in the rotation at v, with the order corresponding to the clockwise orientation of
S1 (left-to-right in the flattened cylinder). Thus the upper (lower) rotation is clockwise
(counterclockwise) on the cylinder surface.

The rotation at a vertex in a radial drawing is completely determined by its upper and
lower rotation. The rotation system of a radial drawing is the set of the upper and lower
rotations at all the vertices in the drawing.

If G is connected, then the rotation system determines the plane embedding, in the
sense that the faces are uniquely determined [19, Theorem 3.2.3]. For a leveled, connected
graph, the rotation system determines the faces of the radial embedding, including the
outer faces, since we know the vertices on the first and last levels.

The winding number of a closed curve on a cylinder is the number of times the projection
of the curve to S1 winds around S1, i.e., the number of times the projection passes through
an arbitrary point of S1 in the counterclockwise sense minus the number of times the
projection passes through the point in the clockwise sense. A closed curve (or a closed
walk in a graph) on a cylinder is essential if its winding number is odd.2 A graph drawn
on the cylinder is essential if it contains an essential cycle.

For any closed, possibly self-overlapping, curve in the plane (or cylinder), we can
two-color the complement of the curve so that connected regions each get one color and
crossing the curve switches colors; at self-overlaps, the color switches if the number of
overlaps of the curve is odd at the point being crossed. (For example, a graph embedded

2In other words, a closed curve on a cylinder is essential if its homology class over Z/2Z is non-trivial,
and thus, uses the topology of the cylinder in an essential way. The reason to consider the essentialness over
Z/2Z, rather than have it equivalent to the non-contractibility as is perhaps more common in topological
graph theory, is due to the hypothesis of Theorem 1 being stated in terms of a parity relaxation of the
embedding.
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Figure 3: (left) A two-coloring of a curve with self-overlaps; (right) A two-coloring of the
curve from the left after a small perturbation removing the overlaps. With self-overlaps
removed, a two-coloring exists by a simple proof [26, Lemma A.2].

in the plane may have a face bounded by a closed curve that uses an edge e twice, once in
each direction; for such a curve, the two-coloring will have the same color on both sides
of e.) Refer to Figure 3 for an example. If the closed curve is non-essential, the region
incident to S1 × 1 and the region incident to S1 × 0 will have the same color; all regions of
that color form the exterior of the curve and the remaining regions form the interior of
the curve.

Each pair of edges in a graph drawing crosses evenly or oddly, we call this the crossing
parity of the pair of edges, and refer to even and odd pairs. A drawing of a graph is even if
every pair of edges cross evenly. A drawing of a graph is independently even if every two
independent edges in the drawing cross an even number of times, while two edges that
share an endpoint may cross oddly or evenly.

For any (non-degenerate) continuous deformation of a drawing of G, the crossing parity
of a pair of edges only changes when an edge passes through a vertex. We call this event
an edge-vertex switch. When an edge e passes through a vertex v, the crossing parity
changes between e and every edge incident to v.

3 Weak Hanani-Tutte for Radial Drawings

We first recall the weak variant of the result that we want to prove.

Theorem 2 (Fulek, Pelsmajer, Schaefer [17, Theorem 1]). If a leveled graph has a radial
drawing in which every two edges cross an even number of times, then it has a radial
embedding with the same rotation system and leveling.

We need a stronger version of this result that also keeps track of the parity of winding
numbers.

Theorem 3 (Fulek, Pelsmajer, Schaefer [17, Theorem 2]). If an ordered graph G has an
even radial drawing, then it has a radial embedding with the same ordering and the same
rotation system such that the winding number parity of every cycle remains the same.
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Theorem 2 easily follows from Theorem 3 using the pendant construction from [16,
Section 4.2] that was used to reduce level-planarity to x-monotonicity: Given an even
radial drawing of a leveled graph G, consider each level ℓ = c with more than one vertex;
see the left illustration in Figure 4.

w1 w2 w3 w4 w1
w2

w3
w4

Figure 4: (left) A level with four vertices (including one sink and two sources); (right) the
pendant vertices are placed in a small neighborhood (light gray) of the original level and
the four original vertices perturbed in an even smaller neighborhood (dark gray) so that
each vertex is at a unique level.

For each source or sink w on that level, add a short crossing-free edge incident to w
on the empty side of that vertex, placing its other endpoint so that it doesn’t share its
level with any other vertex. (Since we work on an open cylinder, the pendant construction
can be applied to the vertices on the bottom-most and top-most level.) We now slightly
perturb all the vertices on the level ℓ = c so that no two vertices are at the same level,
without moving them past any other level. All this can be done while keeping all edges
radial, and without introducing any new crossings. We obtain an ordered graph, G′. By
Theorem 3, G′ has a radial embedding with the same rotation system, and the winding
number of every cycle remains unchanged. The additional edges we added ensure that
there is room to slide all of the perturbed vertices back to their original level without
getting in the way of each other.

3.1 Working with Radial Embeddings and Even Drawings

Given a connected graph G with a rotation system, one can define a facial walk purely com-
binatorially by following the edges according to the rotation system (see, for example, [19,
Section 3.2.6]), by traversing consecutive edges at each vertex, in clockwise order.

We need some terminology for embeddings of an ordered graph G with v1 < v2 <
. . . < vn. The maximum (minimum) of a facial walk W in the radial drawing of G is the
maximum (minimum) v that lies on W . A local maximum (local minimum) of a facial
walk W is a vertex v on W that is larger (smaller) than both the previous and the next
vertex on W . (A vertex v might appear more than once on W ; the previous definition
implicitly refers to one such appearance.)
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A facial walk in an even radial drawing is an upper (lower) facial walk if it contains
S1 × 1 (S1 × 0) in its interior. An outer facial walk is an upper or lower facial walk; other
facial walks are inner facial walks. If a radial embedding of G has only one outer facial
walk (and one outer face), then it also has an x-monotone embedding (by cutting the
cylinder along a curve connecting the bottom and the top of the cylinder, as we described
in Section 2).

Lemma 4. In a radial embedding of a graph, there are two outer faces if and only if the
graph contains an essential cycle.

The lemma also holds for even radial drawings; since we don’t need that stronger result,
we do not prove it here.

Proof. If the radial embedding has one outer face, there is a curve γ lying in the outer
face and connecting ℓ = 0 to ℓ = 1. Since the embedding is disjoint from γ, the winding
number of all cycles of the graph in the embedding is zero.

On the other hand, if there are two outer faces, one incident to ℓ = 0 and one incident
to ℓ = 1, then the lower face boundary of the radial embedding is homotopic to the circle
ℓ = 0 so it has odd winding number; by induction it must contain a cycle with odd winding
number, too.

Lemma 5. A cycle C in an even radial drawing is essential if and only if the two paths
connecting its extreme vertices do so in inverse order.

Proof. Let e and f be the edges in C that are incident to the maximum v of C, and e′

and f ′ be the two edges of C incident to the minimum u of C. Suppose that e, e′, f ′, f
appear in this order along C (where we allow e = e′ or f = f ′). See Figure 5.

u

v

f ′ e′

e f

Figure 5: An essential cycle (ends of path are in inverse order at u and v).

Let <v be the lower rotation at v and let <u be the upper rotation at u. Suppose that
e <v f . We have to show that C is essential if and only if f ′ <u e′.

Two-color the complement of C. Traverse the path in C which begins with v and e and
ends with e′ and u. At the beginning, the colored region to the right includes the empty
space just above v. Since C is an even drawing, the color immediately to the right will be
the same as we begin and end our path traversal. At the end, the colored region to the
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right includes the empty space just below u if and only if e′ <u f ′. The space above v and
the space below u have the same color if and only if the winding parity of C is even.

4 Strong Hanani-Tutte for Radial Drawings

Theorem 3 preserves the parity of the winding number of cycles in even radial drawings of
ordered graphs and this property is used in the inductive proof of Theorem 3 in [15]. We
cannot hope to do this when the drawings are only independently even; see Figure 6 for a
counterexample.

v1

v2

v3

v4

v5
v6

Figure 6: An independently even drawing with two essential cycles, v1v2v4 and v1v3v5;
there is no radial embedding in which both these cycles remain essential.

Fortunately, we can make the proof of the main result work with a somewhat weaker
property: Given an ordered graph G with radial drawing D1, a radial redrawing D2 is
supported by D1 if for every essential cycle C2 in D2, there is an essential cycle C1 in D1

such that [minC1,maxC1] ⊆ [minC2,maxC2]. In other words, while the redrawing D2

may contain new essential cycles not in D1, those cycles are propped up by essential cycles
in D1.

A radial drawing of an ordered connected graph is weakly essential if every essential
cycle in the drawing passes through v1 or vn (the first or the last vertex). With this
definition we can state the strengthened version of our main result which we need for the
proof.

Theorem 6. Let G be an ordered graph. Suppose that G has an independently even radial
drawing. Then G has a radial embedding. Moreover, (i) if the given drawing of G is weakly
essential, then G has an x-monotone embedding; and (ii) the new radial embedding is
supported by the original drawing.

Theorem 1 follows from Theorem 6 by the pendant construction from [16, Section 4.2]
described in Section 3.

We will prove part (i) of Theorem 6 in Section 4.2 and complete the proof in Section 4.4.
We develop some tools for these proofs in Section 4.1 and establish some properties of a
minimal counterexample for part (ii) in Section 4.3.
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4.1 Working with Independently Even Radial Drawings

An edge e drawn on C with endpoints u < v is bounded if ℓ(u) < ℓ(p) < ℓ(v) for every
point p in the interior of e. Call a drawing of G bounded if all edges are bounded.

Lemma 7. If an ordered graph has an (independently) even bounded drawing, then it has
an (independently) even radial drawing with the same rotation system which preserves
whether cycles are essential or non-essential.

The proof of the lemma uses an adaptation of the usual (e, v)-moves (e.g. [23]) to the
radial setting: To perform a radial (e, v)-move, assuming min e < v < max e, we detour
a portion of e within a narrow band S1 × [ℓ(v)− ϵ, ℓ(v) + ϵ] so that it passes over v; see
Figure 7. The effect of an (e, v)-move is to change the crossing parities between e and
any edge incident to v. All other crossing parities remain the same (since newly added
crossings come in pairs except near v, assuming ϵ is sufficiently small).

e

v

e

v

Figure 7: Performing a radial (e, v)-move in a small neighborhood S1 × [ℓ(v)− ϵ, ℓ(v) + ϵ]
(gray).

Proof of Lemma 7. It is sufficient to show that we can redraw any particular edge e = uv
radially without changing the remainder of the drawing, so that the crossing parity between
e and each other edge is unchanged, and so that winding number of each cycle is unchanged.

While keeping ℓ(e) = [u, v] and the rotation system fixed, we can continuously deform
e so that it is radial. As e is deformed, it passes through some vertices an odd number of
times; call this set of vertices S. To reestablish the original crossing parities between e and
all other edges, we perform a radial (e, w)-move for every vertex w ∈ S (see Figure 7).

The following result is a simple corollary of Lemma 7; see Figure 8 (left) for an
illustration.

Corollary 8. In a radial embedding of a connected ordered graph G we can subdivide
any face f by adding an edge joining its maximum with its minimum while keeping the
embedding radial. If f is an outer face, we can subdivide it by adding at most two edges so
that the new outer face contains exactly one local minimum and maximum.
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S1θ1 θ2

ML mU

WL

WU

mL

MU

Figure 8: (left) Subdividing the lower and upper outer face in a radial embedding by
bounded edges. (right) The lower and upper face G bounded by essential 2-cycles.

Proof. Given a face f we add a bounded edge e to the interior of f , drawn along the
boundary of f , that joins the minimum and the maximum of f . An application of Lemma 7
and Theorem 2 then concludes the proof of the first part of the statement.

For the second part, if f is an outer face, then its boundary W is a facial walk which
can be broken into two sub-walks between its minimum and maximum. We can add an
edge in f drawn alongside each sub-walk, unless the sub-walk already consists of a single
edge only, in which case we use that edge. These edges form a walk W ′ that bounds a
2-face f ′ which is now the outer face instead of f . We apply Lemma 7 and Theorem 3 to
get an embedding that is radial. Since the rotation system is unchanged and the graph is
connected, W ′ still bounds a face f ′

∗ in the new embedding. The winding number of W ′ is
the same, so by Lemma 5, f ′

∗ is essential if and only if f ′ was essential. Then the rotation
ensures that f ′

∗ is an outer face, just as f ′ was.

We use Corollary 8 below to derive Lemma 11, which allows us to augment the
embedding of essential components so that the outer faces are 2-cycles; see Figure 8 (right).

We often make use of the following fact.

Lemma 9. Let P be a path and let C be an essential cycle, vertex-disjoint from P , in an
independently even radial drawing of a graph. Then ℓ(P ) does not contain ℓ(C).

Proof. Suppose ℓ(P ) contains ℓ(C). We can then find a vertex u on P above C and a
vertex v on P below C. Thus, the sub-path of P between u and v, and hence, an edge
of P on the sub-path between u and v, intersects an edge of C an odd number of times,
which is a contradiction.

Finally, we present some re-embedding techniques that will help us combine embeddings
of components. If a graph H has an independently even radial drawing with no essential
cycles, then it has an x-monotone embedding (see Lemma 13, which actually shows
something a bit stronger). The x-monotone embedding can be “squeezed” to have an
arbitrarily narrow width. Then, given any radial curve e with ℓ(H) ⊆ ℓ(e), we can deform
the embedding of H so that it lies arbitrarily close to e (within ε for any ε > 0). We call
this a “skinny” embedding.
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Observation 10. If an ordered graph H has an x-monotone embedding and e is a radial
curve on the cylinder with ℓ(H) ⊆ ℓ(e), then H has an embedding on the cylinder that lies
arbitrarily close to e.

A radially-embedded graph G that is not free of essential cycles also has a useful
level-preserving deformation, whose existence is proved in the next lemma. Refer to
Figure 8 (right).

For any distinct θ1, θ2 on S1 and m,M in [0, 1], let γ(θ1,m, θ2,M) be the essential
curve consisting of the two helix segments from (θ1,m) to (θ2,M).

Lemma 11. Suppose an ordered graph G is radially embedded. Let mL and ML be the
minimum and maximum of the lower face boundary and let mU and MU be the minimum
and maximum of the upper face boundary. Then for any distinct θ1, θ2 on S1, there is a
radial embedding of G that lies between the curves γ(θ1,mL, θ2,ML) and γ(θ1,mU , θ2,MU ).

Proof. By Lemma 4, there are separate upper and lower outer faces. By Corollary 8, we
can add edges to the upper and lower face so that each is bounded by a 2-cycle with
radially-drawn edges. Then we can do a level-preserving deformation that maps the new
edges to the curves γ(θ1,mL, θ2,ML) and γ(θ1,mU , θ2,MU).

4.2 Weakly Essential Drawings

If two consecutive edges in the rotation at a vertex v cross oddly, we can make them cross
evenly by a local redrawing: we “flip” the order of the two edges in the rotation at v,
adding a crossing, which makes them cross evenly. (For any two crossing adjacent edges in
a radial drawing, either both are in the upper rotation or both are in the lower rotation of
their shared endpoint.) In the proof of the strong Hanani-Tutte theorem for x-monotone
drawings [16, Theorem 3.1], if the edges incident to a vertex v cannot all be made to cross
(pairwise) evenly using edge flips, then there must either be a component H of G \ {v, w},
for some w ∈ V (G), satisfying v ⩽ minH < maxH ⩽ w or a multiple edge vw (for some
vertex w). Both cases lead to a reduction; then an application of the weak Hanani-Tutte
theorem for x-monotone drawings [22] (see also [16, Theorem 2.11]) completes the proof.

We want to use the same approach for radial drawings, and we already know that the
weak Hanani-Tutte theorem holds for radial drawings. But in this case, it is possible that
we have a vertex v whose incident edges cannot be made to cross pairwise evenly using
edge flips and yet there may be no obstacle like H or a multiple edge. However, we will
show (Lemma 13) that this can only occur when v is the first or last vertex of the ordered
graph. The next lemma helps us deal with this case.

Given an ordered graph G with vertices v1 < . . . < vn without the edge v1vn, let G
′

denote the ordered graph obtained by removing v1 and vn, and replacing each edge viw
with i ∈ {1, n} by a “pendant edge” uw where u is a new degree one vertex placed in the
order before v2 if i = 1 and after vn−1 if i = n (and otherwise ordered arbitrarily).

Lemma 12. If G is a connected ordered graph with an (independently) even radial
drawing D(G), then G′ has an (independently) even radial drawing D′(G′) such that
D′(G \ {v1, vn}) = D(G \ {v1, vn}) and D′(G′) is supported by D(G).
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Proof. In D(G), erase v1 and a small portion of its incident edges to create new pendant
edges with new endpoints v′1 < . . . < v′k with distinct ℓ-coordinates between ℓ = ℓ(v1) and
ℓ = ℓ(v2). This does not change the crossing parity of any pair of edges, but each pair of
edges incident to v1 that crossed oddly in D(G) is now a pair of independent edges that
cross oddly (unless they were multiple edges, which share their upper endpoint). We will
redraw these pendant edges so that every pair of these pendant edges crosses evenly.

Let wi be the upper endpoint of the pendant edge incident to v′i for 1 ⩽ i ⩽ k. If v′iwi

and v′jwj cross oddly and i < j, then a radial (v′iwi, v
′
j)-move (as in Figure 7) will make

them cross evenly. For each fixed j, we perform radial (v′iwi, v
′
j)-moves for every edge v′iwi

that crosses v′jwj oddly: doing so for all j with 1 ⩽ j ⩽ k makes every pair of pendant
edges cross evenly.

We apply a similar procedure to vn: erase it, creating pendant edges with new endpoints
v′′1 < . . . < v′′ℓ , then redraw the pendant edges so that every pair crosses evenly. We have
obtained a drawing D′(G′) of G′ in which every pair of oddly-crossing edges is also a pair
of oddly-crossing edges, as desired. The second part of the claim follows because every
essential cycle of D′(G′) is an essential cycle in D(G).

Using Lemma 12 we can establish part (i) of Theorem 6.

Lemma 13. Suppose that G has an independently even radial drawing that is weakly
essential. Then G has an x-monotone embedding.

Proof. Let D(G) be the independently even radial drawing of G that is weakly essential.
By Lemma 12 there is an independently even radial drawing D′(G′) of G′ (as defined
before the lemma) such that D′(G′) is supported by D(G). Since D(G) is weakly essential,
D′(G′) contains no essential cycles.

Let v, v′ be new vertices such that v < minG′ and maxG′ < v′. Draw a new edge
e = vv′ radially and so that its interior does not pass through any vertex of G′. Let E ′

denote the set of edges in G′ crossed oddly by e. Since G′ contains no essential cycle, each
cycle C of G′ crosses e evenly, and hence, the number of edges of E(C) crossed oddly by e
is even. In a graph, the cycle space is orthogonal to the cut space over Z/2Z [11, Section
1.9]. It follows that E ′, if it is non-empty, is an edge-cut of G′. In that case, we perform
radial (e, w)-moves with all vertices w on one side of the cut E ′; then e crosses every edge
of G′ evenly (if E ′ is empty, that is automatically true).

The edge e can then be cleaned of crossings by [15, Lemma 8] (where the graph is
(V (G′)∪{v, v′}, E(G′)∪{e})). By cutting the cylinder along e, we can conformally deform
C \ e to a subset of the plane so that levels become parallel line segments and our radial
drawing becomes an x-monotone drawing as discussed in Section 2. Then the strong
variant of the Hanani-Tutte theorem for x-monotone drawings [16] applies, giving us an
x-monotone embedding of G′. Finally, we can extend the pendant edges in the drawing to
reach two (new) shared endpoints v1, vn, giving us an x-monotone embedding of G.
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4.3 Components of a Minimal Counterexample

In the remainder of Section 4, G will denote a minimum counterexample to Theorem 6, by
which we mean a counterexample with the fewest possible number of vertices, and, subject
to that, the fewest edges possible. Let D(G) be the independently even radial drawing of
G. Then G has no radial embedding supported by D(G) and, by Lemma 13, D(G) is not
weakly essential.

Lemma 14. A minimal counterexample does not have multiple edges.

Proof. Suppose that e and e′ both have endpoints u, v in a minimal counterexample G
which is drawn on the cylinder. Apply induction to G − e to get a drawing D(G − e),
then draw e alongside e′ without any crossings, producing an embedding of G. The new
embedding is supported by the original drawing of G, because for any essential cycle C
through e, the cycle C − e+ e′ is essential and in G− e, and ℓ(C ′) = ℓ(C).

Lemma 15. G is connected.

Proof. Suppose that G is not connected. If G has a non-essential component H, embed
the rest of the graph G′ by induction. Let mH = minV (H) and MH = maxV (H). It
suffices to add an edge mHMH to the embedding of G′, by Observation 10, which we do
next.

Let E ′ be the set of edges e such that min e < MH < max e and let G− and G+ be
the (embedded) subgraphs induced by {v ∈ V (G′) : v < MH} and {v ∈ V (G′) : v > MH},
respectively; see Figure 9. Since the upper face of G− contains ℓ = MH , it must also
intersect ℓ = mH , since otherwise the upper boundary of G− would contain an essential
cycle between mH and MH , contradicting part (ii) of Theorem 6 with Lemma 9. Let
x be any point in the upper face of G− with ℓ(x) = mH ; moreover, choose x to avoid
intersecting E ′. The face of G′ that contains x must also intersect ℓ = MH , so it will
contain a radial curve from ℓ = mH to ℓ = MH (using Corollary 8 to make it radial),
along which we can embed the edge mHMH or H itself, by Observation 10. This yields an
embedding of G, which satisfies part (ii) since G′ contains the same essential cycles as G.

x

y
G+

E′

G−

ℓ = MH

ℓ = mH

Figure 9: Induced graphs G+ (black edges) and G− (gray edges) and the set of edges E ′

(dashed) ; we will draw mHMH (and H) along the radial curve xy (green).
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Now instead suppose that G is not connected and every component is essential. Let
H be the component of G with maxH = maxG. Let G′ be the rest of G, embedded by
induction. Since the upper face of G′ contains ℓ = maxH, it must also intersect ℓ = minH,
since otherwise the upper boundary of G′ would contain an essential cycle between minH
and maxH, contradicting part (ii) of Theorem 6 with Lemma 9. So the minimum mU of
the upper boundary of G′ satisfies mU < minH. Note that maxG′ is the maximum of the
upper boundary of G′. By Lemma 11, G′ can be embedded on the cylinder so that it lies
below the curve γ(0,mU , π,maxG′) as described just prior to Lemma 11.

Similarly, H has an embedding by induction, the maximum ML of the lower boundary
of H satisfies maxG′ < ML, and by Lemma 11 it can be embedded so that it lies strictly
above the curve γ(0,minH, π,ML). Since mU < minH and maxG′ < ML, the embeddings
of H and G′ do not interesect. Thus we have obtained an embedding of G and it satisfies
part (ii) of Theorem 6 since every essential cycle is in a component.

Let v be a vertex and suppose that B is a component of G \ v with minB > v. By
Lemma 15, there exists at least one edge from v to a vertex in B.

Lemma 16. Let v be a vertex and B be a component of G \ v with minB > v. Then
either |V (B)| = 1 (and the vertex of B has just one neighbor, v) or B is essential in D(G).

Proof. Suppose that B contains no essential cycle and |V (B)| ≠ 1. Let B′ be the subgraph
induced by V (B) ∪ {v}; i.e., B′ contains B, v, and all edges from v to B. By Lemma 13
we obtain an x-monotone embedding E(B′) of B′. Let vPw be a path in B′ from v to
maxB = w. Let G′ be a graph obtained from G by replacing B′ with a single edge e from
v to w. Let D(G′) denote the drawing of G′ inherited from D(G) such that D(P ) = D(e).
Thus, the drawing of e in D(G′) is obtained by suppressing the interior vertices of P .
The drawing D(G′) may not be radial due to e, but it is still bounded and independently
even. By Lemma 7, we obtain an independently even radial drawing D′(G′) of G′. By the
minimality of G we get a radial embedding E ′(G′) of G′. Finally, using Observation 10 we
replace e in E ′(G′) by a “skinny” copy of E(B′) intersecting E ′(G′) in v, thereby obtaining
a radial embedding of G. This embedding of G is supported by D(G).

Lemma 17. Let v be a vertex and B be a component of G \ v with minB > v. If B is
essential in D(G), then v = v1.

Proof. For the sake of contradiction we assume the contrary. Thus, B is essential and
v ̸= v1. Let G1 denote the union of all components H of G \ v for which minH > v.
Let G2 denote the union of components of G \ v not included in G1. Since v ̸= v1, G2

is non-empty, and G1 is also non-empty due to the existence of B. Let G′
1 denote the

subgraph of G induced by V (G1) ∪ {v}. Let G′
2 denote the union of the subgraph of G

induced by V (G2) ∪ {v} and an edge e between v and w := maxG′
1 = maxG. Since there

is a path vPw connecting v and w in G1, we can argue as in the proof of Lemma 16 that
there is an independently even radial drawing of G′

2. G′
2 is not the same as G since G′

1

must contain a cycle (for B to be essential). See Figure 10.
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v1

v

w

u

Figure 10: G′
1 in black, and G′

2 \ w in gray. Also, vertex u of G′′
2, just below maxW1

(which happens to be w), and the upper outer 2-face of G′′
2 (dotted).

By the minimality of G there are radial embeddings E1(G′
1) and E2(G′

2) of G
′
1 and G′

2,
each supported by the drawings we had of G′

1 and G′
2.

If E1(G′
1) is non-essential, we can insert a “skinny” embedding of E1(G′

1) alongside the
embedding of e in E2(G′

2), thereby obtaining a radial embedding of G. Otherwise, let W1

be the lower facial walk of G′
1 in E1(G′

1); then W1 is essential.
We claim that maxW1 > max(G′

2 \ w). If the claim were false, there would be a y in
G′

2 \ w with y > maxW1. Since every component H of G2 has minH < v, there must
also be an x < v and a path xPy from x to y in G′

2 \ w. But then W1 and P contradict
Lemma 9. This shows that maxW1 > max(G′

2 \ w).
From G′

2 we define G′′
2 by (i) subdividing e in G′

2 by adding a vertex u just below
maxW1 (and, therefore, above max(G′

2 \ w)), (ii) remove w (and uw), and (iii) adding a
second edge e′′ between the v and u so that ve′ue′′v is an essential 2-cycle; e′′ can be added
to the embedding by Corollary 8 since w and hence e is on the upper boundary walk of
G′

2. So in the resulting embedding E2(G′′
2) of G

′′
2 the upper facial walk is essential and it is

the 2-face e′e′′ with maximum u and minimum v; see Figure 10. Using Corollary 8, we can
add edges to G′

1 so that the lower outer face of E1(G′
1) is a 2-face with endpoints v and

maxW1. The embeddings of E1(G′
1) and E2(G′′

2) can be combined using Lemma 11 into an
embedding which contains G. By deleting all edges we added during the construction, we
obtain a radial embedding of G that is supported by D(G). This contradicts the choice of
G.

Lemma 18. Suppose that v, w ∈ V and B is a component of G \ {v, w} with v < minB
and maxB < w, and there is at least one edge from B to v and at least one edge from B
to w. Then B is essential.

Proof. We proceed similarly as in the proof of Lemma 16. Suppose that B contains no
essential cycle. Let B′ be the subgraph induced by V (B) ∪ {v, w}. By Lemma 13, we
obtain an x-monotone embedding E(B′) of B′. Let vPw be a path in B′ from v to w. Let
G′ be obtained from G by replacing B′ with a single new edge e from v to w. Let D(G′)
denote the drawing of G′ inherited from D(G) by letting D(e) = D(P ), i.e., the drawing
of e in D(G′) is obtained by suppressing the interior vertices of P . The drawing D(G′)
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may not be radial due to e, but it is still bounded and independently even. By Lemma 7,
we obtain an independently even radial drawing D′(G′) of G′. By the minimality of G we
get a radial embedding E ′(G′) of G′. Finally, we replace e in E ′(G′) by a “skinny” copy of
E(B′) intersecting E ′(G′) in v and w, thereby obtaining a radial embedding of G.

It remains to show that the obtained radial embedding of G is supported by D(G).
Suppose that C is an essential cycle in our embedding of G. Then C is not contained in B,
so either C ∩B′ is a path between v and w, or C does not intersect B at all. In the former
case, replace that path by the edge e to get an essential cycle C ′ in the embedding E ′(G′)
of G′; otherwise C is an essential cycle in G′ so just let C ′ = C. The embedding E ′(G′) is
supported by D(G′), so there is an essential cycle C ′′ in D(G′) such that ℓ(C ′′) ⊆ ℓ(C ′). If
C ′′ contains e, then replace e by P to get a new cycle C ′′′ in G. Since P can be smoothly
deformed to e within the cylinder, C ′′′ is essential in the original drawing of G. If C ′′

does not contain e, then just let C ′′′ = C ′′. Then we have ℓ(C ′′′) = ℓ(C ′′) ⊆ ℓ(C ′) = ℓ(C),
which proves that the obtained radial embedding of G is supported by D(G).

4.4 Completing the Proof of Theorem 6

If D(G) is even, then Theorem 3 gives us a radial embedding of G and cycles preserve
whether they are essential or non-essential because their winding number parities are
unchanged, so part (ii) of the theorem is satisfied. Any two edge that cross oddly and are
consecutive in the upper (or lower) rotation at their common endpoint can be redrawn
flipped so that they cross evenly; we will repeatedly do that until no such pairs remain. We
are done unless there is still a pair of edges that cross oddly; without loss of generality we
may assume that two such edges e and f lie in the upper rotation of a common endpoint
v. Choose e and f to be such a pair at minimum distance within the upper rotation at v;
then there must be an edge g between them in the upper rotation at v, and g must cross e
and f each evenly.

The distance in the upper rotation won’t actually matter; only their order in the
rotation and parity of crossings matter. Thus, let us define an unflippable triple to be three
edges a, b, c in that order in the upper or lower rotation of a vertex v such that the outer
pair a, c crosses oddly and the other pairs a, b and b, c each cross evenly. The following
lemma will be useful later.

Lemma 19. If a, b, c is an unflippable triple with common vertex v, we can redraw the
ends of a,b, and c at v so their order is b, c, a, and we can redraw the ends at v so their
order is c, a, b. In either case, the edges form an unflippable triple after the redrawing.

Proof. If we flip a with every edge to its right until it flips with c, then a will be on the
right and b on the left with c in the middle, and a will now cross c evenly and b oddly,
while b and c still cross evenly. Thus we still have the outer pair crossing evenly and
the other two pairs crossing oddly, only now the order in the upper rotation has shifted
cyclically by one: b, c, a. Similarly we can move c to the far left of the rotation and obtain
the same configuration with order c, a, b in the upper rotation.
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The next lemma lies at the heart of the remaining part of the proof. Figure 11 illustrates
the set-up in the lemma.

Lemma 20. Let e1, e2, e3 be three edges (in that order) in the upper rotation of a vertex v
such that e1 crosses e3 oddly and e2 crosses both e1 and e3 evenly. Suppose that P,Q,Q′ are
paths that begin at v and their first edges are e1, e2, e3, not necessarily respectively in that
order, such that V (P ) ∩ V (Q) = {v} = V (P ) ∩ V (Q′) and v = minQ = minQ′ > minP .
(See Figure 11.) Then it cannot be that both maxQ > maxP and maxQ′ > maxP .

Proof. For the sake of contradiction we assume the contrary. Without loss of generality,
we can choose the three paths to be minimal; then all their vertices except for their last
vertices are in the region S1× [ℓ(v),max ℓ(P )]. We can add a simple curve γ∗ in the region
S1 × (max ℓ(P ), 1) joining the endpoints of Q and Q′ so that altogether, γ∗ with Q and Q′

form a non-essential curve, which we’ll call γ.
The end of P in S1 × (0, ℓ(v)) is in the exterior of γ so P crosses γ oddly if and only if

it reaches v from the interior of γ, which occurs if the first edge of P is e2; if the first edge
of P is e1 or e3, then P crosses γ evenly.

P does not cross γ∗ since γ∗ is in the region S1 × (ℓ(maxP ), 1) and the only edges
of P and γ that could cross oddly are in {e1, e2, e3} since independent edges in G cross
evenly. Thus, if e2 is the first edge of P , then since e2 crosses e1 and e3 evenly, P crosses γ
evenly. And if e1 (or e3) is the first edge of P , then since it crosses e2 oddly and e3 (or e1)
evenly, P crosses γ oddly. In both cases, this contradicts what we observed in the previous
paragraph.

Figure 11: A configuration of three paths P , Q, and Q′ starting at v that cannot occur in
an independently even radial drawing if the triple of edges e1, e2 and e3 incident to v from
left to right is unflippable by Lemma 20, (left) P starts with e1, (right) P starts with e2.

The proof of Theorem 6 splits into two cases. Recall that v1 = minV (G).

Case 1: Assume that v ̸= v1.
First we will show that there must be a path P from v through e, f , or g, which

ends in the region I < v. If not, then consider any component of G \ {v} containing the
upper endpoint of e, f or g: it lies in the region C(v, 1), so by Lemmas 16 and 17, it
must be a single vertex. Then the upper endpoints ve, vf , vg of e, f, g (respectively) each
have degree 1 in G. Without loss of generality suppose that ve is the one with smallest
i-coordinate: remove ve (and e) from the graph, apply induction to embed G− ve, then
embed e alongside f to obtain the required embedding of G.

Let P be a path from v through e, f , or g, which ends in the region C(0, v), chosen so
as to minimize maxP . Let wP be its maximum vertex. Choose a minimal such P , so that
every vertex except its last is in the region C[v, 1). Let P1 be the subpath of P from v to
wP and let P2 be the subpath of P from wP to the region C(0, v).
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Let H be the subgraph induced by {u ∈ V : v < u < wP}, that is, G(v, wP ). Let H2

be the component of H that intersects P2 (let H2 = ∅ if P2 has just one edge) and let
He, Hf , Hg be the (not necessarily distinct) components of H incident to e, f, g, respectively
(or ∅ if the upper endpoint of that edge is in the region C(wP , 1)); see Figure 12.

H2 He HfHg

wp

vP2

H

Figure 12: Parts of the subgraph H which lies in the gray region between wp and v.

By the choice of P , the subgraph H2 is disjoint (and distinct) from each of He, Hf , Hg

and there is no edge from He ∪Hf ∪Hg to the region C(0, v).

Claim 21. He is non-essential and adjacent to a vertex in the region C[wP , 1), unless
He is empty, and likewise for Hf and Hg. (He is empty if and only if max e ⩾ wP , and
likewise for Hf and Hg.)

Proof of Claim. He cannot be essential since then He and P2 would contradict Lemma 9.
He cannot be adjacent to a vertex in G(0, v), by the choice of P . If He is not adjacent
to any vertex in the region C[wP , 1), then v is the only vertex adjacent to He. Then by
Lemma 16 and Lemma 17, He is a single vertex, which is the upper endpoint of e, which
we call ve.

Remove ve (and e): by the choice of G (minimal, aka induction), there is a radial
embedding E(G\ve) of G\ve that is supported by D(G\ve) (the original drawing restricted
to G \ ve). If there is an edge vw′ in G \ ve with w′ ⩾ wP , simply embed e alongside vw
to obtain the embedding of G that we need. So let’s assume that there is no such edge.
Then P1 contains at least one vertex besides its endpoints, which is in the region C(v, wP ).

Let H1 be the (non-empty) component of H that intersects P1. (Since P begins with
e, f , or g, H1 equals He, Hf , or Hg.) Let H ′

1 be the subgraph induced by V (H1) ∪ {v}.
By the choice of P , H1 is not incident to an edge intersecting the region C[0, v).

If the radial embedding E(H ′
1) is essential, then the original drawing contains an

essential cycle in C[minH ′
1,maxH ′

1], but this contradicts Lemma 9 since ℓ(H ′
1) ⊆ ℓ(P2).

Hence, the embedding of H ′
1 must be non-essential.

Let H ′′
1 denote the union of H ′

1 with all its incident edges (if any) intersecting the
region C(wP , 1). We can draw e alongside the boundary of the lower outer face of H ′′

1

in E(H ′′
1 ) so that it is bounded. Hence, we can apply Lemma 7 to re-embed e without

crossings (contradiction).

the electronic journal of combinatorics 30(1) (2023), #P1.14 19



Thus, if He is non-empty, then it must be adjacent to vertices other than v, which
means vertices in either region C(0, v) or C[wP , 1), where the former is ruled out due to
the choice of P . By similar arguments, Hf and Hg have neighbors in I ⩾ wP unless they
are empty. Thus, Claim 21 is proved.

Claim 22. There exists a cycle C in G[v, wP ] that contains v and (exactly) two edges in
{e, f, g}.
Proof of Claim. By Lemma 19, we can suppose that P goes through e, i.e., if not, then
we can redraw near v to flip the relative order of the ends of e, f, g at v so that P ends at
the leftmost edge, renaming it e, renaming the middle one g, and the right one f .

By Claim 21, there must be a path which begins with v then f and ends in G[wp, 1),
with interior vertices (if any) in Hf ; let Pf be a minimal such path. Define Pg similarly. If
neither Pf nor Pg intersects P1 \ v, then neither intersects P and both end in C(wP , 1),
which contradicts Lemma 20. Thus, we may assume that there exists a path from v
through f or g to P1 which lies in the region C[v, wP ]. Hence, there exists a cycle C
through e, v, f or e, v, g which lies in the region C[v, wP ]. This proves the claim.

Let C be a cycle in G[v, wP ] that contains (exactly) two edges of {e, f, g}, choosing C
to minimize maxC. Let w be the vertex of C with w = maxC. (Note that w ⩽ wP .)

We will need the following in the proof of the next claim about C. Let Be be the
component of G(v, w) that contains ve (the upper endpoint of e) if ve is in G(v, w), then let
B′

e be the union of Be and all incident edges (including e) and their endpoints. Otherwise,
ve ⩾ w; then let Be = ∅ and let B′

e be the graph with just e and its endpoints v and ve.
Define Bf , B

′
f , Bg, B

′
g similarly. (Since w ⩽ wP , Be ⊆ He, Bf ⊆ Hf , and Bg ⊆ Hg.) By

the choice of C, we have Be ∩Bf = Be ∩Bg = Bf ∩Bg = ∅. By the choice of P , none of
Be, Bf and Bg is adjacent to a vertex in G(0, v).

Claim 23. If C is non-essential, then w is the upper endpoint of the edge in {e, f, g}\E(C).

Proof of Claim. First consider the case that C contains e and f . Since g crosses every
edge of C evenly and g is between e and f near v—which is in the interior of C—the other
endpoint of g must be in the interior of C or on C. If it is in the interior of C, then every
vertex of Bg must be in the interior of C, because C and Bg are disjoint so their edges
cross evenly. For the same reason, Bg cannot be adjacent to any vertices in G(w, 1), so
V (B′

g) \ V (Bg) ⊆ {v, w}. If Bg has no neighbors in G[w, 1), then Bg = Hg, but Hg has a
neighbor in G[wP , 1) by Claim 21, a contradiction since wP ⩾ w. If Bg is adjacent to w,
then Bg is essential by Lemma 18, a contradiction since Bg ⊆ Hg and Hg is non-essential
by Claim 21. Therefore Bg must be empty, so the upper endpoint of g is in C, and by the
choice of C, it must be w; i.e., g = vw.

Next, consider the case that C contains e and g. Since g is between e and f near v, the
edge f near v is in the exterior of C. Since f crosses e oddly and g evenly, the upper end
of g is in the interior of C, ending at a vertex in the interior or at a vertex on C. The rest
of the argument is the same as the previous case but with f and g switched, concluding
that f = vw. The case that C contains f and g is similar to this case, with the conclusion
that e = vw.
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Claim 24. We may assume that C is essential and wP = w, so Be = He, Bf = Hf , and
Bg = Hg.

Proof of Claim. The cycle C consists of two v, w-paths. If C is non-essential, then each
v, w-path forms a cycle with the edge in {e, f, g} \ E(C) as its maximum is w. If neither
of those cycles is essential, Claim 23 applies to each one, but then e = f = g = vw,
contradicting minimality by Lemma 14. Hence, there is a cycle C as defined prior to
Claim 23 which is essential. Thus, we can choose C to be essential.

If wP > w, then C and P2 would contradict Lemma 9. Therefore wP = w, so Be = He,
Bf = Hf , and Bg = Hg.

Using Claim 24, we derive the following.

Claim 25. If B′
e (or B′

f or B′
g) does not intersect G(w, 1), then B′

e (or B′
f or B′

g) has
only one edge, vw = e (or f or g).

Proof. Suppose that B′
e does not intersect G(w, 1). By Claim 24, wP = w and Be = He,

so He has no neighbors in G(wP , 1).
If He is not empty, then by Claim 21, He must be non-essential, with at least one

neighbor in G[wP , 1); so wP is the only neighbor of He in G[wP , 1). But also He has no
neighbors in G(0, v) by the choice of P , which contradicts Lemma 18.

If He = ∅, then B′
e is just the edge e and its endpoints v and ve, where ve is in G[wP , 1).

Then ve = w, since B′
e does not intersect G(w, 1), so e = vve = vw.

We now assume without loss of generality that C passes through e and f . In the
remainder of Case 1, we show that B′

e cannot intersect G(w, 1), and, by symmetry, that
B′

f cannot intersect G(w, 1). Then it follows that e = vw = f , which is a contradiction
because e and f are distinct and there are no multiple edges by Lemma 14, which will
complete the proof of this case.

Claim 26. B′
g intersects G(w, 1).

Proof. If not, then B′
g = vw by Claim 25. By Claim 24, C is essential. The two v, w-paths

of C form cycles with g and at least one must be non-essential; otherwise C would be
obtainable as the symmetric difference of two essential cycles and therefore C would be
non-essential, a contradiction. Claim 23 applies to this non-essential cycle (according to
the definition of C just prior to Claim 23), which implies that e = vw or f = vw. But
then there are multiple edges with endpoints v and w, a contradiction by Lemma 14.

Claim 27. B′
e and B′

f do not intersect G(w, 1).

Proof. For the sake of contradiction, by symmetry, assume that B′
e intersects G(w, 1).

Then there is a path Q in B′
e that starts with v, e which reaches G(w, 1) at its other

endpoint. By Claim 26, there is likewise a path Q′ in B′
g starting at v with g which reaches

G(w, 1) at its other endpoint. Let P ′ be the concatenation of a v, w-path that in C ∩B′
f

and P2; then P ′ ∩Q = v and P ′ ∩Q′ = v. Thus, we can apply Lemma 20 to P ′, Q, and Q′

through f, e and g, respectively (contradiction).
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By Claim 27 and 25, e = vw = f , which contradicts Lemma 14. Thus, we have shown
that if there are edges crossing oddly in the upper rotation of a vertex v, then v = v1. By
symmetry, no two edges in the lower rotation of a vertex v cross oddly unless v = vn.

Case 2: Only pairs of edges incident to v1 or to vn may cross oddly. We can
assume that G does not contain edge v1vn, since otherwise D(G) is weakly essential by
Lemma 9, and we are done by Lemma 13.

Modify G to create the graph G′ with pendant edges as described in the paragraph
preceding Lemma 12; then Lemma 12 implies that G′ has an even drawing, so by Theorem 3
it has a radial embedding. We can redraw pendant edges and identify their endpoints to
obtain a radial embedding of G, but we need to do this carefully to satisfy part (ii) of
Theorem 6.

When we redraw the edges of G incident to v1, we will do so such that the maximum
vertex x on the lower face boundary walk W of G′ is also on the outer face boundary of
G: we can assume W begins and ends at x, then order the edges in the upper rotation of
v1 so that the upper endpoints form a subsequence of the vertices on W . See Figure 13.
Likewise, we can redraw the edges of G incident to vn so that the minimum vertex on the
upper boundary walk of G′ is also on the outer boundary of the embedding of G.

v1

v2
v3

v4

v5

v7

v6 v6

Figure 13: Lower parts of the graph G′ (in black). The edges incident to v1 have been
added (in gray) so that v7, the maximum vertex of the lower face boundary of G′, remains
on the lower outer face of G.

Any essential cycle C that is in G but not in G′ must pass through v1 or vn. In order
to satisfy part (ii) of Theorem 6, we need an essential cycle C ′ in the embedding of G′ for
which [minC ′,maxC ′] ⊆ [minC,maxC]. A lower or upper facial walk of G′ contains such
a cycle.

5 Algorithm

Theorem 1 allows us to reduce the algorithmic problem of radial planarity testing to a
system of linear equations over Z/2Z. For planarity testing, systems like this were first
constructed by Wu and Tutte [25, Section 1.4.2].
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Fix an arbitrary radial drawing of G and let cr(e, f) denote the parity of the number
of crossings between edges e and f in that drawing. We need only check whether there is
a radial redrawing of G such that the number of crossings is even between every pair of
independent pair of edges e, f for which ℓ(e) ∩ ℓ(f) ̸= ∅.

Any two radial drawings of an edge with fixed endpoints can be obtained from one
another by a continuous deformation during which the edges remain radial, as well as a
certain number of Dehn twists. (This differs from the x-monotone case which needs no
twists.) A (Dehn) twist is carried out by removing a small portion γe of e such that there
is no vertex w with w ∈ ℓ(γe), and reconnecting the severed pieces of e by a curve γ′

e for
which γe ∪ γ′

e has winding number 1.
For determining crossing parities, we only need to consider deforming an edge e via

radial (e, w)-moves for vertices w ∈ ℓ(e), and we need to allow just one twist per edge
e which we can assume occurs near its upper endpoint. The twist changes the crossing
parity between e and e′ for every edge e′ with ℓ(γe) ⊆ ℓ(e′).

A linear system for testing radial planarity can then be constructed as follows. The
system has a variable xe,v, modeling an (e, v)-move, for every v ∈ ℓ(e), and a variable xe,
modeling an edge twist, for every e. For edges e = uv and f = wz with u < w < z < v,
we require cr(e, f) ≡ xe,w + xe,z + xf (mod2). For edges e = uv and f = wz with
u < w < v < z, we require cr(e, f) ≡ xe,w + xf,v + xe (mod 2).

Then G is radial planar if and only if this linear system has a solution.

6 Open Questions

The cylinder model is generalized by a planarity notion introduced as torus level planarity
in [2]. Unfortunately, already the weak Hanani-Tutte theorem fails for this variant for
the leveled graph shown in Figure 14. The graph is based on the construction of the
counterexample in the setting of the approximating maps of graphs [12, Figure 2]. To
extend that example to the torus, we add a C3 □ P3, part of a toroidal grid, to block the
original counterexample from using the full torus. The resulting instance is not toroidal
level planar, yet it admits a toroidal level planar drawing that is even.

Nevertheless, there is a Hanani-Tutte theorem for torus level planarity if the underlying
graph is a tree; see [12, Section 11], where a more general problem akin to strip planarity [1]
is discussed. This more general problem can be seen as a special case of c-planarity. The
computational complexity of c-planarity was recently settled by Fulek and Tóth [18]. The
proof works with atomic embeddability which generalizes both c-planarity and thickenability
of 3-dimensional manifolds. This suggests the question whether a variant of the Hanani-
Tutte theorem holds in the setting of atomic embeddability if the underlying abstract
graph does not contain a cycle.

Finally, if cycles are allowed in the underlying abstract graph, can we extend the
Hanani-Tutte variant for approximating maps of graphs from [13, Theorem 1] to atomic
embeddability?
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Figure 14: A leveled graph that has an even drawing on the torus, but is not toroidal level
planar.
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[12] Radoslav Fulek and Jan Kynčl. Hanani-Tutte for approximating maps of graphs.
CoRR, abs/1705.05243, 2017.
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