Spectral extremal graphs for disjoint cliques

Zhenyu Ni*

Department of Mathematics Hainan University Haikou 570228, P.R. China 1051466287@qq.com

Jing Wang

College of Mathematics and Information Science Henan Normal University Xinxiang 453007, P.R. China wj517062214@163.com

Liying Kang[†]

Department of Mathematics Shanghai University Shanghai 200444, PR China

lykang@shu.edu.cn

Submitted: Sep 12, 2022; Accepted: Dec 21, 2022; Published: Jan 27, 2023 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let kK_{r+1} be the graph consisting of k vertex-disjoint copies of the complete graph K_{r+1} . Moon [Canad. J. Math. 20 (1968) 95–102] and Simonovits [Theory of Graphs (Proc. colloq., Tihany, 1996)] independently showed that if n is sufficiently large, then the join of a complete graph K_{k-1} and an r-partite Turán graph $T_{n-k+1,r}$ is the unique extremal graph for kK_{r+1} . In this paper we consider the graph which has the maximum spectral radius among all graphs without k disjoint cliques. We show that if G attains the maximum spectral radius over all n-vertex kK_{r+1} -free graphs for sufficiently large n, then G is isomorphic to the join of a complete graph K_{k-1} and an r-partite Turán graph $T_{n-k+1,r}$.

Mathematics Subject Classifications: 05C50; 05C35

^{*}Z. Ni is partially supported by Hainan Provincial Natural Science Foundation of China (No. 122QN218) and the National Nature Science Foundation of China (No. 1220010800)

 $^{^{\}dagger}$ Corresponding author. Supported by the National Nature Science Foundation of China (Nos. 11871329, 11971298)

1 Introduction

In this paper, we consider only simple and undirected graphs. For two vertex disjoint graphs G, H, the union of graph G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. In particular, we write kG the vertex-disjoint union of k copies of G. The join of G and G, denoted by $G \vee H$, is the graph obtained from $G \cup H$ by adding edges joining every vertex of G to every vertex of G. For two graphs G and G, G is called G-free if it does not contain a copy of G as a subgraph. For a fixed graph G, the Turán type extremal problem is to determine the maximum number of edges among all G-vertex G-free graphs, where the maximum number of edges is called the G-free graph on G-free graph on G-free graph on G-free graphs is denoted by G-free graph for G-free graphs is denoted by G-free graph on G-free graphs is denoted by G-free graph on G-free graphs is denoted by G-free G-free graphs is denoted by G-free G-free G-free graphs is denoted by G-free G-free G-free G-free graphs is denoted by G-free G

Let $K_r(n_1, \ldots, n_r)$ be the complete r-partite graph with classes of sizes n_1, \ldots, n_r . If $\sum_{i=1}^r n_i = n$ and $|n_i - n_j| \le 1$ for any $1 \le i < j \le r$, then $K_r(n_1, \ldots, n_r)$ is called an r-partite Turán graph, denoted by $T_{n,r}$. The well-known Turán Theorem states that the extremal graph corresponding to Turán number $ex(n, K_{r+1})$ is $T_{n,r}$, i.e. $ex(n, K_{r+1}) = |E(T_{n,r})|$. There are lots of researches on Turán type extremal problems (such as [3, 10, 21]). Simonovits [20] and Moon [14] showed that if n is sufficiently large, then $K_{k-1} \vee T_{n-k+1,r}$ is the unique extremal graph for kK_{r+1} .

Theorem 1 ([20, 14]). Let G be a graph of sufficiently large order n that does not contain kK_{r+1} as a subgraph. Then $e(G) \leq e(K_{k-1} \vee T_{n-k+1,r})$, and $K_{k-1} \vee T_{n-k+1,r}$ is the unique extremal graph for kK_{r+1} .

The following spectral version of the Turán type problem was proposed in Nikiforov [19]: What is the maximum spectral radius of a graph G on n vertices without a subgraph isomorphic to a given graph F? Researches of the spectral Turán type extremal problem have drawn increasingly extensive interest (for example, see [16, 2, 15, 23, 24, 25]). Nikiforov [17] showed that if G is a K_{r+1} -free graph on n vertices, then $\rho(G) \leq \rho(T_{n,r})$, with equality if and only if $G = T_{n,r}$. Cioabă et al. [8] proved that the spectral extremal graphs for F_k belong to $\operatorname{Ex}(n, F_k)$, where F_k is the graph consisting of k triangles which intersect in exactly one common vertex. The family $\operatorname{Ex}(n, F_k)$ was uniquely determined for sufficiently large n by Zhai, Liu and Xue [26]. Desai et al. [9] generalized the result of [8] to $F_{k,r}$, where $F_{k,r}$ is the graph consisting of k copies of K_r which intersect in a single vertex. Cioabă et al. [7] investigated the largest spectral radius of an n-vertex graph that does not contain the odd-wheel graph W_{2k+1} . Moreover, they raised the following conjecture.

Conjecture 2 ([7]). Let F be any graph such that the graphs in Ex(n, F) are Turán graphs plus O(1) edges. Then for sufficiently large n, a graph attaining the maximum spectral radius among all F-free graphs on n vertices is a member of Ex(n, F).

The results of Nikiforov [17], Cioabă et al. [8], Desai et al. [9] and Li et al. [13] tell us that Conjecture 2 holds for K_{r+1} , F_k , $F_{k,r}$ and $H_{s,k}$, where $H_{s,k}$ is the graph defined

by intersecting s triangles and k odd cycles of length at least 5 in exactly one common vertex. Recently, Wang et al. [22] proved Conjecture 2 completely.

In this paper, we shall prove the following theorem.

Theorem 3. For $k \ge 2$, $r \ge 2$, and sufficiently large n. Suppose that G has the maximum spectral radius among all kK_{r+1} -free graphs on n vertices, then G is isomorphic to $K_{k-1} \lor T_{n-k+1,r}$.

2 Preliminaries

Let G = (V(G), E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). For a vertex $v \in V(G)$, N(v) is the set of neighbors of v in G. The degree d(v) of v is |N(v)|, and the minimum and maximum degrees are denoted by $\delta(G)$ and $\Delta(G)$, respectively. We denote by e(G) the number of edges in G. For $V_1, V_2 \subseteq V(G)$, $E(V_1, V_2)$ denotes the set of edges of G between V_1 and V_2 , and $e(V_1, V_2) = |E(V_1, V_2)|$. For any $S \subseteq V(G)$, we write $N(S) = \bigcup_{u \in S} N(u)$, $d_S(v) = |N_S(v)| = |N(v) \cap S|$. Denote by $G \setminus S$ the graph obtained from G by deleting all vertices in S and their incident edges. G[S] denotes the graph induced by S whose vertex set is S and whose edge set consists of all edges of S which have both ends in S. A set S of disjoint edges of S is called a matching in S. The matching number, denoted by S we call a matching with S edges a S-matching, denoted by S whose vertex incident with an edge of S is said to be covered by S.

The adjacent matrix of G is $A(G) = (a_{ij})_{n \times n}$ with $a_{ij} = 1$ if $ij \in E(G)$, and $a_{ij} = 0$ otherwise. The spectral radius of G is the largest eigenvalue of A(G), denoted by $\rho(G)$. For a connected graph G on n vertices, let $\mathbf{x} = (x_1, \dots, x_n)^T$ be an eigenvector of A(G) corresponding to $\rho(G)$. Then \mathbf{x} is a positive real vector, and

$$\rho(G)x_i = \sum_{ij \in E(G)} x_j, \text{ for any } i \in [n].$$
 (1)

Another useful result concerns the Rayleigh quotient:

$$\rho(G) = \max_{\mathbf{x} \in \mathbb{R}_+^n} \frac{\mathbf{x}^T A(G) \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \max_{\mathbf{x} \in \mathbb{R}_+^n} \frac{2 \sum_{ij \in E(G)} x_i x_j}{\mathbf{x}^T \mathbf{x}}.$$
 (2)

The following spectral version of Stability Theorem was given by Nikiforov [18].

Theorem 4 ([18]). Let $r \ge 2, 1/\ln n < c < r^{-8(r+21)(r+1)}, 0 < \varepsilon < 2^{-36}r^{-24}$ and G be a graph on n vertices. If $\rho(G) > (1 - \frac{1}{r} - \varepsilon)n$, then one of the following statements holds:

(a) G contains a $K_{r+1}(\lfloor c \ln n \rfloor, \ldots, \lfloor c \ln n \rfloor, \lceil n^{1-\sqrt{c}} \rceil)$;

(b) G differs from $T_{n,r}$ in fewer than $(\varepsilon^{1/4} + c^{1/(8r+8)})n^2$ edges.

From the above theorem, we can get the following result.

Lemma 5 ([9]). Let F be a graph with chromatic number $\chi(F) = r + 1$. For every $\varepsilon > 0$, there exist $\delta > 0$ and n_0 such that if G is an F-free graph on $n \ge n_0$ vertices with $\rho(G) \ge (1 - \frac{1}{r} - \delta)n$, then G can be obtained from $T_{n,r}$ by adding and deleting at most εn^2 edges.

Let G be a simple graph with matching number $\nu(G)$ and maximum degree $\Delta(G)$. For two given integers ν and Δ , define $f(\nu, \Delta) = \max\{e(G) : \nu(G) \leq \nu, \Delta(G) \leq \Delta\}$. In 1976, Chvátal and Hanson [6] obtained the following result.

Lemma 6 ([6]). For every two integers $\nu \geqslant 1$ and $\Delta \geqslant 1$, we have

$$f(\nu, \Delta) = \Delta \nu + \left| \frac{\Delta}{2} \right| \left| \frac{\nu}{\lceil \Delta/2 \rceil} \right| \leqslant \Delta \nu + \nu.$$

The following lemma was given in [8].

Lemma 7 ([8]). Let V_1, \ldots, V_n be n finite sets. Then

$$|V_1 \cap \dots \cap V_n| \geqslant \sum_{i=1}^n |V_i| - (n-1)|\bigcup_{i=1}^n V_i|.$$

3 Proof of Theorem 3

In this section we shall give a proof of Theorem 3. Suppose that G has the maximum spectral radius among all kK_{r+1} -free graphs on n vertices, then we will prove G is isomorphic to $K_{k-1} \vee T_{n-k+1,r}$ for sufficiently large n. Clearly, G is connected. Let $\rho(G)$ be the spectral radius of G, \mathbf{x} be a positive eigenvector of $\rho(G)$ with $\max\{x_i : i \in V(G)\} = 1$. Without loss of generality, we assume $x_z = 1$.

Lemma 8. Let G be a kK_{r+1} -free graph on n vertices with maximum spectral radius. Then

$$\rho(G) \geqslant \frac{r-1}{r}n + \frac{2(k-1)}{r} - \frac{1}{n}\left(\frac{(k-1)(r+k-1)}{r} + \frac{r}{2}\right).$$

Proof. Let $H = K_{k-1} \vee T_{n-k+1,r}$. Since $K_{k-1} \vee T_{n-k+1,r}$ is the unique extremal graph for kK_{r+1} , then

$$ex(n, kK_{r+1}) = e(T_{n-k+1,r}) + (k-1)(n-k+1) + {k-1 \choose 2}$$

$$\geqslant e(T_{n,r}) + \frac{k-1}{r}n - \frac{(k-1)(r+k-1)}{2r} - \frac{r}{8}.$$
(3)

According to (2) and (3), we have

$$\rho(G) \geqslant \rho(H) \geqslant \frac{\mathbf{1}^{\mathrm{T}} A(H) \mathbf{1}}{\mathbf{1}^{\mathrm{T}} \mathbf{1}} = \frac{2 \mathrm{ex}(n, k K_{r+1})}{n}$$

The electronic journal of combinatorics 30(1) (2023), #P1.20

$$\geqslant \frac{2}{n} \left(e(T_{n,r}) + \frac{k-1}{r} n - \frac{(k-1)(r+k-1)}{2r} - \frac{r}{8} \right)$$

$$\geqslant \frac{r-1}{r} n + \frac{2(k-1)}{r} - \frac{1}{n} \left(\frac{(k-1)(r+k-1)}{r} + \frac{r}{2} \right).$$

Lemma 9. Let G be a kK_{r+1} -free graph on n vertices with maximum spectral radius. For every $\varepsilon > 0$, there is an integer n_0 such that if $n \ge n_0$, then

$$e(G) \geqslant e(T_{n,r}) - \varepsilon n^2$$
.

Furthermore, G has a partition $V(G) = V_1 \cup \cdots \cup V_r$ such that the number of crossing edges of G (i.e. $\sum_{1 \leq i < j \leq r} e(V_i, V_j)$) attains the maximum, and

$$\sum_{i=1}^{r} e(V_i) \leqslant \varepsilon n^2,$$

and for any $i \in [r]$

$$\frac{n}{r} - 3\sqrt{\varepsilon}n < |V_i| < \frac{n}{r} + 3\sqrt{\varepsilon}n.$$

Proof. Since G is kK_{r+1} -free, by Lemmas 5 and 8, for sufficiently large n, there exists a partition of $V(G) = U_1 \cup \cdots \cup U_r$ such that $e(G) \ge e(T_{n,r}) - \varepsilon n^2$, $\sum_{i=1}^r e(U_i) \le \varepsilon n^2$, and $\lfloor \frac{n}{r} \rfloor \le |U_i| \le \lceil \frac{n}{r} \rceil$ for each $i \in [r]$. Therefore, G has a partition $V(G) = V_1 \cup \cdots \cup V_r$ such that the number of crossing edges of G attains the maximum, and

$$\sum_{i=1}^{r} e(V_i) \leqslant \sum_{i=1}^{r} e(U_i) \leqslant \varepsilon n^2.$$

Let $a = \max\{\left||V_j| - \frac{n}{r}\right|, j \in [r]\}$. Without loss of generality, we may assume that $\left||V_1| - \frac{n}{r}\right| = a$. Then

$$\begin{split} e(G) &\leqslant \sum_{1\leqslant i < j \leqslant r} |V_i| |V_j| + \sum_{i=1}^r e(V_i) \\ &\leqslant |V_1|(n-|V_1|) + \sum_{2\leqslant i < j \leqslant r} |V_i| |V_j| + \varepsilon n^2 \\ &= |V_1|(n-|V_1|) + \frac{1}{2} \Big((\sum_{j=2}^r |V_j|)^2 - \sum_{j=2}^r |V_j|^2 \Big) + \varepsilon n^2 \\ &\leqslant |V_1|(n-|V_1|) + \frac{1}{2} (n-|V_1|)^2 - \frac{1}{2(r-1)} (n-|V_1|)^2 + \varepsilon n^2 \\ &\leqslant -\frac{r}{2(r-1)} a^2 + \frac{r-1}{2r} n^2 + \varepsilon n^2, \end{split}$$

The electronic journal of combinatorics 30(1) (2023), #P1.20

where the last second inequality holds by Hölder's inequality, and the last inequality holds since $|V_1| - \frac{n}{r}| = a$. On the other hand, since $e(G) \ge e(T_{n,r}) - \varepsilon n^2$, we have

$$e(G) \geqslant e(T_{n,r}) - \varepsilon n^2 \geqslant \frac{r-1}{2r}n^2 - \frac{r}{8} - \varepsilon n^2 > \frac{r-1}{2r}n^2 - 2\varepsilon n^2.$$

Therefore, $\frac{r}{2(r-1)}a^2 < 3\varepsilon n^2$, which implies that $a < \sqrt{\frac{6(r-1)\varepsilon}{r}n^2} < 3\sqrt{\varepsilon}n$. The proof is completed.

Lemma 10. Suppose ε and θ are two sufficiently small constants with $\theta < \frac{1}{20kr^4(r+1)}$ and $\varepsilon \leqslant \theta^2$. Let

$$W := \bigcup_{i=1}^{r} \{ v \in V_i : d_{V_i}(v) \geqslant 2\theta n \}.$$

Then $|W| \leq \theta n$.

Proof. For all $i \in [r]$, let $W_i = W \cap V_i$. Then

$$2e(V_i) = \sum_{u \in V_i} d_{V_i}(u) \geqslant \sum_{u \in W_i} d_{V_i}(u) \geqslant 2|W_i|\theta n.$$

Combining with Lemma 9, we have

$$\varepsilon n^2 \geqslant \sum_{i=1}^r e(V_i) \geqslant |W| \theta n,$$

which implies that $|W| \leqslant \frac{\varepsilon n}{\theta} \leqslant \theta n$.

Lemma 11. Suppose ε_1 is a sufficiently small constant with $\sqrt{\varepsilon} < \varepsilon_1 \ll \theta$. Let

$$L := \{ v \in V(G) : d(v) \leqslant (1 - \frac{1}{r} - \varepsilon_1)n \}.$$

Then $|L| \leq \varepsilon_2 n$, where $\varepsilon_2 \ll \varepsilon_1$ is a sufficiently small constant satisfying $\varepsilon - \varepsilon_1 \varepsilon_2 + \frac{r-1}{2r} \varepsilon_2^2 < 0$.

Proof. Suppose to the contrary that $|L| > \varepsilon_2 n$, then there exists $L' \subseteq L$ with $|L'| = \lfloor \varepsilon_2 n \rfloor$. Therefore,

$$\begin{split} e(G \setminus L') & \geqslant e(G) - \sum_{v \in L'} d(v) \\ & \geqslant e(T_{n,r}) - \varepsilon n^2 - \varepsilon_2 n (1 - \frac{1}{r} - \varepsilon_1) n \\ & = e(T_{n,r}) - \varepsilon n^2 - \frac{r-1}{r} \varepsilon_2 n^2 + \varepsilon_1 \varepsilon_2 n^2 \\ & > \frac{r-1}{2r} (n - \lfloor \varepsilon_2 n \rfloor)^2 + \frac{k-1}{r} (n - \lfloor \varepsilon_2 n \rfloor) - \frac{(k-1)(k+r-1)}{2r} \end{split}$$

$$\geqslant e(T_{n',r}) + \frac{(k-1)n'}{r} - \frac{(k-1)(k+r-1)}{2r}$$

= $ex(n', kK_{r+1}),$

where $n' = n - \lfloor \varepsilon_2 n \rfloor$. Since $e(G \setminus L') > \operatorname{ex}(n - |L'|, kK_{r+1})$, $G \setminus L'$ contains a kK_{r+1} as subgraph. This contradicts the fact that G is kK_{r+1} -free.

Lemma 12. For any $i \in [r]$, if uv is an edge of $G[V_i \setminus (W \cup L)]$, then G has k(r+1) copies of K_{r+1} which have only one common edge uv.

Proof. For any $i \in [r]$, and any vertex $w \in V_i \setminus (W \cup L)$, we have $d(w) > (1 - \frac{1}{r} - \varepsilon_1)n$, $d_{V_i}(w) < 2\theta n$. Then for any $j \in [r]$ and $j \neq i$,

$$d_{V_{j}}(w) \geqslant d(w) - d_{V_{i}}(w) - (r-2)(\frac{n}{r} + 3\sqrt{\varepsilon}n)$$

$$> (1 - \frac{1}{r} - \varepsilon_{1})n - 2\theta n - (r-2)(\frac{n}{r} + 3\sqrt{\varepsilon}n)$$

$$> \frac{n}{r} - 3(r-1)\theta n.$$

Without loss of generality, let uv be an edge of $G[V_1 \setminus (W \cup L)]$. We consider the common neighbors of u, v in $V_2 \setminus (W \cup L)$. Combining with Lemma 7, we have

$$|N_{V_2}(u) \cap N_{V_2}(v) \setminus (W \cup L)|$$

$$\geqslant d_{V_2}(u) + d_{V_2}(v) - |V_2| - |W| - |L|$$

$$> 2(\frac{n}{r} - 3(r - 1)\theta n) - (\frac{n}{r} + 3\sqrt{\varepsilon}n) - \theta n - \varepsilon_2 n$$

$$> \frac{n}{r} - 6r\theta n$$

$$> k(r + 1).$$

So there exist k(r+1) vertices $u_{2,1},\ldots,u_{2,k(r+1)}$ in $V_2\setminus (W\cup L)$ such that the subgraph induced by two partitions $\{u,v\}$ and $\{u_{2,1},\ldots,u_{2,k(r+1)}\}$ is a complete bipartite graph. For an integer s with $2\leqslant s\leqslant r-1$, suppose that there are vertices $u_{s,1},\ldots,u_{s,k(r+1)}\in V_s\setminus (W\cup L)$ such that $\{u,v\},\{u_{2,1},\ldots,u_{2,k(r+1)}\},\ldots,\{u_{s,1},\ldots,u_{s,k(r+1)}\}$ induce a complete s-partite subgraph. We next consider the common neighbors of the above (s-1)k(r+1)+2 vertices in $V_{s+1}\setminus (W\cup L)$. By Lemma 7, we have

$$|N_{V_{s+1}}(u) \cap N_{V_{s+1}}(v) \cap (\bigcap_{i \in [s] \setminus \{1\}, j \in [k(r+1)]} N_{V_{s+1}}(u_{i,j})) \setminus (W \cup L)|$$

$$\geqslant d_{V_{s+1}}(u) + d_{V_{s+1}}(v) + \sum_{i=2}^{s} \sum_{j=1}^{k(r+1)} d_{V_{s+1}}(u_{i,j}) - ((s-1)k(r+1)+1)|V_{s+1}| - |W| - |L|$$

$$\geqslant ((s-1)k(r+1)+2) \left(\frac{n}{r} - 3(r-1)\theta n\right) - ((s-1)k(r+1)+1) \left(\frac{n}{r} + 3\sqrt{\varepsilon}n\right)$$

$$-\theta n - \varepsilon_2 n$$

$$> \frac{n}{r} - 12skr(r+1)\theta n$$
$$> k(r+1).$$

Then we can find k(r+1) vertices $u_{s+1,1}, \ldots, u_{s+1,k(r+1)} \in V_{s+1} \setminus (W \cup L)$, which together with $\{u,v\}$, $\{u_{2,1},\ldots,u_{2,k(r+1)}\}$, ..., $\{u_{s,1},\ldots,u_{s,k(r+1)}\}$ forms a complete (s+1)-partite subgraph in G. Therefore, for every $2 \le i \le r$, there exist k(r+1) vertices in $V_i \setminus (W \cup L)$ such that $\{u_{2,1},\ldots,u_{2,k(r+1)}\}$, ..., $\{u_{r,1},\ldots,u_{r,k(r+1)}\}$ induce a complete (r-1)-partite subgraph in G, and u,v are adjacent to all the above k(r-1)(r+1) vertices. Hence G has k(r+1) copies of K_{r+1} which have only one common edge uv.

Lemma 13. For each $i \in [r]$, there exists an independent set $I_i \subseteq V_i \setminus (W \cup L)$ such that $|I_i| \ge |V_i \setminus (W \cup L)| - 2(k-1)$.

Proof. We first claim that $G[V_i \setminus (W \cup L)]$ is M_k -free for any $i \in [r]$. Suppose to the contrary that there exists $i_0 \in [r]$ such that $G[V_{i_0} \setminus (W \cup L)]$ contains a copy of M_k . Then we can find a kK_{r+1} by Lemma 12, and this contradicts the fact that G is kK_{r+1} -free. For every $i \in [r]$, let M^i be a maximum matching of $G[V_i \setminus (W \cup L)]$, and B^i be the set of vertices covered by M^i . Since $G[V_i \setminus (W \cup L)]$ is M_k -free, $|B^i| \leq 2(k-1)$. Therefore, there exists an independent set $I_i \subseteq V_i \setminus (W \cup L)$ by deleting all vertices of B^i , and $|I_i| \geq |V_i \setminus (W \cup L)| - 2(k-1)$.

Lemma 14. For any $i \in [r]$ and any $v \in V_i \setminus (W \cup L)$, $d_{V_i \setminus (W \cup L)}(v) < k(r+1)$.

Proof. We will prove this lemma by contradiction. Without loss of generality, suppose that there exists a vertex $u \in V_1 \setminus (W \cup L)$ such that $d_{V_1 \setminus (W \cup L)}(u) \geqslant k(r+1)$. Let G' be the graph with V(G') = V(G) and $E(G') = E(G) \cup \{uw : uw \notin E(G)\}$. It follows from $u \in V_1 \setminus (W \cup L)$ that $E(G) \subset E(G')$. By the maximum of $\rho(G)$, G' contains kK_{r+1} , say F_1 , as a subgraph. From the construction of G', we see that $u \in V(F_1)$, and there is a $(k-1)K_{r+1}$, say F_2 , in $F_1 \setminus \{u\}$. Obviously, $F_2 \subseteq G$. Thus F_2 is a $(k-1)K_{r+1}$ copy of G, and $u \notin V(F_2)$. Since $d_{V_1 \setminus (W \cup L)}(u) \geqslant k(r+1)$, there exists a vertex $v \in N_{V_1 \setminus (W \cup L)}(u)$ such that $v \notin V(F_2)$. Then we can find k(r+1) copies of K_{r+1} which have only one common edge uv by Lemma 12. Thus, we can find a K_{r+1} , say F_3 , such that $V(F_3) \cap V(F_2) = \emptyset$. Thus $F_2 \cup F_3$ is a kK_{r+1} copy of G, which contradicts the fact that G is kK_{r+1} -free. \square

Lemma 15. For any $u \in W \setminus L$, G contains k(r+1) copies of K_{r+1} which intersect only in u.

Proof. For any $u \in W \setminus L$, without loss of generality, we may assume that $u \in V_1$. Combining with Lemmas 10 and 11, we have $d(u) > (1 - \frac{1}{r} - \varepsilon_1)n$, and

$$d_{V_1 \setminus (W \cup L)}(u) \geq d_{V_1}(u) - |W \cup L|$$

$$\geq 2\theta n - \theta n - \varepsilon_2 n$$

$$\geq k(r+1).$$

Let $u_{1,1}, \ldots, u_{1,k(r+1)}$ be the neighbors of u in $V_1 \setminus (W \cup L)$. Then for every $i \in [k(r+1)]$, we have $d(u_{1,i}) > (1 - \frac{1}{r} - \varepsilon_1)n$, $d_{V_1}(u_{1,i}) < 2\theta n$, and

$$d_{V_2}(u_{1,i}) \geqslant d(u_{1,i}) - d_{V_1}(u_{1,i}) - (r-2)(\frac{n}{r} + 3\sqrt{\varepsilon}n)$$

$$> \frac{n}{r} - \varepsilon_1 n - 2\theta n - 3(r-2)\sqrt{\varepsilon}n$$

$$> \frac{n}{r} - 3(r-1)\theta n. \tag{4}$$

Since $V(G) = V_1 \cup \cdots \cup V_r$ is the vertex partition that maximizes the number of crossing edges of G, we have $d_{V_1}(u) \leq \frac{1}{r}d(u)$. Therefore

$$d_{V_2}(u) \geqslant d(u) - d_{V_1}(u) - (r - 2)(\frac{n}{r} + 3\sqrt{\varepsilon}n)$$

$$> \frac{r - 1}{r}(1 - \frac{1}{r} - \varepsilon_1)n - (r - 2)(\frac{n}{r} + 3\sqrt{\varepsilon}n)$$

$$> \frac{n}{r^2} - \varepsilon_1 n - 3(r - 2)\sqrt{\varepsilon}n$$

$$> \frac{n}{r^2} - (3r + 5)\varepsilon_1 n. \tag{5}$$

We consider the common neighbors of $u, u_{1,1}, \ldots, u_{1,k(r+1)}$ in $V_2 \setminus (W \cup L)$. Combining with Lemma 7, we have

$$|N_{V_{2}}(u) \cap (\bigcap_{i \in [k(r+1)]} N_{V_{2}}(u_{1,i})) \setminus (W \cup L)|$$

$$\geqslant d_{V_{2}}(u) + \sum_{i=1}^{k(r+1)} d_{V_{2}}(u_{1,i}) - k(r+1)|V_{2}| - |W| - |L|$$

$$> \frac{n}{r^{2}} - (3r+5)\varepsilon_{1}n + k(r+1)(\frac{n}{r} - 3(r-1)\theta n) - k(r+1)(\frac{n}{r} + 3\sqrt{\varepsilon}n) - \theta n - \varepsilon_{2}n$$

$$> \frac{n}{r^{2}} - 16kr(r+1)\theta n$$

$$> k(r+1).$$

Let $u_{2,1}, \ldots, u_{2,k(r+1)}$ be the common neighbors of $u, u_{1,1}, \ldots, u_{1,k(r+1)}$ in $V_2 \setminus (W \cup L)$. For an integer $2 \le s \le r-1$, suppose that $u_{s,1}, \ldots, u_{s,k(r+1)}$ are the common neighbors of $\{u, u_{i,1}, \ldots, u_{i,k(r+1)} : 1 \le i \le s-1\}$ in $V_s \setminus (W \cup L)$. We next consider the common neighbors of $\{u, u_{i,1}, \ldots, u_{i,k(r+1)} : 1 \le i \le s\}$ in $V_{s+1} \setminus (W \cup L)$. Using the similar method as in the proof of (4) and (5), for every $i \in [s]$ and $j \in [k(r+1)]$, we have

$$d_{V_{s+1}}(u_{i,j}) > \frac{n}{r} - 3(r-1)\theta n,$$

and

$$d_{V_{s+1}}(u) > \frac{n}{r^2} - (3r+5)\varepsilon_1 n.$$

By Lemma 7, we have

$$|N_{V_{s+1}}(u) \cap (\bigcap_{i \in [s], j \in [k(r+1)]} N_{V_{s+1}}(u_{i,j})) \setminus (W \cup L)|$$

$$\geqslant d_{V_{s+1}}(u) + \sum_{i=1}^{s} \sum_{j=1}^{k(r+1)} d_{V_{s+1}}(u_{i,j}) - sk(r+1)|V_{s+1}| - |W| - |L|$$

$$> \frac{n}{r^2} - (3r+5)\varepsilon_1 n + sk(r+1)\left(\frac{n}{r} - 3(r-1)\theta n\right) - sk(r+1)\left(\frac{n}{r} + 3\sqrt{\varepsilon}n\right)$$

$$-\theta n - \varepsilon_2 n$$

$$> \frac{n}{r^2} - 16skr(r+1)\theta n$$

$$> k(r+1).$$

Let $u_{s+1,1}, \ldots, u_{s+1,k(r+1)}$ be the common neighbors of $\{u, u_{i,1}, \ldots, u_{i,k(r+1)} : 1 \leq i \leq s\}$ in $V_{s+1} \setminus (W \cup L)$. Therefore, for every $i \in [r]$, there exist k(r+1) vertices, denoted by $\{u_{i,1}, \ldots, u_{i,k(r+1)}\}$, in $V_i \setminus (W \cup L)$ such that $\{u_{1,1}, \ldots, u_{1,k(r+1)}\}$, $\{u_{2,1}, \ldots, u_{2,k(r+1)}\}$, \ldots , $\{u_{r,1}, \ldots, u_{r,k(r+1)}\}$ form a complete r-partite subgraph in G, and u is adjacent to the above kr(r+1) vertices. Hence we can find k(r+1) copies of K_{r+1} in G which intersect only in u.

Lemma 16. $|W \setminus L| \le k - 1$.

Proof. Suppose to the contrary that $|W \setminus L| \ge k$. By Lemma 15, for any $u \in W \setminus L$, we can find k(r+1) copies of K_{r+1} in G which intersect only in u. Therefore, we can find at least k disjoint K_{r+1} in G. This is a contradiction to the fact that G is kK_{r+1} -free. \square

Lemma 17. $L = \emptyset$.

Proof. Let $x_{v_0} = \max\{x_v : v \in V(G) \setminus W\}$. Recall that $x_z = \max\{x_v : v \in V(G)\} = 1$, then

$$\rho(G) = \rho(G)x_z \leqslant |W| + (n - |W|)x_{v_0}.$$

By Lemmas 11 and 16, we have

$$|W| = |W \cap L| + |W \setminus L| \le |L| + k - 1 \le \varepsilon_2 n + k - 1. \tag{6}$$

Combining with Lemma 8, we have

$$x_{v_0} \geqslant \frac{\rho(G) - |W|}{n - |W|} \geqslant \frac{\rho(G) - |W|}{n} \geqslant 1 - \frac{1}{r} - \varepsilon_2 - \frac{O(1)}{n} > 1 - \frac{2}{r}.$$
 (7)

Therefore, we have

$$\rho(G)x_{v_0} = \sum_{vv_0 \in E(G)} x_v = \sum_{v \in W, vv_0 \in E(G)} x_v + \sum_{v \notin W, vv_0 \in E(G)} x_v$$

$$\leq |W| + (d(v_0) - |W|)x_{v_0},$$

which implies that

$$d(v_0) \geq \rho(G) + |W| - \frac{|W|}{x_{v_0}}$$

$$\geq \rho(G) - \frac{2|W|}{r - 2}$$

$$\geq \frac{r - 1}{r} n + \frac{2(k - 1)}{r} - \frac{1}{n} \left(\frac{(k - 1)(r + k - 1)}{r} + \frac{r}{2} \right) - \frac{2\varepsilon_2 n}{r - 2} - \frac{2(k - 1)}{r - 2}$$

$$\geq (1 - \frac{1}{r} - \varepsilon_1)n,$$

where the last inequality holds as $\varepsilon_2 \ll \varepsilon_1$. Thus we have $v_0 \notin L$, that is $v_0 \in V(G) \setminus (W \cup L)$. Without loss of generality, we assume that $v_0 \in V_1 \setminus (W \cup L)$. Combining with Lemmas 13 and 14, we have

$$\rho(G)x_{v_0} = \sum_{\substack{v \in W \cup L, \\ vv_0 \in E(G)}} x_v + \sum_{\substack{v \in V_1 \setminus (W \cup L), \\ vv_0 \in E(G)}} x_v + \sum_{\substack{v \in (\cup_{i=2}^r V_i) \setminus (W \cup L), \\ vv_0 \in E(G)}} x_v
< |W| + |L|x_{v_0} + k(r+1)x_{v_0} + \sum_{\substack{v \in \cup_{i=2}^r I_i, \\ vv_0 \in E(G)}} x_v + \sum_{\substack{v \in (\cup_{i=2}^r V_i \setminus I_i) \setminus (W \cup L), \\ vv_0 \in E(G)}} x_v
< |W| + |L|x_{v_0} + k(r+1)x_{v_0} + 2(k-1)(r-1)x_{v_0} + \sum_{\substack{v \in \cup_{i=2}^r I_i, \\ vv_0 \in E(G)}} x_v,$$

which implies that

$$\sum_{v \in \cup_{i=2}^r I_i} x_v \geqslant (\rho(G) - |L| - k(3r - 1) + 2(r - 1))x_{v_0} - |W|. \tag{8}$$

Next we will prove $L = \emptyset$. Suppose to the contrary that there is a vertex $u_0 \in L$, then $d(u_0) \leq (1 - \frac{1}{r} - \varepsilon_1)n$. Let G' be the graph with V(G') = V(G) and $E(G') = E(G \setminus \{u_0\}) \cup \{wu_0 : w \in \bigcup_{i=2}^r I_i\}$. It is obvious that G' is kK_{r+1} -free. Combining with Lemmas 8, 11, (6), (7) and (8), we have

$$\rho(G') - \rho(G) \geqslant \frac{\mathbf{x}^{T} \left(A(G') - A(G)\right) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \frac{2x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}} \left(\sum_{w \in \cup_{i=2}^{r} I_{i}} x_{w} - \sum_{uu_{0} \in E(G)} x_{u} \right)
\geqslant \frac{2x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}} \left((\rho(G) - |L| - k(3r - 1) + 2(r - 1))x_{v_{0}} - 2|W| - (d(u_{0}) - |W|)x_{v_{0}} \right)
= \frac{2x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}} \left((\rho(G) - |L| - k(3r - 1) + 2(r - 1) - d(u_{0}) + |W|)x_{v_{0}} - 2|W| \right)
\geqslant \frac{2x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}} \left(r - 2 (\varepsilon_{1}n - \varepsilon_{2}n - O(1)) - 2|W| \right)$$

$$\geqslant \frac{2x_{u_0}}{\mathbf{x}^T\mathbf{x}} \left(\frac{r-2}{r} (\varepsilon_1 n - \varepsilon_2 n - O(1)) - 2(\varepsilon_2 n + k - 1) \right) > 0$$

where the last inequality holds since $\varepsilon_2 \ll \varepsilon_1$. This contradicts the fact that G has the largest spectral radius over all kK_{r+1} -free graphs, so L must be empty.

Lemma 18. For any $v \in V(G)$, $x_v \geqslant 1 - \frac{1}{r-1}$.

Proof. Since $L = \emptyset$, then $|W| = |W \setminus L| \le k - 1$ by Lemma 16. Let $x_{v_0} = \max\{x_v : v \in V(G) \setminus W\}$. Recall that $x_z = \max\{x_v : v \in V(G)\} = 1$, then

$$\rho(G) = \rho(G)x_z \leqslant |W| + (n - |W|)x_{v_0}.$$

Combining with Lemma 8, we have

$$x_{v_0} \geqslant \frac{\rho(G) - |W|}{n - |W|} \geqslant \frac{\rho(G) - |W|}{n} \geqslant 1 - \frac{1}{r} - \frac{O(1)}{n}.$$
 (9)

Using the similar method as in the proof of (8), we have

$$\sum_{v \in \cup_{i=2}^r I_i} x_v \geqslant (\rho(G) - k(r+3) + 2)x_{v_0} - (k-1).$$

Suppose to the contrary that there exists $u \in V(G)$ such that $x_u < 1 - \frac{1}{r-1}$. Let G' be the graph with V(G') = V(G) and $E(G') = E(G \setminus \{u\}) \cup \{uw : w \in \bigcup_{i=2}^r I_i\}$. It is obvious that G' is kK_{r+1} -free. Therefore, we have

$$\rho(G') - \rho(G) \geqslant \frac{\mathbf{x}^T (A(G') - A(G)) \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \frac{2x_u}{\mathbf{x}^T \mathbf{x}} \left(\sum_{w \in \cup_{i=2}^r I_i} x_w - \sum_{uv \in E(G)} x_v \right)
\geqslant \frac{2x_u}{\mathbf{x}^T \mathbf{x}} \left((\rho(G) - k(r+3) + 2) x_{v_0} - (k-1) - \rho(G) x_u \right)
> \frac{2x_u}{\mathbf{x}^T \mathbf{x}} \left((\rho(G) - k(r+3) + 2) (1 - \frac{1}{r} - \frac{O(1)}{n}) - (k-1) - \rho(G) (1 - \frac{1}{r-1}) \right)
> \frac{2x_u}{\mathbf{x}^T \mathbf{x}} \left(\frac{n}{r^2} - O(1) \right) > 0.$$

This contradicts the fact that G has the largest spectral radius over all kK_{r+1} -free graphs.

Lemma 19. |W| = k - 1, and $V_i \setminus W$ is an independent set for any $i \in [r]$.

Proof. Let |W| = s. Then $s \leq k - 1$ by Lemmas 16 and 17.

Claim 20. $\nu(\bigcup_{i=1}^r G[V_i \setminus W]) \leqslant k-1-s$.

Proof of Claim 20. Otherwise, $\nu(\bigcup_{i=1}^r G[V_i \setminus W]) \geqslant k-s$. By Lemma 12, we can find a $(k-s)K_{r+1}$, denoted by F_1 . Since |W| = s, by Lemma 15, we can find a sK_{r+1} , denoted by F_2 , such that $V(F_1) \cap V(F_2) = \emptyset$. Therefore, $F_1 \cup F_2$ is a copy of kK_{r+1} in G, a contradiction.

Suppose to the contrary that s < k-1. By Lemmas 14 and 17, we have $\Delta(\bigcup_{i=1}^r G[V_i \setminus W]) < k(r+1)$. Combining with Lemma 6, we have

$$e(\cup_{i=1}^r G[V_i \setminus W]) \leqslant f(\nu(\cup_{i=1}^r G[V_i \setminus W]), \Delta(\cup_{i=1}^r G[V_i \setminus W]))$$

$$\leqslant f(k-s-1, k(r+1))$$

$$\leqslant k(k-s)(r+1).$$

Take $S \subseteq V_1 \setminus W$ with |S| = k - s - 1. Let G' be the graph with V(G') = V(G) and $E(G') = E(G) \setminus \{uv : uv \in \bigcup_{i=1}^r E(G[V_i \setminus W])\} \cup \{uv : u \in S, v \in (V_1 \setminus W) \setminus S\}$. It is obvious that G' is kK_{r+1} -free. Therefore,

$$\rho(G') - \rho(G)
\geqslant \frac{\mathbf{x}^{T} (A(G') - A(G)) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
= \frac{2}{\mathbf{x}^{T} \mathbf{x}} \left(\sum_{ij \in E(G')} x_{i} x_{j} - \sum_{ij \in E(G)} x_{i} x_{j} \right)
\geqslant \frac{2}{\mathbf{x}^{T} \mathbf{x}} \left((k - s - 1)(|V_{1}| - |W| - k + s + 1)(1 - \frac{1}{r - 1})^{2} - k(k - s)(r + 1) \right)
\geqslant \frac{2}{\mathbf{x}^{T} \mathbf{x}} \left((k - s - 1)(\frac{n}{r} - 3\sqrt{\varepsilon}n - k + 1)(1 - \frac{1}{r - 1})^{2} - k(k - s)(r + 1) \right)
> 0.$$

This contradicts the fact that G has the largest spectral radius over all kK_{r+1} -free graphs. Therefore, |W| = s = k - 1. Then it follows from the claim that $\nu(\bigcup_{i=1}^r G[V_i \setminus W]) \leq k - 1 - s = 0$ for any $i \in [r]$. So $V_i \setminus W$ is an independent set.

Lemma 21. For any $u \in W$, d(u) = n - 1.

Proof. Suppose to the contrary that there exists $u \in W$ such that d(u) < n-1. Let $v \in V(G)$ be a vertex such that $uv \notin E(G)$. Let G' be the graph with V(G') = V(G) and $E(G') = E(G) \cup \{uv\}$. We claim that G' is kK_{r+1} -free. Otherwise, G' contains a copy of kK_{r+1} , say F_1 , as a subgraph, and $uv \in E(F_1)$. Let F_2 be the K_{r+1} of F_1 which contains uv. Then G contains a $(k-1)K_{r+1}$, denoted by F_3 , as a subgraph, with $V(F_2) \cap V(F_3) = \emptyset$ and $u \notin V(F_3)$. Since $u \in W$, by Lemmas 15 and 17, we can find a K_{r+1} , denoted by F_4 , which contains u and $V(F_4) \cap V(F_3) = \emptyset$. Thus $F_3 \cup F_4$ is a copy of kK_{r+1} in G, a contradiction. Therefore, G' is kK_{r+1} -free. By the construction of G', we have $\rho(G') > \rho(G)$, which contradicts the assumption that G has the maximum spectral radius among all kK_{r+1} -free graphs on n vertices.

Proof of Theorem 3. Now we prove that G is isomorphic to $K_{k-1} \vee T_{n-k+1,r}$. For any $i \in [r]$, let $|V_i \setminus W| = n_i$. By Lemmas 19 and 21, there exists an r-partite graph H with classes of size n_1, n_2, \ldots, n_r such that $G \cong K_{k-1} \vee H$. By the maximum of $\rho(G)$, $H \cong K_r(n_1, n_2, \ldots, n_r)$. It suffices to show that $|n_i - n_j| \leq 1$ for any $1 \leq i < j \leq r$. Suppose $n_1 \geq n_2 \geq \ldots \geq n_r$. We prove the assertion by contradiction. Assume that there exist i_0, j_0 with $1 \leq i_0 < j_0 \leq r$ such that $n_{i_0} - n_{j_0} \geq 2$. Let $H' = K_r(n_1, \ldots, n_{i_0} - 1, \ldots, n_{j_0} + 1, \ldots, n_r)$, and $G' = K_{k-1} \vee H'$.

Recall that **x** is the eigenvector of G corresponding to $\rho(G)$, by the symmetry we may assume $\mathbf{x} = (\underbrace{x_1, \dots, x_1}_{n_1}, \underbrace{x_2, \dots, x_2}_{n_2}, \dots, \underbrace{x_r, \dots, x_r}_{n_r}, \underbrace{x_{r+1}, \dots, x_{r+1}}_{k-1})^{\mathrm{T}}$. Thus by (1), we have

$$\rho(G)x_i = \sum_{j=1}^r n_j x_j - n_i x_i + (k-1)x_{r+1}, \text{ for any } i \in [r],$$
(10)

and

$$\rho(G)x_{r+1} = \sum_{j=1}^{r} n_j x_j + (k-2)x_{r+1}.$$
(11)

Combining (10) and (11), we have $x_i = \frac{\rho(G)+1}{\rho(G)+n_i}x_{r+1}$ for any $i \in [r]$, which implies that $x_{r+1} = \max\{x_v : v \in V(G)\}$. Recall that $\max\{x_v : v \in V(G)\} = 1$, then $x_{r+1} = 1$, and $x_i = \frac{\rho(G)+1}{\rho(G)+n_i}$ for any $i \in [r]$. Let $u_{i_0} \in V_{i_0} \setminus W$ be a fixed vertex. Then G' can be obtained from G by deleting all edges between u_{i_0} and $V_{j_0} \setminus W$, and adding all edges between u_{i_0} and $V_{i_0} \setminus (W \cup \{u_{i_0}\})$. According to (2), we deduce that

$$\rho(G') - \rho(G) \geqslant \frac{\mathbf{x}^{\mathrm{T}}(A(G') - A(G))\mathbf{x}}{\mathbf{x}^{\mathrm{T}}\mathbf{x}} \\
= \frac{2}{\mathbf{x}^{\mathrm{T}}\mathbf{x}} \left((n_{i_0} - 1)x_{i_0}^2 - n_{j_0}x_{i_0}x_{j_0} \right) \\
= \frac{2x_{i_0}}{\mathbf{x}^{\mathrm{T}}\mathbf{x}} \left((n_{i_0} - 1)\frac{\rho(G) + 1}{\rho(G) + n_{i_0}} - n_{j_0}\frac{\rho(G) + 1}{\rho(G) + n_{j_0}} \right) \\
= \frac{2x_{i_0}}{\mathbf{x}^{\mathrm{T}}\mathbf{x}} \frac{(\rho(G) + 1)(n_{i_0}\rho(G) - n_{j_0}\rho(G) - \rho(G) - n_{j_0})}{(\rho(G) + n_{i_0})(\rho(G) + n_{j_0})} \\
\geqslant \frac{2x_{i_0}}{\mathbf{x}^{\mathrm{T}}\mathbf{x}} \frac{(\rho(G) + 1)(\rho(G) - n_{j_0})}{(\rho(G) + n_{i_0})(\rho(G) + n_{j_0})} > 0,$$

where the last second inequality holds as $n_{i_0} - n_{j_0} \ge 2$, and the last inequality holds since $\rho(G) \ge \frac{r-1}{r} n + \frac{2(k-1)}{r} - \frac{1}{n} \left(\frac{(k-1)(r+k-1)}{r} + \frac{r}{2} \right)$, and $n_{j_0} = |V_{j_0} \setminus W| \le \frac{n}{r} + 3\sqrt{\varepsilon}n - (k-1)$. This contradicts the assumption that G has the maximum spectral radius among all n-vertex kK_{r+1} -free graphs. Therefore, G is isomorphic to $K_{k-1} \vee T_{n-k+1,r}$.

Acknowledgements

The authors would like to thank the anonymous referees for valuable suggestions, which have considerably improved the presentation of the paper.

References

- [1] N. Alon, R. Duke, H. Lefmann, V. Rödl, R. Yuster. The algorithmic aspects of the regularity lemma. *J. Algorithms*, 16(1): 80–109, 1994.
- [2] L. Babai, B. Guiduli. Spectral extrema for graphs: the Zarankiewicz problem. *Electron. J. Combin.*, 16(1): #R123, 2009.
- [3] B. Bollobás. Extremal Graph Theory. Academic Press, New York, 1978.
- [4] B. Bollobás, V. Nikiforov. Cliques and the spectral radius. *J. Combin. Theory Ser.* B, 97: 859–865, 2007.
- [5] G. Chen, R. Gould, F. Pfender, B. Wei. Extremal graphs for intersecting cliques. *J. Combin. Theory. Ser. B*, 89: 159–171, 2003.
- [6] V. Chvátal, D. Hanson. Degrees and matchings. J. Combin. Theory Ser. B, 20 (2): 128–138, 1976.
- [7] S. Cioabă, D.N. Desai, M. Tait. The spectral radius of graphs with no odd wheels. European J. Combin., 99: 103420, 2022.
- [8] S. Cioabă, L. Feng, M. Tait, X. Zhang. The maximum spectral radius of graphs without friendship subgraphs. *Electron. J. Combin.*, 27 (4): #P4.22, 2020.
- [9] D. N. Desai, L. Kang, Y. Li, Z. Ni, M. Tait, J. Wang. Spectral extremal graphs for intersecting cliques. *Linear Algebra Appl.*, 644: 234–258, 2022.
- [10] P. Erdős, Z. Füredi, R. Gould, D. Gunderson. Extremal graphs for intersecting triangles. J. Combin. Theory. Ser. B, 64(1): 89–100, 1995.
- [11] Z. Füredi. Extremal hypergraphs and combinatorial geometry. In: Chatterji S. D. (eds) Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1343–1352, 1995.
- [12] D. Gerbner, A. Methuku, M. Vizer. Generalized Turán problems for disjoint copies of graphs. *Discrete Math.*, 342(11): 3130–3141, 2019.
- [13] Y. Li, Y. Peng. The spectral radius of graphs with no intersecting odd cycles. *Discrete Math.*, 345(8): 112907, 2022.
- [14] J. Moon. On independent complete subgraphs in a graph. Canad. J. Math., 20: 95–102, 1968.
- [15] V. Nikiforov. A contribution to the Zarankiewicz problem. *Linear Algebra Appl.*, 432 (6): 1405–1411, 2010.
- [16] V. Nikiforov. A spectral condition for odd cycles in graphs. *Linear Algebra Appl.*, 428 (7): 1492–1498, 2008.

- [17] V. Nikiforov. Bounds on graph eigenvalues II. *Linear Algebra Appl.*, 427: 183–189, 2007.
- [18] V. Nikiforov. Stability for large forbidden subgraphs. J. Graph Theory, 62 (4): 362–368, 2009.
- [19] V. Nikiforov. The spectral radius of graphs without paths and cycles of specified length. *Linear Algebra Appl.*, 432(9): 2243–2256, 2010.
- [20] M. Simonovits. A method for solving extremal problems in graph theory, stability problems. *Theory of Graphs* (Proc. colloq., Tihany, 1996), Academic Press, New York, 279–319, 1968.
- [21] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48: 436–452, 1941.
- [22] J. Wang, L. Kang, Y. Xue. On a conjecture of spectral extremal problems. *J. Combin. Theory. Ser. B*, 159: 20–41, 2022.
- [23] W. Yuan, B. Wang, M. Zhai. On the spectral radii of graphs without given cycles. *Electron. J. Linear Algebra*, 23: 599–606, 2012.
- [24] M. Zhai, B. Wang. Proof of a conjecture on the spectral radius of C_4 -free graphs. Linear Algebra Appl., 437 (7): 1641–2647, 2012.
- [25] M. Zhai, B. Wang, L. Fang. The spectral Turán problem about graphs with no 6-cycle. *Linear Algebra Appl.*, 590: 22–31, 2020.
- [26] M. Zhai, R. Liu, J. Xue. A Unique Characterization of Spectral Extrema for Friendship Graphs. *Electron. J. Combin.*, 29 (3): #P3.32, 2022.