
Spectral extremal graphs for disjoint cliques

Zhenyu Ni∗

Department of Mathematics
Hainan University

Haikou 570228, P.R. China

1051466287@qq.com

Jing Wang
College of Mathematics and Information Science

Henan Normal University
Xinxiang 453007, P.R. China

wj517062214@163.com

Liying Kang†

Department of Mathematics
Shanghai University

Shanghai 200444, PR China

lykang@shu.edu.cn

Submitted: Sep 12, 2022; Accepted: Dec 21, 2022; Published: Jan 27, 2023

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let kKr+1 be the graph consisting of k vertex-disjoint copies of the complete
graph Kr+1. Moon [Canad. J. Math. 20 (1968) 95–102] and Simonovits [Theory of
Graphs (Proc. colloq., Tihany, 1996)] independently showed that if n is sufficiently
large, then the join of a complete graph Kk−1 and an r-partite Turán graph Tn−k+1,r

is the unique extremal graph for kKr+1. In this paper we consider the graph which
has the maximum spectral radius among all graphs without k disjoint cliques. We
show that if G attains the maximum spectral radius over all n-vertex kKr+1-free
graphs for sufficiently large n, then G is isomorphic to the join of a complete graph
Kk−1 and an r-partite Turán graph Tn−k+1,r.
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1 Introduction

In this paper, we consider only simple and undirected graphs. For two vertex disjoint
graphs G,H, the union of graph G and H is the graph G∪H with vertex set V (G)∪V (H)
and edge set E(G)∪E(H). In particular, we write kG the vertex-disjoint union of k copies
of G. The join of G and H, denoted by G ∨ H, is the graph obtained from G ∪ H by
adding edges joining every vertex of G to every vertex of H. For two graphs G and F , G
is called F -free if it does not contain a copy of F as a subgraph. For a fixed graph F , the
Turán type extremal problem is to determine the maximum number of edges among all
n-vertex F -free graphs, where the maximum number of edges is called the Turán number,
denoted by ex(n, F ). An F -free graph on n vertices is called an extremal graph for F if it
has ex(n, F ) edges, and the set of all extremal graphs is denoted by Ex(n, F ).

Let Kr(n1, . . . , nr) be the complete r-partite graph with classes of sizes n1, . . . , nr. If!r
i=1 ni = n and |ni − nj| ! 1 for any 1 ! i < j ! r, then Kr(n1, . . . , nr) is called an

r-partite Turán graph, denoted by Tn,r. The well-known Turán Theorem states that the
extremal graph corresponding to Turán number ex(n,Kr+1) is Tn,r, i.e. ex(n,Kr+1) =
|E(Tn,r)|. There are lots of researches on Turán type extremal problems (such as [3,
5, 10, 21]). Simonovits [20] and Moon [14] showed that if n is sufficiently large, then
Kk−1 ∨ Tn−k+1,r is the unique extremal graph for kKr+1.

Theorem 1 ([20, 14]). Let G be a graph of sufficiently large order n that does not contain
kKr+1 as a subgraph. Then e(G) ! e(Kk−1 ∨Tn−k+1,r), and Kk−1 ∨Tn−k+1,r is the unique
extremal graph for kKr+1.

The following spectral version of the Turán type problem was proposed in Nikiforov
[19]: What is the maximum spectral radius of a graph G on n vertices without a subgraph
isomorphic to a given graph F? Researches of the spectral Turán type extremal prob-
lem have drawn increasingly extensive interest (for example, see [16, 2, 15, 23, 24, 25]).
Nikiforov [17] showed that if G is a Kr+1-free graph on n vertices, then ρ(G) ! ρ(Tn,r),
with equality if and only if G = Tn,r. Cioabă et al. [8] proved that the spectral extremal
graphs for Fk belong to Ex(n, Fk), where Fk is the graph consisting of k triangles which
intersect in exactly one common vertex. The family Ex(n, Fk) was uniquely determined
for sufficiently large n by Zhai, Liu and Xue [26]. Desai et al. [9] generalized the result of
[8] to Fk,r, where Fk,r is the graph consisting of k copies of Kr which intersect in a single
vertex. Cioabă et al. [7] investigated the largest spectral radius of an n-vertex graph
that does not contain the odd-wheel graph W2k+1. Moreover, they raised the following
conjecture.

Conjecture 2 ([7]). Let F be any graph such that the graphs in Ex(n, F ) are Turán
graphs plus O(1) edges. Then for sufficiently large n, a graph attaining the maximum
spectral radius among all F -free graphs on n vertices is a member of Ex(n, F ).

The results of Nikiforov [17], Cioabă et al. [8], Desai et al. [9] and Li et al. [13] tell
us that Conjecture 2 holds for Kr+1, Fk, Fk,r and Hs,k, where Hs,k is the graph defined
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by intersecting s triangles and k odd cycles of length at least 5 in exactly one common
vertex. Recently, Wang et al. [22] proved Conjecture 2 completely.

In this paper, we shall prove the following theorem.

Theorem 3. For k " 2, r " 2, and sufficiently large n. Suppose that G has the maximum
spectral radius among all kKr+1-free graphs on n vertices, then G is isomorphic to Kk−1∨
Tn−k+1,r.

2 Preliminaries

Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G) and edge set
E(G). For a vertex v ∈ V (G), N(v) is the set of neighbors of v in G. The degree d(v)
of v is |N(v)|, and the minimum and maximum degrees are denoted by δ(G) and ∆(G),
respectively. We denote by e(G) the number of edges in G. For V1, V2 ⊆ V (G), E(V1, V2)
denotes the set of edges of G between V1 and V2, and e(V1, V2) = |E(V1, V2)|. For any
S ⊆ V (G), we write N(S) = ∪u∈SN(u), dS(v) = |NS(v)| = |N(v) ∩ S|. Denote by G \ S
the graph obtained from G by deleting all vertices in S and their incident edges. G[S]
denotes the graph induced by S whose vertex set is S and whose edge set consists of all
edges of G which have both ends in S. A set M of disjoint edges of G is called a matching
in G. The matching number, denoted by ν(G), is the maximum cardinality of a matching
in G. We call a matching with k edges a k-matching, denoted by Mk. For a matching M
of G, each vertex incident with an edge of M is said to be covered by M .

The adjacent matrix of G is A(G) = (aij)n×n with aij = 1 if ij ∈ E(G), and aij = 0
otherwise. The spectral radius of G is the largest eigenvalue of A(G), denoted by ρ(G).
For a connected graph G on n vertices, let x = (x1, . . . , xn)

T be an eigenvector of A(G)
corresponding to ρ(G). Then x is a positive real vector, and

ρ(G)xi =
"

ij∈E(G)

xj, for any i ∈ [n]. (1)

Another useful result concerns the Rayleigh quotient:

ρ(G) = max
x∈Rn

+

xTA(G)x

xTx
= max

x∈Rn
+

2
!

ij∈E(G) xixj

xTx
. (2)

The following spectral version of Stability Theorem was given by Nikiforov [18].

Theorem 4 ([18]). Let r " 2, 1/ lnn < c < r−8(r+21)(r+1), 0 < ε < 2−36r−24 and G be a
graph on n vertices. If ρ(G) > (1− 1

r
− ε)n, then one of the following statements holds:

(a) G contains a Kr+1(⌊c lnn⌋, . . . , ⌊c lnn⌋, ⌈n1−
√
c⌉);

(b) G differs from Tn,r in fewer than (ε1/4 + c1/(8r+8))n2 edges.

From the above theorem, we can get the following result.
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Lemma 5 ([9]). Let F be a graph with chromatic number χ(F ) = r + 1. For every
ε > 0, there exist δ > 0 and n0 such that if G is an F -free graph on n " n0 vertices with
ρ(G) " (1− 1

r
− δ)n, then G can be obtained from Tn,r by adding and deleting at most εn2

edges.

Let G be a simple graph with matching number ν(G) and maximum degree ∆(G).
For two given integers ν and ∆, define f(ν,∆) = max{e(G) : ν(G) ! ν,∆(G) ! ∆}. In
1976, Chvátal and Hanson [6] obtained the following result.

Lemma 6 ([6]). For every two integers ν " 1 and ∆ " 1, we have

f(ν,∆) = ∆ν +

#
∆

2

$#
ν

⌈∆/2⌉

$
! ∆ν + ν.

The following lemma was given in [8].

Lemma 7 ([8]). Let V1, . . . , Vn be n finite sets. Then

|V1 ∩ · · · ∩ Vn| "
n"

i=1

|Vi|− (n− 1)|
n%

i=1

Vi|.

3 Proof of Theorem 3

In this section we shall give a proof of Theorem 3. Suppose that G has the maximum
spectral radius among all kKr+1-free graphs on n vertices, then we will prove G is isomor-
phic to Kk−1 ∨ Tn−k+1,r for sufficiently large n. Clearly, G is connected. Let ρ(G) be the
spectral radius of G, x be a positive eigenvector of ρ(G) with max{xi : i ∈ V (G)} = 1.
Without loss of generality, we assume xz = 1.

Lemma 8. Let G be a kKr+1-free graph on n vertices with maximum spectral radius.
Then

ρ(G) " r − 1

r
n+

2(k − 1)

r
− 1

n

&
(k − 1)(r + k − 1)

r
+

r

2

'
.

Proof. Let H = Kk−1 ∨ Tn−k+1,r. Since Kk−1 ∨ Tn−k+1,r is the unique extremal graph for
kKr+1, then

ex(n, kKr+1) = e(Tn−k+1,r) + (k − 1)(n− k + 1) +

&
k − 1

2

'

" e(Tn,r) +
k − 1

r
n− (k − 1)(r + k − 1)

2r
− r

8
. (3)

According to (2) and (3),we have

ρ(G) " ρ(H) " 1TA(H)1

1T1
=

2ex(n, kKr+1)

n
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" 2

n

&
e(Tn,r) +

k − 1

r
n− (k − 1)(r + k − 1)

2r
− r

8

'

" r − 1

r
n+

2(k − 1)

r
− 1

n

&
(k − 1)(r + k − 1)

r
+

r

2

'
.

Lemma 9. Let G be a kKr+1-free graph on n vertices with maximum spectral radius. For
every ε > 0, there is an integer n0 such that if n " n0, then

e(G) " e(Tn,r)− εn2.

Furthermore, G has a partition V (G) = V1 ∪ · · · ∪ Vr such that the number of crossing
edges of G (i.e.

!
1!i<j!r e(Vi, Vj)) attains the maximum, and

r"

i=1

e(Vi) ! εn2,

and for any i ∈ [r]
n

r
− 3

√
εn < |Vi| <

n

r
+ 3

√
εn.

Proof. Since G is kKr+1-free, by Lemmas 5 and 8, for sufficiently large n, there exists a
partition of V (G) = U1 ∪ · · · ∪ Ur such that e(G) " e(Tn,r)− εn2,

!r
i=1 e(Ui) ! εn2, and

⌊n
r
⌋ ! |Ui| ! ⌈n

r
⌉ for each i ∈ [r]. Therefore, G has a partition V (G) = V1 ∪ . . . ∪ Vr such

that the number of crossing edges of G attains the maximum, and

r"

i=1

e(Vi) !
r"

i=1

e(Ui) ! εn2.

Let a = max
())|Vj|− n

r

)) , j ∈ [r]
*
. Without loss of generality, we may assume that))|V1|− n

r

)) = a. Then

e(G) !
"

1!i<j!r

|Vi||Vj|+
r"

i=1

e(Vi)

! |V1|(n− |V1|) +
"

2!i<j!r

|Vi||Vj|+ εn2

= |V1|(n− |V1|) +
1

2

+
(

r"

j=2

|Vj|)2 −
r"

j=2

|Vj|2
,
+ εn2

! |V1|(n− |V1|) +
1

2
(n− |V1|)2 −

1

2(r − 1)
(n− |V1|)2 + εn2

< − r

2(r − 1)
a2 +

r − 1

2r
n2 + εn2,
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where the last second inequality holds by Hölder’s inequality, and the last inequality holds
since

))|V1|− n
r

)) = a. On the other hand, since e(G) " e(Tn,r)− εn2, we have

e(G) " e(Tn,r)− εn2 " r − 1

2r
n2 − r

8
− εn2 >

r − 1

2r
n2 − 2εn2.

Therefore, r
2(r−1)

a2 < 3εn2, which implies that a <
-

6(r−1)ε
r

n2 < 3
√
εn. The proof is

completed.

Lemma 10. Suppose ε and θ are two sufficiently small constants with θ < 1
20kr4(r+1)

and

ε ! θ2. Let
W := ∪r

i=1{v ∈ Vi : dVi
(v) " 2θn}.

Then |W | ! θn.

Proof. For all i ∈ [r], let Wi = W ∩ Vi. Then

2e(Vi) =
"

u∈Vi

dVi
(u) "

"

u∈Wi

dVi
(u) " 2|Wi|θn.

Combining with Lemma 9, we have

εn2 "
r"

i=1

e(Vi) " |W |θn,

which implies that |W | ! εn
θ
! θn.

Lemma 11. Suppose ε1 is a sufficiently small constant with
√
ε < ε1 ≪ θ. Let

L := {v ∈ V (G) : d(v) ! (1− 1

r
− ε1)n}.

Then |L| ! ε2n, where ε2 ≪ ε1 is a sufficiently small constant satisfying ε−ε1ε2+
r−1
2r

ε22 <
0.

Proof. Suppose to the contrary that |L| > ε2n, then there exists L′ ⊆ L with |L′| = ⌊ε2n⌋.
Therefore,

e(G \ L′) " e(G)−
"

v∈L′

d(v)

" e(Tn,r)− εn2 − ε2n(1−
1

r
− ε1)n

= e(Tn,r)− εn2 − r − 1

r
ε2n

2 + ε1ε2n
2

>
r − 1

2r
(n− ⌊ε2n⌋)2 +

k − 1

r
(n− ⌊ε2n⌋)−

(k − 1)(k + r − 1)

2r
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" e(Tn′,r) +
(k − 1)n′

r
− (k − 1)(k + r − 1)

2r

= ex(n′, kKr+1),

where n′ = n− ⌊ε2n⌋. Since e(G \ L′) > ex(n− |L′|, kKr+1), G \ L′ contains a kKr+1 as
subgraph. This contradicts the fact that G is kKr+1-free.

Lemma 12. For any i ∈ [r], if uv is an edge of G[Vi \ (W ∪ L)], then G has k(r + 1)
copies of Kr+1 which have only one common edge uv.

Proof. For any i ∈ [r], and any vertex w ∈ Vi \ (W ∪ L), we have d(w) > (1 − 1
r
− ε1)n,

dVi
(w) < 2θn. Then for any j ∈ [r] and j ∕= i,

dVj
(w) " d(w)− dVi

(w)− (r − 2)(
n

r
+ 3

√
εn)

> (1− 1

r
− ε1)n− 2θn− (r − 2)(

n

r
+ 3

√
εn)

>
n

r
− 3(r − 1)θn.

Without loss of generality, let uv be an edge of G[V1 \ (W ∪L)]. We consider the common
neighbors of u, v in V2 \ (W ∪ L). Combining with Lemma 7, we have

|NV2(u) ∩NV2(v) \ (W ∪ L)|

" dV2(u) + dV2(v)− |V2|− |W |− |L|

> 2(
n

r
− 3(r − 1)θn)− (

n

r
+ 3

√
εn)− θn− ε2n

>
n

r
− 6rθn

> k(r + 1).

So there exist k(r + 1) vertices u2,1, . . . , u2,k(r+1) in V2 \ (W ∪ L) such that the subgraph
induced by two partitions {u, v} and {u2,1, . . . , u2,k(r+1)} is a complete bipartite graph.
For an integer s with 2 ! s ! r−1, suppose that there are vertices us,1, . . . , us,k(r+1) ∈ Vs\
(W ∪ L) such that {u, v}, {u2,1, . . . , u2,k(r+1)}, . . . , {us,1, . . . , us,k(r+1)} induce a complete
s-partite subgraph. We next consider the common neighbors of the above (s−1)k(r+1)+2
vertices in Vs+1 \ (W ∪ L). By Lemma 7, we have

|NVs+1(u) ∩NVs+1(v) ∩ (∩i∈[s]\{1},j∈[k(r+1)]NVs+1(ui,j)) \ (W ∪ L)|

" dVs+1(u) + dVs+1(v) +
s"

i=2

k(r+1)"

j=1

dVs+1(ui,j)− ((s− 1)k(r + 1) + 1)|Vs+1|− |W |− |L|

> ((s− 1)k(r + 1) + 2)
+n
r
− 3(r − 1)θn

,
− ((s− 1)k(r + 1) + 1)

+n
r
+ 3

√
εn

,

−θn− ε2n
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>
n

r
− 12skr(r + 1)θn

> k(r + 1).

Then we can find k(r+1) vertices us+1,1, . . . , us+1,k(r+1) ∈ Vs+1 \ (W ∪L), which together
with {u, v}, {u2,1, . . . , u2,k(r+1)}, . . . , {us,1, . . . , us,k(r+1)} forms a complete (s+ 1)-partite
subgraph in G. Therefore, for every 2 ! i ! r, there exist k(r+1) vertices in Vi \ (W ∪L)
such that {u2,1, . . . , u2,k(r+1)}, . . . , {ur,1, . . . , ur,k(r+1)} induce a complete (r − 1)-partite
subgraph in G, and u, v are adjacent to all the above k(r − 1)(r + 1) vertices. Hence G
has k(r + 1) copies of Kr+1 which have only one common edge uv.

Lemma 13. For each i ∈ [r], there exists an independent set Ii ⊆ Vi \ (W ∪L) such that
|Ii| " |Vi \ (W ∪ L)|− 2(k − 1).

Proof. We first claim that G[Vi \ (W ∪ L)] is Mk-free for any i ∈ [r]. Suppose to the
contrary that there exists i0 ∈ [r] such that G[Vi0 \ (W ∪L)] contains a copy of Mk. Then
we can find a kKr+1 by Lemma 12, and this contradicts the fact that G is kKr+1-free.
For every i ∈ [r], let M i be a maximum matching of G[Vi \ (W ∪ L)], and Bi be the set
of vertices covered by M i. Since G[Vi \ (W ∪ L)] is Mk-free, |Bi| ! 2(k − 1). Therefore,
there exists an independent set Ii ⊆ Vi \ (W ∪ L) by deleting all vertices of Bi, and
|Ii| " |Vi \ (W ∪ L)|− 2(k − 1).

Lemma 14. For any i ∈ [r] and any v ∈ Vi \ (W ∪ L), dVi\(W∪L)(v) < k(r + 1).

Proof. We will prove this lemma by contradiction. Without loss of generality, suppose
that there exists a vertex u ∈ V1 \ (W ∪ L) such that dV1\(W∪L)(u) " k(r + 1). Let G′ be
the graph with V (G′) = V (G) and E(G′) = E(G) ∪ {uw : uw /∈ E(G)}. It follows from
u ∈ V1 \ (W ∪ L) that E(G) ⊂ E(G′). By the maximum of ρ(G), G′ contains kKr+1, say
F1, as a subgraph. From the construction of G′, we see that u ∈ V (F1), and there is a
(k− 1)Kr+1, say F2, in F1 \ {u}. Obviously, F2 ⊆ G. Thus F2 is a (k− 1)Kr+1 copy of G,
and u /∈ V (F2). Since dV1\(W∪L)(u) " k(r+1), there exists a vertex v ∈ NV1\(W∪L)(u) such
that v /∈ V (F2). Then we can find k(r + 1) copies of Kr+1 which have only one common
edge uv by Lemma 12. Thus, we can find a Kr+1, say F3, such that V (F3) ∩ V (F2) = ∅.
Thus F2 ∪ F3 is a kKr+1 copy of G, which contradicts the fact that G is kKr+1-free.

Lemma 15. For any u ∈ W \L, G contains k(r+1) copies of Kr+1 which intersect only
in u.

Proof. For any u ∈ W \ L, without loss of generality, we may assume that u ∈ V1.
Combining with Lemmas 10 and 11, we have d(u) > (1− 1

r
− ε1)n, and

dV1\(W∪L)(u) " dV1(u)− |W ∪ L|
" 2θn− θn− ε2n

> k(r + 1).
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Let u1,1, . . . , u1,k(r+1) be the neighbors of u in V1 \ (W ∪L). Then for every i ∈ [k(r+1)],
we have d(u1,i) > (1− 1

r
− ε1)n, dV1(u1,i) < 2θn, and

dV2(u1,i) " d(u1,i)− dV1(u1,i)− (r − 2)(
n

r
+ 3

√
εn)

>
n

r
− ε1n− 2θn− 3(r − 2)

√
εn

>
n

r
− 3(r − 1)θn. (4)

Since V (G) = V1 ∪ · · ·∪ Vr is the vertex partition that maximizes the number of crossing
edges of G, we have dV1(u) ! 1

r
d(u). Therefore

dV2(u) " d(u)− dV1(u)− (r − 2)(
n

r
+ 3

√
εn)

>
r − 1

r
(1− 1

r
− ε1)n− (r − 2)(

n

r
+ 3

√
εn)

>
n

r2
− ε1n− 3(r − 2)

√
εn

>
n

r2
− (3r + 5)ε1n. (5)

We consider the common neighbors of u, u1,1, . . . , u1,k(r+1) in V2 \ (W ∪L). Combining
with Lemma 7, we have

|NV2(u) ∩ (∩i∈[k(r+1)]NV2(u1,i)) \ (W ∪ L)|

" dV2(u) +

k(r+1)"

i=1

dV2(u1,i)− k(r + 1)|V2|− |W |− |L|

>
n

r2
− (3r + 5)ε1n+ k(r + 1)(

n

r
− 3(r − 1)θn)− k(r + 1)(

n

r
+ 3

√
εn)− θn− ε2n

>
n

r2
− 16kr(r + 1)θn

> k(r + 1).

Let u2,1, . . . , u2,k(r+1) be the common neighbors of u, u1,1, . . . , u1,k(r+1) in V2 \ (W ∪ L).
For an integer 2 ! s ! r − 1, suppose that us,1, . . . , us,k(r+1) are the common neighbors
of {u, ui,1, . . . , ui,k(r+1) : 1 ! i ! s − 1} in Vs \ (W ∪ L). We next consider the common
neighbors of {u, ui,1, . . . , ui,k(r+1) : 1 ! i ! s} in Vs+1 \ (W ∪L). Using the similar method
as in the proof of (4) and (5), for every i ∈ [s] and j ∈ [k(r + 1)], we have

dVs+1(ui,j) >
n

r
− 3(r − 1)θn,

and
dVs+1(u) >

n

r2
− (3r + 5)ε1n.
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By Lemma 7, we have

|NVs+1(u) ∩ (∩i∈[s],j∈[k(r+1)]NVs+1(ui,j)) \ (W ∪ L)|

" dVs+1(u) +
s"

i=1

k(r+1)"

j=1

dVs+1(ui,j)− sk(r + 1)|Vs+1|− |W |− |L|

>
n

r2
− (3r + 5)ε1n+ sk(r + 1)

+n
r
− 3(r − 1)θn

,
− sk(r + 1)

+n
r
+ 3

√
εn

,

−θn− ε2n

>
n

r2
− 16skr(r + 1)θn

> k(r + 1).

Let us+1,1, . . . , us+1,k(r+1) be the common neighbors of {u, ui,1, . . . , ui,k(r+1) : 1 ! i ! s}
in Vs+1 \ (W ∪ L). Therefore, for every i ∈ [r], there exist k(r + 1) vertices, denoted
by {ui,1, . . . , ui,k(r+1)}, in Vi \ (W ∪ L) such that {u1,1, . . . , u1,k(r+1)}, {u2,1, . . . , u2,k(r+1)},
. . . , {ur,1, . . . , ur,k(r+1)} form a complete r-partite subgraph in G, and u is adjacent to the
above kr(r + 1) vertices. Hence we can find k(r + 1) copies of Kr+1 in G which intersect
only in u.

Lemma 16. |W \ L| ! k − 1.

Proof. Suppose to the contrary that |W \ L| " k. By Lemma 15, for any u ∈ W \ L, we
can find k(r+1) copies of Kr+1 in G which intersect only in u. Therefore, we can find at
least k disjoint Kr+1 in G. This is a contradiction to the fact that G is kKr+1-free.

Lemma 17. L = ∅.

Proof. Let xv0 = max{xv : v ∈ V (G) \W}. Recall that xz = max{xv : v ∈ V (G)} = 1,
then

ρ(G) = ρ(G)xz ! |W |+ (n− |W |)xv0 .

By Lemmas 11 and 16, we have

|W | = |W ∩ L|+ |W \ L| ! |L|+ k − 1 ! ε2n+ k − 1. (6)

Combining with Lemma 8, we have

xv0 "
ρ(G)− |W |
n− |W | " ρ(G)− |W |

n
" 1− 1

r
− ε2 −

O(1)

n
> 1− 2

r
. (7)

Therefore, we have

ρ(G)xv0 =
"

vv0∈E(G)

xv =
"

v∈W,vv0∈E(G)

xv +
"

v/∈W,vv0∈E(G)

xv

! |W |+ (d(v0)− |W |)xv0 ,
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which implies that

d(v0) " ρ(G) + |W |− |W |
xv0

" ρ(G)− 2|W |
r − 2

" r − 1

r
n+

2(k − 1)

r
− 1

n

&
(k − 1)(r + k − 1)

r
+

r

2

'
− 2ε2n

r − 2
− 2(k − 1)

r − 2

> (1− 1

r
− ε1)n,

where the last inequality holds as ε2 ≪ ε1. Thus we have v0 /∈ L, that is v0 ∈ V (G) \
(W ∪ L). Without loss of generality, we assume that v0 ∈ V1 \ (W ∪ L). Combining with
Lemmas 13 and 14, we have

ρ(G)xv0 =
"

v∈W∪L,
vv0∈E(G)

xv +
"

v∈V1\(W∪L),
vv0∈E(G)

xv +
"

v∈(∪r
i=2Vi)\(W∪L),
vv0∈E(G)

xv

< |W |+ |L|xv0 + k(r + 1)xv0 +
"

v∈∪r
i=2Ii,

vv0∈E(G)

xv +
"

v∈(∪r
i=2Vi\Ii)\(W∪L),
vv0∈E(G)

xv

! |W |+ |L|xv0 + k(r + 1)xv0 + 2(k − 1)(r − 1)xv0 +
"

v∈∪r
i=2Ii

xv,

which implies that

"

v∈∪r
i=2Ii

xv " (ρ(G)− |L|− k(3r − 1) + 2(r − 1))xv0 − |W |. (8)

Next we will prove L = ∅. Suppose to the contrary that there is a vertex u0 ∈ L,
then d(u0) ! (1 − 1

r
− ε1)n. Let G′ be the graph with V (G′) = V (G) and E(G′) =

E(G \ {u0}) ∪ {wu0 : w ∈ ∪r
i=2Ii}. It is obvious that G′ is kKr+1-free. Combining with

Lemmas 8, 11, (6), (7) and (8), we have

ρ(G′)−ρ(G) " xT (A(G′)− A(G))x

xTx
=

2xu0

xTx

.

/
"

w∈∪r
i=2Ii

xw −
"

uu0∈E(G)

xu

0

1

" 2xu0

xTx

+
(ρ(G)− |L|− k(3r − 1) + 2(r − 1))xv0 − 2|W |− (d(u0)− |W |)xv0

,

=
2xu0

xTx

+
(ρ(G)− |L|− k(3r − 1) + 2(r − 1)− d(u0) + |W |)xv0− 2|W |

,

" 2xu0

xTx

+r − 2

r
(ε1n− ε2n−O(1))− 2|W |

,

the electronic journal of combinatorics 30(1) (2023), #P1.20 11



" 2xu0

xTx

+r − 2

r
(ε1n− ε2n−O(1))− 2(ε2n+ k − 1)

,
> 0

where the last inequality holds since ε2 ≪ ε1. This contradicts the fact that G has the
largest spectral radius over all kKr+1-free graphs, so L must be empty.

Lemma 18. For any v ∈ V (G), xv " 1− 1
r−1

.

Proof. Since L = ∅, then |W | = |W \ L| ! k − 1 by Lemma 16. Let xv0 = max{xv : v ∈
V (G) \W}. Recall that xz = max{xv : v ∈ V (G)} = 1, then

ρ(G) = ρ(G)xz ! |W |+ (n− |W |)xv0 .

Combining with Lemma 8, we have

xv0 "
ρ(G)− |W |
n− |W | " ρ(G)− |W |

n
" 1− 1

r
− O(1)

n
. (9)

Using the similar method as in the proof of (8), we have

"

v∈∪r
i=2Ii

xv " (ρ(G)− k(r + 3) + 2)xv0 − (k − 1).

Suppose to the contrary that there exists u ∈ V (G) such that xu < 1 − 1
r−1

. Let G′ be
the graph with V (G′) = V (G) and E(G′) = E(G\{u})∪{uw : w ∈ ∪r

i=2Ii}. It is obvious
that G′ is kKr+1-free. Therefore, we have

ρ(G′)−ρ(G) " xT (A(G′)− A(G))x

xTx
=

2xu

xTx

.

/
"

w∈∪r
i=2Ii

xw −
"

uv∈E(G)

xv

0

1

" 2xu

xTx

+
(ρ(G)− k(r + 3) + 2)xv0 − (k − 1)− ρ(G)xu

,

>
2xu

xTx

+
(ρ(G)− k(r + 3) + 2)(1− 1

r
− O(1)

n
)− (k − 1)− ρ(G)(1− 1

r − 1
)
,

>
2xu

xTx

+ n

r2
−O(1)

,
> 0.

This contradicts the fact that G has the largest spectral radius over all kKr+1-free graphs.

Lemma 19. |W | = k − 1, and Vi \W is an independent set for any i ∈ [r].

Proof. Let |W | = s. Then s ! k − 1 by Lemmas 16 and 17.

Claim 20. ν(∪r
i=1G[Vi \W ]) ! k − 1− s.
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Proof of Claim 20. Otherwise, ν(∪r
i=1G[Vi \W ]) " k − s. By Lemma 12, we can find a

(k − s)Kr+1, denoted by F1. Since |W | = s, by Lemma 15, we can find a sKr+1, denoted
by F2, such that V (F1) ∩ V (F2) = ∅. Therefore, F1 ∪ F2 is a copy of kKr+1 in G, a
contradiction.

Suppose to the contrary that s < k− 1. By Lemmas 14 and 17, we have ∆(∪r
i=1G[Vi \

W ]) < k(r + 1). Combining with Lemma 6, we have

e(∪r
i=1G[Vi \W ]) ! f(ν(∪r

i=1G[Vi \W ]),∆(∪r
i=1G[Vi \W ]))

! f(k − s− 1, k(r + 1))

! k(k − s)(r + 1).

Take S ⊆ V1 \ W with |S| = k − s − 1. Let G′ be the graph with V (G′) = V (G) and
E(G′) = E(G) \ {uv : uv ∈ ∪r

i=1E(G[Vi \ W ])} ∪ {uv : u ∈ S, v ∈ (V1 \ W ) \ S}. It is
obvious that G′ is kKr+1-free. Therefore,

ρ(G′)− ρ(G)

" xT (A(G′)− A(G))x

xTx

=
2

xTx

.

/
"

ij∈E(G′)

xixj −
"

ij∈E(G)

xixj

0

1

" 2

xTx

&
(k − s− 1)(|V1|− |W |− k + s+ 1)(1− 1

r − 1
)2 − k(k − s)(r + 1)

'

" 2

xTx

+
(k − s− 1)(

n

r
− 3

√
εn− k + 1)(1− 1

r − 1
)2 − k(k − s)(r + 1)

,

> 0.

This contradicts the fact that G has the largest spectral radius over all kKr+1-free graphs.
Therefore, |W | = s = k − 1. Then it follows from the claim that ν(∪r

i=1G[Vi \ W ]) !
k − 1− s = 0 for any i ∈ [r]. So Vi \W is an independent set.

Lemma 21. For any u ∈ W , d(u) = n− 1.

Proof. Suppose to the contrary that there exists u ∈ W such that d(u) < n − 1. Let
v ∈ V (G) be a vertex such that uv /∈ E(G). Let G′ be the graph with V (G′) = V (G)
and E(G′) = E(G) ∪ {uv}. We claim that G′ is kKr+1-free. Otherwise, G′ contains
a copy of kKr+1, say F1, as a subgraph, and uv ∈ E(F1). Let F2 be the Kr+1 of F1

which contains uv. Then G contains a (k − 1)Kr+1, denoted by F3, as a subgraph, with
V (F2) ∩ V (F3) = ∅ and u /∈ V (F3). Since u ∈ W , by Lemmas 15 and 17, we can find a
Kr+1, denoted by F4, which contains u and V (F4)∩V (F3) = ∅. Thus F3 ∪F4 is a copy of
kKr+1 in G, a contradiction. Therefore, G′ is kKr+1-free. By the construction of G′, we
have ρ(G′) > ρ(G), which contradicts the assumption that G has the maximum spectral
radius among all kKr+1-free graphs on n vertices.
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Proof of Theorem 3. Now we prove that G is isomorphic to Kk−1 ∨ Tn−k+1,r. For any
i ∈ [r], let |Vi \ W | = ni. By Lemmas 19 and 21, there exists an r-partite graph H
with classes of size n1, n2, . . . , nr such that G ∼= Kk−1 ∨ H. By the maximum of ρ(G),
H ∼= Kr(n1, n2, . . . , nr). It suffices to show that |ni − nj| ! 1 for any 1 ! i < j ! r.
Suppose n1 " n2 " . . . " nr. We prove the assertion by contradiction. Assume that
there exist i0, j0 with 1 ! i0 < j0 ! r such that ni0 − nj0 " 2. Let H ′ = Kr(n1, . . . , ni0 −
1, . . . , nj0 + 1, . . . , nr), and G′ = Kk−1 ∨H ′.

Recall that x is the eigenvector of G corresponding to ρ(G), by the symmetry we may
assume x = (x1, . . . , x12 34 5

n1

, x2, . . . , x22 34 5
n2

, . . . , xr, . . . , xr2 34 5
nr

, xr+1, . . . , xr+12 34 5
k−1

)T. Thus by (1), we have

ρ(G)xi =
r"

j=1

njxj − nixi + (k − 1)xr+1, for any i ∈ [r], (10)

and

ρ(G)xr+1 =
r"

j=1

njxj + (k − 2)xr+1. (11)

Combining (10) and (11), we have xi =
ρ(G)+1
ρ(G)+ni

xr+1 for any i ∈ [r], which implies that

xr+1 = max{xv : v ∈ V (G)}. Recall that max{xv : v ∈ V (G)} = 1, then xr+1 = 1, and

xi =
ρ(G)+1
ρ(G)+ni

for any i ∈ [r]. Let ui0 ∈ Vi0 \W be a fixed vertex. Then G′ can be obtained

from G by deleting all edges between ui0 and Vj0 \W , and adding all edges between ui0

and Vi0 \ (W ∪ {ui0}). According to (2), we deduce that

ρ(G′)− ρ(G) " xT(A(G′)− A(G))x

xTx

=
2

xTx

6
(ni0 − 1)x2

i0
− nj0xi0xj0

7

=
2xi0

xTx

&
(ni0 − 1)

ρ(G) + 1

ρ(G) + ni0

− nj0

ρ(G) + 1

ρ(G) + nj0

'

=
2xi0

xTx

(ρ(G) + 1)(ni0ρ(G)− nj0ρ(G)− ρ(G)− nj0)

(ρ(G) + ni0)(ρ(G) + nj0)

" 2xi0

xTx

(ρ(G) + 1)(ρ(G)− nj0)

(ρ(G) + ni0)(ρ(G) + nj0)
> 0,

where the last second inequality holds as ni0 −nj0 " 2, and the last inequality holds since

ρ(G) " r−1
r
n+ 2(k−1)

r
− 1

n

+
(k−1)(r+k−1)

r
+ r

2

,
, and nj0 = |Vj0\W | ! n

r
+3

√
εn−(k−1). This

contradicts the assumption that G has the maximum spectral radius among all n-vertex
kKr+1-free graphs. Therefore, G is isomorphic to Kk−1 ∨ Tn−k+1,r.
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