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Abstract

Sazdanovic and Yip (2018) defined a categorification of Stanley’s chromatic sym-
metric function called the chromatic symmetric homology, given by a suitable family
of representations of the symmetric group. In this paper we prove that, as conjec-
tured by Chandler, Sazdanovic, Stella and Yip (2019), if a graph G is non-planar,
then its chromatic symmetric homology in bidegree (1,0) contains Z2-torsion. Our
proof follows a recursive argument based on Kuratowsky’s theorem.

Mathematics Subject Classifications: 05C31, 05E05, 05C10, 20C30, 55U15

1 Introduction

The chromatic symmetric function of a graph, defined by Stanley in [1], is a remarkable
combinatorial invariant which refines the chromatic polynomial. Recenty, in [2], Saz-
danovic and Yip categorified this invariant by defining a new homological theory, called
the chromatic symmetric homology of a graph G. This construction, inspired by Kho-
vanov’s categorification of the Jones polynomial [5], is obtained by assigning a graded
representation of the symmetric group to every subgraph of G with the same vertices as
G, and a differential to every cover relation in the Boolean poset of such subgraphs of
G. The chromatic symmetric homology is then defined as the homology of this chain
complex; its bigraded Frobenius series FrobG(q, t), when evaluated at q = t = 1, reduces
to Stanley’s chromatic symmetric function expressed in the Schur basis.

As proved in [3], this categorification produces a truly stronger invariant: in other
words, chromatic symmetric homology can distinguish couples of graphs that have the
same chromatic symmetric function. Furthermore, in the same paper, the properties
of chromatic symmetric homology with integer coefficients have been investigated. The

the electronic journal of combinatorics 30(1) (2023), #P1.15 https://doi.org/10.37236/11397

https://doi.org/10.37236/11397


authors of [3] provided examples of graphs whose chromatic symmetric homology has
torsion, leaving open the following conjecture:

Conjecture 1. A graph G is non-planar if and only if its chromatic symmetric homology
in bidegree (1,0) contains Z2-torsion.

In this paper we prove one direction of this conjecture, namely:

Theorem 2. Let G be a finite non-planar graph. Then its chromatic symmetric homology
in bidegree (1,0) contains Z2-torsion.

Our strategy is based on applying Kuratowsky’s theorem: we show that the torsion
elements in the homology of the complete graph K5 and of the complete bipartite graph
K3,3 are mapped to torsion elements in the homology of the graphs that are obtained from
them by the operations of edge subdivision and graph inclusion, i.e. all the non-planar
graphs.

2 Computing q-degree zero homology

The interested reader can find a complete description of the construction of chromatic
symmetric homology for a graph in the paper [2]. Here we limit ourselves to briefly recall
how to compute homology in q-degree zero. For simplifying the notation, we will denote
by Ci the i-th chain module and by Hi the i-th homology module. They correspond
respectively to Ci,0 and Hi,0 in the notation of [2].

LetG be a graph with n vertices andm edges. We can assume without loss of generality
that G is simple: indeed if G has a loop, then its chromatic symmetric homology is zero
(Proposition 3.1 of [2]), while if G has two vertices connected by multiple edges, then we
can replace them by a single edge without affecting the chromatic symmetric homology
(Proposition 3.2 of [2]). Hence we denote by (p, q) the edge incident to the vertices p and
q, and we order the set of edges E(G) lexicographically.

Each subset S of E(G) is naturally identified with a subgraph of G, having the same
vertices as G and S as set of edges. As the authors of [3, 4], we call such a subgraph
a “spanning subgraph”, even if the word “spanning” is sometimes used with a different
meaning in graph theory and matroid theory. The set of all spanning subgraphs G has a
stucture of Boolean lattice B(G), ordered by reverse inclusion. In the Hasse diagram of
B(G), we direct an edge ε(F, F ′) from a subgraph F to a subgraph F ′ if and only if F ′

can be obtained by removing an edge from F .
Let F ⊆ E(G) be a spanning subgraph of G with connected components B1, . . . , Br

of sizes, i.e. the number of vertices in each connected component, b1, . . . , br respectively.
Then the module associated to it in q-degree zero is the permutation module

MF = IndSn
SB1

×···×SBr
(S(b1) ⊗ · · ·⊗ S(br)),

where Sn is the permutation group on n elements and S(i) is the Specht module related
to the partition (i).

We define
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Ci(G) =
!

|F |=i

MF ,

where the sum is over the spanning subgraphs of G with i edges. Therefore the i-th
chain module Ci(G) of the graph is a direct sum of

"
m
i

#
permutation modules of Sn. If

λ = (b1, . . . , br) is the partition whose parts are the sizes of the connected components of
F , then

MF
∼= Mλ = C[Sn]⊗C[Sλ] S(n),

where Sλ is the subgroup of Sn given by Sb1 × · · ·×Sbr .
Let F and F ′ be spanning subgraphs of G where F ′ = F − e with e ∈ E(F ).
There is an edge map dε(F,F ′) : MF → MF ′ , defined in our case as the inclusion (for

the general definition see [2]). Moreover, the sign of ε = ε(F, F ′), sgn(ε), is defined as
(−1)k, where k is the number of edges of F less than e.

Finally, the i-th chain map di : Ci(G) → Ci−1(G) is defined as

di =
$

ε

sgn(ε)dε,

where the sum is over all the edges ε in B(G) which join a spanning subgraph of G with
i edges to a spanning subgraph with i− 1 edges. Sometimes we will use the notation dGi ,
where it may not be clear which graph we are referring to.

We need to recall the following definitions from [3].

Definition 3. Let F be a spanning subgraph of G, and let λ ⊢ n be the partition whose
parts are the sizes of the connected components of F . The numbering T (F ) associated to
F is the filling of a Young diagram of shape λ such that each row consists of the elements
in a connected component of F arranged in increasing order, and rows of T (F ) having
the same size are ordered so that the minimum element in each row is increasing down
the first column.

Let T = T (F ). The q-degree zero permutation module MT associated to the num-
bering T is cyclically generated by the Young symmetrizer

aT =
$

ρ∈R(T )

ρ

where R(T ) ! Sn is the subgroup of permutations that permute elements within each
row of T . We have:

MF
∼= MT = C[Sn] · aT .

Definition 4. For any numberings S and T of shape λ, let

vST = σT,SbTaT = bSaSσT,S ∈ MT ,
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where aT is as above,

bT =
$

ζ∈C(T )

sgn(ζ)ζ,

C(T ) ! Sn is the subgroup of permutations that permute elements within each column
of T , and σT,S ∈ Sn is such that σT,S · T = S.

Moreover, the q-degree zero Specht module ST associated to the numbering T is
cyclically generated by the Young symmetrizer cT = bTaT :

ST = C[Sn] · cT ,

and ST
∼= Sλ.

We also recall the following result from [4], Section 7.2, Proposition 2.

Proposition 5. Let F be a spanning subgraph of G with associated numbering T of shape
λ. Then

ST = span{bSaSσT,S|S ∈ SY T (λ)} = span{vST |S ∈ SY T (λ)},

where SY T (λ) is the set of standard Young tableaux of shape λ.

2.1 Computation of H1(G)

We will describe the chromatic homology in terms of Specht modules. Since each Specht
module is cyclically generated, then our inclusion maps are completely determined by
specifying the image of a cyclic generator for each Specht module. We now show how to
achieve these computations systematically.
We restrict ourselves to Specht modules of type λ = (2k, 1n−2k) for k " 1, so we will be
computing

C2(G)|Sλ

d2−→ C1(G)|Sλ

d1−→ C0(G)|Sλ
→ 0.

We order the edges ofG in lexicographic order and label these as e1, . . . , em. In homological
degree zero, there is only one subgraph without edges. The chain group C0(G) = MF∅

∼=
M(1n) is the regular representation of Sn, where F∅ is the edgeless subgraph. By Corollary
1 in Section 7.3 of [4], the multiplicity of Sλ in C[Sn] is the number fλ = Kλ,(1n) of
standard Young tableaux of shape λ. We list the tableaux Y1(G), . . . , Yfλ(G) ∈ SY T (λ)
with respect to the following total order: if T and S are numberings of shape λ such that
the i-th row is the lowest row in which the numberings are different, the j-th column is the
rightmost column in that row in which the numberings are different and T (i, j) > S(i, j),
then we say that T > S.
We have

C0(G)|Sλ
=

fλ!

i=1

C[Sn] · vY1
Yi
.
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Example 6. Let G = K5. We order the edges of G in lexicographic order; that is,

(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5),

and label these as e1, . . . , e10. The standard Young tableaux of shape λ = (22, 1) listed
with respect to the ordering defined earlier are

Y1 = 1 2
3 4
5

Y2 = 1 2
3 5
4

Y3 = 1 3
2 4
5

Y4 = 1 3
2 5
4

Y5 = 1 4
2 5
3

Then

C0(K5)|S
(22,1)

=
5!

i=1

(C[S5] · vY1
Yi
) ∼= S⊕5

(22,1).

In homological degree one, there are m spanning subgraphs with exactly one edge,
thus

C1(G) =
m!

i=1

MFei
.

If Fei is the spanning subgraph containing the edge ei = (p, q), then the permutation
module MFei

has the associated numbering T (Fei) of shape µ = (2, 1n−2), and MFei
=

C[Sn] · (e+ (pq)) ∼= Mµ.
The multiplicity of Sλ in MFei

is the number Kλ,µ of semistandard Young tableaux of
shape λ and weight µ. We next obtain numberings of shape λ that will index these Kλ,µ

Specht modules Sλ, by standardizing the set SSY T (λ, µ) of semistandard Young tableaux
of shape λ and weight µ with respect to T (Fei) in the following way. For any numbering
S, the word w(S) of S is obtained by reading the entries of the rows of S from left to
right, and from the top row to the bottom row (note that this is not the usual definition
of a reading word for tableaux). So, given Y ∈ SSY T (λ, µ), let w(Y ) = y1, . . . , yn be the
word of Y , let w(T ) = t1, . . . , tn be the word of T = T (Fei) and let σ be the permutation
that orders y1, . . . , yn without exchanging yi and yj if yi = yj. From this we obtain a
numbering X of shape λ by replacing the entry in Y that corresponds to yk by tσ(k). We

list the numberings X1
i (G), . . . , X

Kλ,µ

i (G) obtained using the procedure just described to
SSY T (λ, µ) with respect to T (Fei). Observe that since µ = (2, 1n−2) and λ = (2k, 1n−2k)
where k " 1, then this procedure guarantees that the first row of each numbering Xj

i (G)

is p q . So vY1

Xj
i (G)

∈ MFei
and C[Sn] · vY1

Xj
i (G)

∼= Sλ for j = 1, . . . , Kλ,µ. Thus

C1(G)|Sλ
=

m!

i=1

Kλ,µ!

j=1

C[Sn] · vY1

Xj
i (G)

Example 7. Let G = K5. There are 10 spanning subgraphs with exactly one edge.
Furthermore, there are two semistandard Young tableaux of shape λ = (22, 1) and weight
(2, 13),
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Z1 = 1 1
2 3
4

and Z2 = 1 1
2 4
3

,

so the multiplicity of S(22,1) in each MFei

∼= M(2,13) is 2. Let X
1
i (K5) and X2

i (K5) denote
the numberings which index the two copies of S(22,1) in eachMFei

, again listed with respect
to the same ordering. So

C1(K5)|S(22,1)
=

10!

i=1

(C[S5] · vY1

X1
i (K5)

⊕ C[S5] · vY1

X2
i (K5)

) ∼= S⊕20
(22,1).

Consider for instance the spanning subgraph Fe1 of K5 with the edge e1 = (1, 2) only.
The numbering associated to it is

T (Fe1) = 1 2
3
4
5

.

Let zi1, . . . , z
i
5 be the word of Zi, i = 1, 2. The permutation that orders z11 , . . . , z

1
5 is the

identity and the one that orders z21 , . . . , z
2
5 is (45). Therefore we have

X1
1 = 1 2

3 4
5

= Y1 and X2
1 = 1 2

3 5
4

= Y2,

then

vY1

X1
1
= vY1

Y1
and vY1

X2
1
= vY1

Y2
.

Lastly, we consider the chain module in homological degree two. The spanning subgraphs
of G with exactly two edges have connected components of partition type (22, 1n−4) or
(3, 1n−3). We are only concerned with Specht modules of type λ = (2k, 1n−2k) with k " 2
necessarily and, since λ ⋫ (3, 1n−3), then, by Corollary 1 in Section 7 of [4], Sλ does not
appear as a summand in a permutation module isomorphic to M(3,1n−3). Hence, we only
need to consider the spanning subgraphs with connected components of partition type
(22, 1n−4).
So suppose G has h spanning subgraphs whose connected components has partition type
ν = (22, 1n−4). List these subgraphs with respect to the lexicographic order of their edge
sets. Suppose Fei,ej is the spanning subgraph that contains the edges ei = (p, q) and
ej = (r, s) with p < r. The permutation module MFei,ej

has the associated numbering

T (Fei,ej) of shape ν and

MFei,ej
= C[Sn] · (e+ (pq))(e+ (rs)) ∼= Mν .

Similar to the previous case for C1(G), the multiplicity of Sλ in MFei,ej
is Kλ,ν . We

list the numberings W 1
i,j(G), . . . ,W

Kλ,ν

i,j (G) obtained using the procedure described above
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to SSY T (λ, ν) with respect to T (Fei,ej). The procedure guarantees that the top two rows

of each numbering W are p q
r s

, so vY1
W ∈ MFei,ej

and

C[Sn] · vY1

W l
i,j(G)

∼= Sλ for l = 1, . . . , Kλ,ν .

Thus

C2(G)|Sλ
=

!

i,j

Kλ,ν!

l=1

C[Sn] · vY1

W l
i,j(G)

,

where the direct sum is over the values of i and j corresponding to the couples of edges
which form spanning subgraphs of type ν, i.e. the non-consecutive edges.

Example 8. Let G = K5. There are 15 spanning subgraphs whose connected components
have partition type (22, 1). There is only one semistandard Young tableau of shape λ =
(22, 1) and weight (22, 1):

1 1
2 2
3

so the multiplicity of S(22,1) in each MFei,ej

∼= M(22,1) is 1, and we let Wi,j denote the
numbering which indexes the copy of S(22,1) in MFei,ej

. Therefore,

C2(K5)|S
(22,1)

=
!

(C[S5] · vY1
Wi,j

) ∼= S⊕15
(22,1),

where the direct sum is over the values of i and j corresponding to the couples of non-
consecutive edges.

To compute the edge maps we will need the following theorem (Corollary 2.18 of [3]).

Theorem 9. For any numberings S of shape λ,

vTS = (−1)j
$

U∈Ξi,j(S)

vTU ,

where Ξi,j(S) is the set of all numberings U obtained from S by exchanging the first j
entries in the (i+ 1)-th row of S with j entries in the i-th row of S, preserving the order
of each subset of elements.

We let πi,j denote the operator on numberings such that

πi,j(S) = (−1)j
$

U∈Ξi,j(S)

U .

Example 10. Let G = K5. We compute d1(v
Y1

X1
3
) and d1(v

Y1

X2
3
), so we consider the spanning

subgraph Fe3 of K5 with the edge e3 = (1, 4) only. The numbering associated to it is
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T (Fe3) = 1 4
2
3
5

.

We have

X1
3 = 1 4

2 3
5

and X2
3 = 1 4

2 5
3

= Y5.

We compute

π1,1(X
1
3 ) = − 1 2

4 3
5

− 2 4
1 3
5

and

π1,2
2 4
1 3
5

= 1 3
2 4
5

= Y3.

Then, by Theorem 9, we have

vY1

X1
3
= −vY1

Y1
− vY1

Y3
and vY1

X2
3
= vY1

Y5
,

and d1 sends

vY1

X1
3
*→ −vY1

Y1
− vY1

Y3
and vY1

X2
3
*→ vY1

Y5
.

Now we compute d2(v
Y1
W1,8

), so we have to consider the spanning subgraph Fe1,e8 of K5

with the edges e1 = (1, 2) and e8 = (3, 4). The numbering associated to it is

1 2
3 4
5

.

There are two spanning subgraphs ofK5 with only one edge that can be obtained removing
one edge from Fe1,e8 , i.e. Fe1 and Fe8 . The per-edge map dε(Fe1,e8 ,Fe1 )

appears as a summand
in d2 with a minus sign; instead dε(Fe1,e8 ,Fe8 )

appears in d2 with a plus sign. Therefore, d2
sends vY1

W1,8
*→ −vY1

X1
1
+ vY1

X1
8
.

3 The case of non-planar graphs

In this section we will prove that if G is a non-planar graph, then the chromatic symmetric
homology H1(G;Z) contains Z2-torsion. We first recall two results from [3]:

Lemma 11. The chromatic symmetric homology H1(K5;Z) contains Z2-torsion.

Proof. We compute

the electronic journal of combinatorics 30(1) (2023), #P1.15 8



C2(K5)|S
(22,1)

d2−→ C1(K5)|S
(22,1)

d1−→ C0(K5)|S
(22,1)

→ 0,

restricted to the S(22,1) modules.
Following the notation introduced in 2.1, let g = W1,8 +W1,9 +W1,10 +W2,6 −W2,7 −

W2,10 + W3,5 + W3,7 + W3,9 + W4,5 + W4,6 + W4,8 − W5,10 − W6,9 + W7,8 ∈ C2(K5) and
h = X1

9 + X1
10 − X1

2 + X2
7 + X2

9 ∈ C1(K5). We have that h /∈ im d2, d2(g) = 2h and
d1(h) = 0, so h generates Z2-torsion in H1(K5;Z). For more details see [3], Theorem 4.1.

Lemma 12. The chromatic symmetric homology H1(K3,3;Z) contains Z2-torsion.

Proof. We compute

C2(K3,3)|S(22,12)

d2−→ C1(K3,3)|S(22,12)

d1−→ C0(K3,3)|S(22,12)
→ 0,

restricted to the S(22,12) modules.
Following the notation introduced in Section 2.1, let g′ = W1,6 −W1,7 +W1,8 +W1,9 −

W2,4−W2,5+W2,7+W2,9+W3,4−W3,5+W3,6+W3,8+W4,8+W4,9+W5,6+W5,7−W6,9+W7,8 ∈
C2(K3,3) and h′ = X3

6 −X3
7 +X3

8 −X2
9 ∈ C1(K3,3). We have that h′ /∈ im d2, d2(g

′) = 2h′

and d1(h
′) = 0, so h′ generates Z2-torsion inH1(K3,3;Z). For more details see [3], Theorem

4.2.

Proposition 13. Let G be a graph with n vertices, n " 2, λ a partition of n of type
(2k, 1n−2k) and h ∈ C1(G)|Sλ

a generator of Zp-torsion in H1(G;Z). Let G′ be a subdivision
of G with n′ vertices, n′ > n, i.e. a graph obtained from G by inserting n′−n vertices into
the edges of G. Then there exists h′ ∈ C1(G

′)|Sλ′
, with λ′ = (2k, 1n

′−2k), that generates
Zp-torsion in H1(G

′,Z).

Proof. it is enough to show that the statement holds for n′ = n+ 1.
Let G be a graph with n vertices and G′ be the graph obtained from G by inserting a

vertex into an edge of G. By hypothesis, there exists h ∈ C1(G)|Sλ
, with λ = (2k, 1n−2k),

that generates Zp-torsion in H1(G;Z).
We number the vertices of G′ from 1 to n+ 1, so that the vertex added is n+ 1.
We prove that h is mapped to a Zp-torsion generator in H1(G

′;Z).
We have that all the edges of G are also edges of G′, except for the edge that has

been broken, let it be (a, b), which is no longer an edge of G′, but it has been replaced by
two edges, (a, n+ 1) and (n+ 1, b). We consider the partition λ′ = (2k, 1n+1−2k), i.e. the
partition λ with an extra box at the bottom. We divide the standard Young tableaux of
shape λ′ into two groups: those that are obtained simply by adding the box containing
n+1 at the bottom of the standard Young tableaux of shape λ and those that don’t have
n + 1 in the last row. We do the same for the semistandard Young tableaux of shape
λ′ and weight (2, 1n−1). If i does not correspond to the two new edges, the Xℓ

i (G
′)’s are

identical to the Xℓ
i (G)’s with the box containing n + 1 added at the bottom. Therefore,

the differential dG
′

1 acts on them in exactly the same way as dG1 , since the π-operations
don’t concern the last row. Since h ∈ ker dG1 , we also have that h ∈ ker dG

′
1 .
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We pause the proof to observe that we think of h as a 1-chain in G′. This can always
be done using the π-operations and Theorem 9.

For example, consider K5 and the graph G′ obtained by adding the vertex 6 into the

edge (1, 5). X1
4 (K5) with a box containing 6 added at the bottom, i.e. 1 5

2 3
4
6

, a priori is

not a 1-chain in G′ since the edge (1,5) is not an edge of G′; but we have

1 5
2 3
4
6

= π1,1
1 5
2 3
4
6

= − 2 5
1 3
4
6

− 1 2
3 5
4
6

= −X2
2 (G

′)−X2
1 (G

′) ∈ C1(G
′).

Remark 14. It cannot happen that there is cancellation among 1-cycles in G′ that give
the cycle h in G. In fact, the π-operations on numberings correspond, by Theorem 9,
to equalities among the elements of S(2k,1n−2k) indexed by such numberings. Therefore, if
there was cancellation among 1-cycles in G′ that give h in G, it would also be among the
1-cycles of G that form h, so h would be the trivial 1-cycle of G, which is not true.

A similar argument applies to the W s
h,k’s. Since, in G, there exists a 2-cycle g such that

dG2 (g) = 2h and g can be written as 2-chain in G′ with the π-operations, without becoming
trivial as observed for h in Remark 14, we also have that dG

′
2 (g) = 2h.

It remains to prove that h /∈ im dG
′

2 . If h belonged to im dG
′

2 , since we know that h /∈ im dG2 ,
it would be linear combination of the columns of dG

′
2 which are not columns of dG2 , but it

is not possible because h is a 1-chain in G.
Therefore, we have a Zp-torsion generator in H1(G

′,Z).

Proposition 15. Let G′ be a graph with n′ vertices and let G be a subgraph of G′ with
n vertices, n ! n′. Assume that h ∈ C1(G)|Sλ

is a generator of Zp-torsion in H1(G;Z).
Then there exists h′ ∈ C1(G

′)|Sλ′
, with λ′ = (2k, 1n

′−2k), that generates Zp-torsion in
H1(G

′,Z).

Proof. We have that all the edges of G are also edges of G′. We consider the partition
λ′ = (2k, 1n

′−2k), i.e. the partition λ with n′ − n extra boxes at the bottom. We number
the vertices of G′ from 1 to n′, so that the vertices eventually added are n+1, . . . , n′. We
divide the standard Young tableaux of shape λ′ into two groups: those that are obtained
simply by adding the boxes containing n+1, . . . , n′ at the bottom of the standard Young
tableaux of shape λ and those that don’t have n + 1, . . . , n′ in the last rows. We do
the same for the semistandard Young tableaux of shape λ′ and weight (2, 1n

′−2). All the
Xℓ

i (G)’s with extra boxes containing n+1, . . . , n′ at the bottom are among the Xℓ′
i (G

′)’s.
Therefore, the differential dG

′
1 acts on them in exactly the same way as dG1 , since the

π-operations don’t concern the last rows. Since h ∈ ker dG1 , we also have that h ∈ ker dG
′

1 .
A similar argument applies to the W s

h,k’s. Since, in G, there exists a 2-cycle g such

that dG2 (g) = 2h, we also have that dG
′

2 (g) = 2h.
It remains to prove that h /∈ im dG

′
2 . If h belonged to im dG

′
2 , since we know that h /∈ im dG2 ,

it would be linear combination of the columns of dG
′

2 which are not columns of dG2 , but it
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is not possible because h is a 1-chain in G.
Therefore, we have a Zp-torsion generator in H1(G

′,Z).

Theorem 16. Let G be a finite non-planar graph. Then H1(G;Z) contains Z2-torsion.

Proof. Since G is non-planar, by Kuratowsky’s theorem it contains a subgraph G′ which is
a subdivision ofK5 orK3,3. By Lemma 11 and Lemma 12, bothH1(K5;Z) andH1(K3,3;Z)
have a generator of Z2-torsion of type (2k, 1n−2k). Hence, by Proposition 13, alsoH1(G

′;Z)
contains such a Z2-torsion element; thus by Proposition 15 also H1(G;Z) does.
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