Spectral extremal graphs for disjoint cliques

Zhenyu Ni*
Department of Mathematics
Hainan University
Haikou 570228, P.R. China
1051466287@qq.com
Jing Wang
College of Mathematics and Information Science
Henan Normal University
Xinxiang 453007, P.R. China
wj517062214@163.com
\section*{Liying Kang ${ }^{\dagger}$}
Department of Mathematics
Shanghai University
Shanghai 200444, PR China
lykang@shu.edu.cn

Submitted: Sep 12, 2022; Accepted: Dec 21, 2022; Published: Jan 27, 2023
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let $k K_{r+1}$ be the graph consisting of k vertex-disjoint copies of the complete graph K_{r+1}. Moon [Canad. J. Math. 20 (1968) 95-102] and Simonovits [Theory of Graphs (Proc. colloq., Tihany, 1996)] independently showed that if n is sufficiently large, then the join of a complete graph K_{k-1} and an r-partite Turán graph $T_{n-k+1, r}$ is the unique extremal graph for $k K_{r+1}$. In this paper we consider the graph which has the maximum spectral radius among all graphs without k disjoint cliques. We show that if G attains the maximum spectral radius over all n-vertex $k K_{r+1}$-free graphs for sufficiently large n, then G is isomorphic to the join of a complete graph K_{k-1} and an r-partite Turán graph $T_{n-k+1, r}$. Mathematics Subject Classifications: 05C50; 05C35

[^0]
1 Introduction

In this paper, we consider only simple and undirected graphs. For two vertex disjoint graphs G, H, the union of graph G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. In particular, we write $k G$ the vertex-disjoint union of k copies of G. The join of G and H, denoted by $G \vee H$, is the graph obtained from $G \cup H$ by adding edges joining every vertex of G to every vertex of H. For two graphs G and F, G is called F-free if it does not contain a copy of F as a subgraph. For a fixed graph F, the Turán type extremal problem is to determine the maximum number of edges among all n-vertex F-free graphs, where the maximum number of edges is called the Turán number, denoted by ex (n, F). An F-free graph on n vertices is called an extremal graph for F if it has ex (n, F) edges, and the set of all extremal graphs is denoted by $\operatorname{Ex}(n, F)$.

Let $K_{r}\left(n_{1}, \ldots, n_{r}\right)$ be the complete r-partite graph with classes of sizes n_{1}, \ldots, n_{r}. If $\sum_{i=1}^{r} n_{i}=n$ and $\left|n_{i}-n_{j}\right| \leqslant 1$ for any $1 \leqslant i<j \leqslant r$, then $K_{r}\left(n_{1}, \ldots, n_{r}\right)$ is called an r-partite Turán graph, denoted by $T_{n, r}$. The well-known Turán Theorem states that the extremal graph corresponding to Turán number ex $\left(n, K_{r+1}\right)$ is $T_{n, r}$, i.e. $\operatorname{ex}\left(n, K_{r+1}\right)=$ $\left|E\left(T_{n, r}\right)\right|$. There are lots of researches on Turán type extremal problems (such as [3, $5,10,21]$). Simonovits [20] and Moon [14] showed that if n is sufficiently large, then $K_{k-1} \vee T_{n-k+1, r}$ is the unique extremal graph for $k K_{r+1}$.

Theorem 1 ([20,14]). Let G be a graph of sufficiently large order n that does not contain $k K_{r+1}$ as a subgraph. Then $e(G) \leqslant e\left(K_{k-1} \vee T_{n-k+1, r}\right)$, and $K_{k-1} \vee T_{n-k+1, r}$ is the unique extremal graph for $k K_{r+1}$.

The following spectral version of the Turán type problem was proposed in Nikiforov [19]: What is the maximum spectral radius of a graph G on n vertices without a subgraph isomorphic to a given graph F ? Researches of the spectral Turán type extremal problem have drawn increasingly extensive interest (for example, see [16, 2, 15, 23, 24, 25]). Nikiforov [17] showed that if G is a K_{r+1}-free graph on n vertices, then $\rho(G) \leqslant \rho\left(T_{n, r}\right)$, with equality if and only if $G=T_{n, r}$. Cioabă et al. [8] proved that the spectral extremal graphs for F_{k} belong to $\operatorname{Ex}\left(n, F_{k}\right)$, where F_{k} is the graph consisting of k triangles which intersect in exactly one common vertex. The family $\operatorname{Ex}\left(n, F_{k}\right)$ was uniquely determined for sufficiently large n by Zhai, Liu and Xue [26]. Desai et al. [9] generalized the result of [8] to $F_{k, r}$, where $F_{k, r}$ is the graph consisting of k copies of K_{r} which intersect in a single vertex. Cioabă et al. [7] investigated the largest spectral radius of an n-vertex graph that does not contain the odd-wheel graph $W_{2 k+1}$. Moreover, they raised the following conjecture.

Conjecture $2([7])$. Let F be any graph such that the graphs in $\operatorname{Ex}(n, F)$ are Turán graphs plus $O(1)$ edges. Then for sufficiently large n, a graph attaining the maximum spectral radius among all F-free graphs on n vertices is a member of $\operatorname{Ex}(n, F)$.

The results of Nikiforov [17], Cioabă et al. [8], Desai et al. [9] and Li et al. [13] tell us that Conjecture 2 holds for $K_{r+1}, F_{k}, F_{k, r}$ and $H_{s, k}$, where $H_{s, k}$ is the graph defined
by intersecting s triangles and k odd cycles of length at least 5 in exactly one common vertex. Recently, Wang et al. [22] proved Conjecture 2 completely.

In this paper, we shall prove the following theorem.
Theorem 3. For $k \geqslant 2, r \geqslant 2$, and sufficiently large n. Suppose that G has the maximum spectral radius among all $k K_{r+1}$-free graphs on n vertices, then G is isomorphic to $K_{k-1} \vee$ $T_{n-k+1, r}$.

2 Preliminaries

Let $G=(V(G), E(G))$ be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $v \in V(G), N(v)$ is the set of neighbors of v in G. The degree $d(v)$ of v is $|N(v)|$, and the minimum and maximum degrees are denoted by $\delta(G)$ and $\Delta(G)$, respectively. We denote by $e(G)$ the number of edges in G. For $V_{1}, V_{2} \subseteq V(G), E\left(V_{1}, V_{2}\right)$ denotes the set of edges of G between V_{1} and V_{2}, and $e\left(V_{1}, V_{2}\right)=\left|E\left(V_{1}, V_{2}\right)\right|$. For any $S \subseteq V(G)$, we write $N(S)=\cup_{u \in S} N(u), d_{S}(v)=\left|N_{S}(v)\right|=|N(v) \cap S|$. Denote by $G \backslash S$ the graph obtained from G by deleting all vertices in S and their incident edges. $G[S]$ denotes the graph induced by S whose vertex set is S and whose edge set consists of all edges of G which have both ends in S. A set M of disjoint edges of G is called a matching in G. The matching number, denoted by $\nu(G)$, is the maximum cardinality of a matching in G. We call a matching with k edges a k-matching, denoted by M_{k}. For a matching M of G, each vertex incident with an edge of M is said to be covered by M.

The adjacent matrix of G is $A(G)=\left(a_{i j}\right)_{n \times n}$ with $a_{i j}=1$ if $i j \in E(G)$, and $a_{i j}=0$ otherwise. The spectral radius of G is the largest eigenvalue of $A(G)$, denoted by $\rho(G)$. For a connected graph G on n vertices, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$ be an eigenvector of $A(G)$ corresponding to $\rho(G)$. Then \mathbf{x} is a positive real vector, and

$$
\begin{equation*}
\rho(G) x_{i}=\sum_{i j \in E(G)} x_{j}, \text { for any } i \in[n] . \tag{1}
\end{equation*}
$$

Another useful result concerns the Rayleigh quotient:

$$
\begin{equation*}
\rho(G)=\max _{\mathbf{x} \in \mathbb{R}_{+}^{n}} \frac{\mathbf{x}^{\mathrm{T}} A(G) \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}=\max _{\mathbf{x} \in \mathbb{R}_{+}^{n}} \frac{2 \sum_{i j \in E(G)} x_{i} x_{j}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \tag{2}
\end{equation*}
$$

The following spectral version of Stability Theorem was given by Nikiforov [18].
Theorem 4 ([18]). Let $r \geqslant 2,1 / \ln n<c<r^{-8(r+21)(r+1)}, 0<\varepsilon<2^{-36} r^{-24}$ and G be a graph on n vertices. If $\rho(G)>\left(1-\frac{1}{r}-\varepsilon\right) n$, then one of the following statements holds:
(a) G contains a $K_{r+1}\left(\lfloor c \ln n\rfloor, \ldots,\lfloor c \ln n\rfloor,\left\lceil n^{1-\sqrt{c}}\right\rceil\right)$;
(b) G differs from $T_{n, r}$ in fewer than $\left(\varepsilon^{1 / 4}+c^{1 /(8 r+8)}\right) n^{2}$ edges.

From the above theorem, we can get the following result.

Lemma 5 ([9]). Let F be a graph with chromatic number $\chi(F)=r+1$. For every $\varepsilon>0$, there exist $\delta>0$ and n_{0} such that if G is an F-free graph on $n \geqslant n_{0}$ vertices with $\rho(G) \geqslant\left(1-\frac{1}{r}-\delta\right) n$, then G can be obtained from $T_{n, r}$ by adding and deleting at most εn^{2} edges.

Let G be a simple graph with matching number $\nu(G)$ and maximum degree $\Delta(G)$. For two given integers ν and Δ, define $f(\nu, \Delta)=\max \{e(G): \nu(G) \leqslant \nu, \Delta(G) \leqslant \Delta\}$. In 1976, Chvátal and Hanson [6] obtained the following result.

Lemma 6 ([6]). For every two integers $\nu \geqslant 1$ and $\Delta \geqslant 1$, we have

$$
f(\nu, \Delta)=\Delta \nu+\left\lfloor\frac{\Delta}{2}\right\rfloor\left\lfloor\frac{\nu}{\lceil\Delta / 2\rceil}\right\rfloor \leqslant \Delta \nu+\nu .
$$

The following lemma was given in [8].
Lemma 7 ([8]). Let V_{1}, \ldots, V_{n} be n finite sets. Then

$$
\left|V_{1} \cap \cdots \cap V_{n}\right| \geqslant \sum_{i=1}^{n}\left|V_{i}\right|-(n-1)\left|\bigcup_{i=1}^{n} V_{i}\right| .
$$

3 Proof of Theorem 3

In this section we shall give a proof of Theorem 3. Suppose that G has the maximum spectral radius among all $k K_{r+1}$-free graphs on n vertices, then we will prove G is isomorphic to $K_{k-1} \vee T_{n-k+1, r}$ for sufficiently large n. Clearly, G is connected. Let $\rho(G)$ be the spectral radius of G, \mathbf{x} be a positive eigenvector of $\rho(G)$ with $\max \left\{x_{i}: i \in V(G)\right\}=1$. Without loss of generality, we assume $x_{z}=1$.

Lemma 8. Let G be a $k K_{r+1}$-free graph on n vertices with maximum spectral radius. Then

$$
\rho(G) \geqslant \frac{r-1}{r} n+\frac{2(k-1)}{r}-\frac{1}{n}\left(\frac{(k-1)(r+k-1)}{r}+\frac{r}{2}\right) .
$$

Proof. Let $H=K_{k-1} \vee T_{n-k+1, r}$. Since $K_{k-1} \vee T_{n-k+1, r}$ is the unique extremal graph for $k K_{r+1}$, then

$$
\begin{align*}
\operatorname{ex}\left(n, k K_{r+1}\right) & =e\left(T_{n-k+1, r}\right)+(k-1)(n-k+1)+\binom{k-1}{2} \\
& \geqslant e\left(T_{n, r}\right)+\frac{k-1}{r} n-\frac{(k-1)(r+k-1)}{2 r}-\frac{r}{8} . \tag{3}
\end{align*}
$$

According to (2) and (3), we have

$$
\rho(G) \geqslant \rho(H) \geqslant \frac{\mathbf{1}^{\mathrm{T}} A(H) \mathbf{1}}{\mathbf{1}^{\mathrm{T}} \mathbf{1}}=\frac{2 \operatorname{ex}\left(n, k K_{r+1}\right)}{n}
$$

$$
\begin{aligned}
& \geqslant \frac{2}{n}\left(e\left(T_{n, r}\right)+\frac{k-1}{r} n-\frac{(k-1)(r+k-1)}{2 r}-\frac{r}{8}\right) \\
& \geqslant \frac{r-1}{r} n+\frac{2(k-1)}{r}-\frac{1}{n}\left(\frac{(k-1)(r+k-1)}{r}+\frac{r}{2}\right) .
\end{aligned}
$$

Lemma 9. Let G be a $k K_{r+1}$-free graph on n vertices with maximum spectral radius. For every $\varepsilon>0$, there is an integer n_{0} such that if $n \geqslant n_{0}$, then

$$
e(G) \geqslant e\left(T_{n, r}\right)-\varepsilon n^{2} .
$$

Furthermore, G has a partition $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that the number of crossing edges of G (i.e. $\left.\sum_{1 \leqslant i<j \leqslant r} e\left(V_{i}, V_{j}\right)\right)$ attains the maximum, and

$$
\sum_{i=1}^{r} e\left(V_{i}\right) \leqslant \varepsilon n^{2}
$$

and for any $i \in[r]$

$$
\frac{n}{r}-3 \sqrt{\varepsilon} n<\left|V_{i}\right|<\frac{n}{r}+3 \sqrt{\varepsilon} n
$$

Proof. Since G is $k K_{r+1}$-free, by Lemmas 5 and 8 , for sufficiently large n, there exists a partition of $V(G)=U_{1} \cup \cdots \cup U_{r}$ such that $e(G) \geqslant e\left(T_{n, r}\right)-\varepsilon n^{2}, \sum_{i=1}^{r} e\left(U_{i}\right) \leqslant \varepsilon n^{2}$, and $\left\lfloor\frac{n}{r}\right\rfloor \leqslant\left|U_{i}\right| \leqslant\left\lceil\frac{n}{r}\right\rceil$ for each $i \in\lceil r]$. Therefore, G has a partition $V(G)=V_{1} \cup \ldots \cup V_{r}$ such that the number of crossing edges of G attains the maximum, and

$$
\sum_{i=1}^{r} e\left(V_{i}\right) \leqslant \sum_{i=1}^{r} e\left(U_{i}\right) \leqslant \varepsilon n^{2} .
$$

Let $a=\max \left\{| | V_{j}\left|-\frac{n}{r}\right|, j \in[r]\right\}$. Without loss of generality, we may assume that $\left|\left|V_{1}\right|-\frac{n}{r}\right|=a$. Then

$$
\begin{aligned}
e(G) & \leqslant \sum_{1 \leqslant i<j \leqslant r}\left|V_{i}\right|\left|V_{j}\right|+\sum_{i=1}^{r} e\left(V_{i}\right) \\
& \leqslant\left|V_{1}\right|\left(n-\left|V_{1}\right|\right)+\sum_{2 \leqslant i<j \leqslant r}\left|V_{i}\right|\left|V_{j}\right|+\varepsilon n^{2} \\
& =\left|V_{1}\right|\left(n-\left|V_{1}\right|\right)+\frac{1}{2}\left(\left(\sum_{j=2}^{r}\left|V_{j}\right|\right)^{2}-\sum_{j=2}^{r}\left|V_{j}\right|^{2}\right)+\varepsilon n^{2} \\
& \leqslant\left|V_{1}\right|\left(n-\left|V_{1}\right|\right)+\frac{1}{2}\left(n-\left|V_{1}\right|\right)^{2}-\frac{1}{2(r-1)}\left(n-\left|V_{1}\right|\right)^{2}+\varepsilon n^{2} \\
& <-\frac{r}{2(r-1)} a^{2}+\frac{r-1}{2 r} n^{2}+\varepsilon n^{2}
\end{aligned}
$$

where the last second inequality holds by Hölder's inequality, and the last inequality holds since $\left|\left|V_{1}\right|-\frac{n}{r}\right|=a$. On the other hand, since $e(G) \geqslant e\left(T_{n, r}\right)-\varepsilon n^{2}$, we have

$$
e(G) \geqslant e\left(T_{n, r}\right)-\varepsilon n^{2} \geqslant \frac{r-1}{2 r} n^{2}-\frac{r}{8}-\varepsilon n^{2}>\frac{r-1}{2 r} n^{2}-2 \varepsilon n^{2} .
$$

Therefore, $\frac{r}{2(r-1)} a^{2}<3 \varepsilon n^{2}$, which implies that $a<\sqrt{\frac{6(r-1) \varepsilon}{r} n^{2}}<3 \sqrt{\varepsilon} n$. The proof is completed.

Lemma 10. Suppose ε and θ are two sufficiently small constants with $\theta<\frac{1}{20 k r^{4}(r+1)}$ and $\varepsilon \leqslant \theta^{2}$. Let

$$
W:=\cup_{i=1}^{r}\left\{v \in V_{i}: d_{V_{i}}(v) \geqslant 2 \theta n\right\} .
$$

Then $|W| \leqslant \theta n$.
Proof. For all $i \in[r]$, let $W_{i}=W \cap V_{i}$. Then

$$
2 e\left(V_{i}\right)=\sum_{u \in V_{i}} d_{V_{i}}(u) \geqslant \sum_{u \in W_{i}} d_{V_{i}}(u) \geqslant 2\left|W_{i}\right| \theta n .
$$

Combining with Lemma 9, we have

$$
\varepsilon n^{2} \geqslant \sum_{i=1}^{r} e\left(V_{i}\right) \geqslant|W| \theta n
$$

which implies that $|W| \leqslant \frac{\varepsilon n}{\theta} \leqslant \theta n$.
Lemma 11. Suppose ε_{1} is a sufficiently small constant with $\sqrt{\varepsilon}<\varepsilon_{1} \ll \theta$. Let

$$
L:=\left\{v \in V(G): d(v) \leqslant\left(1-\frac{1}{r}-\varepsilon_{1}\right) n\right\} .
$$

Then $|L| \leqslant \varepsilon_{2} n$, where $\varepsilon_{2} \ll \varepsilon_{1}$ is a sufficiently small constant satisfying $\varepsilon-\varepsilon_{1} \varepsilon_{2}+\frac{r-1}{2 r} \varepsilon_{2}^{2}<$ 0.

Proof. Suppose to the contrary that $|L|>\varepsilon_{2} n$, then there exists $L^{\prime} \subseteq L$ with $\left|L^{\prime}\right|=\left\lfloor\varepsilon_{2} n\right\rfloor$. Therefore,

$$
\begin{aligned}
e\left(G \backslash L^{\prime}\right) & \geqslant e(G)-\sum_{v \in L^{\prime}} d(v) \\
& \geqslant e\left(T_{n, r}\right)-\varepsilon n^{2}-\varepsilon_{2} n\left(1-\frac{1}{r}-\varepsilon_{1}\right) n \\
& =e\left(T_{n, r}\right)-\varepsilon n^{2}-\frac{r-1}{r} \varepsilon_{2} n^{2}+\varepsilon_{1} \varepsilon_{2} n^{2} \\
& >\frac{r-1}{2 r}\left(n-\left\lfloor\varepsilon_{2} n\right\rfloor\right)^{2}+\frac{k-1}{r}\left(n-\left\lfloor\varepsilon_{2} n\right\rfloor\right)-\frac{(k-1)(k+r-1)}{2 r}
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant e\left(T_{n^{\prime}, r}\right)+\frac{(k-1) n^{\prime}}{r}-\frac{(k-1)(k+r-1)}{2 r} \\
& =\operatorname{ex}\left(n^{\prime}, k K_{r+1}\right),
\end{aligned}
$$

where $n^{\prime}=n-\left\lfloor\varepsilon_{2} n\right\rfloor$. Since $e\left(G \backslash L^{\prime}\right)>\operatorname{ex}\left(n-\left|L^{\prime}\right|, k K_{r+1}\right), G \backslash L^{\prime}$ contains a $k K_{r+1}$ as subgraph. This contradicts the fact that G is $k K_{r+1}$-free.

Lemma 12. For any $i \in[r]$, if $u v$ is an edge of $G\left[V_{i} \backslash(W \cup L)\right]$, then G has $k(r+1)$ copies of K_{r+1} which have only one common edge uv.

Proof. For any $i \in[r]$, and any vertex $w \in V_{i} \backslash(W \cup L)$, we have $d(w)>\left(1-\frac{1}{r}-\varepsilon_{1}\right) n$, $d_{V_{i}}(w)<2 \theta n$. Then for any $j \in[r]$ and $j \neq i$,

$$
\begin{aligned}
d_{V_{j}}(w) & \geqslant d(w)-d_{V_{i}}(w)-(r-2)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right) \\
& >\left(1-\frac{1}{r}-\varepsilon_{1}\right) n-2 \theta n-(r-2)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right) \\
& >\frac{n}{r}-3(r-1) \theta n .
\end{aligned}
$$

Without loss of generality, let $u v$ be an edge of $G\left[V_{1} \backslash(W \cup L)\right]$. We consider the common neighbors of u, v in $V_{2} \backslash(W \cup L)$. Combining with Lemma 7, we have

$$
\begin{aligned}
& \left|N_{V_{2}}(u) \cap N_{V_{2}}(v) \backslash(W \cup L)\right| \\
\geqslant & d_{V_{2}}(u)+d_{V_{2}}(v)-\left|V_{2}\right|-|W|-|L| \\
> & 2\left(\frac{n}{r}-3(r-1) \theta n\right)-\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right)-\theta n-\varepsilon_{2} n \\
> & \frac{n}{r}-6 r \theta n \\
> & k(r+1) .
\end{aligned}
$$

So there exist $k(r+1)$ vertices $u_{2,1}, \ldots, u_{2, k(r+1)}$ in $V_{2} \backslash(W \cup L)$ such that the subgraph induced by two partitions $\{u, v\}$ and $\left\{u_{2,1}, \ldots, u_{2, k(r+1)}\right\}$ is a complete bipartite graph. For an integer s with $2 \leqslant s \leqslant r-1$, suppose that there are vertices $u_{s, 1}, \ldots, u_{s, k(r+1)} \in V_{s} \backslash$ $(W \cup L)$ such that $\{u, v\},\left\{u_{2,1}, \ldots, u_{2, k(r+1)}\right\}, \ldots,\left\{u_{s, 1}, \ldots, u_{s, k(r+1)}\right\}$ induce a complete s-partite subgraph. We next consider the common neighbors of the above $(s-1) k(r+1)+2$ vertices in $V_{s+1} \backslash(W \cup L)$. By Lemma 7, we have

$$
\begin{aligned}
& \left|N_{V_{s+1}}(u) \cap N_{V_{s+1}}(v) \cap\left(\cap_{i \in[s] \backslash\{1\}, j \in[k(r+1)]} N_{V_{s+1}}\left(u_{i, j}\right)\right) \backslash(W \cup L)\right| \\
\geqslant & d_{V_{s+1}}(u)+d_{V_{s+1}}(v)+\sum_{i=2}^{s} \sum_{j=1}^{k(r+1)} d_{V_{s+1}}\left(u_{i, j}\right)-((s-1) k(r+1)+1)\left|V_{s+1}\right|-|W|-|L| \\
> & ((s-1) k(r+1)+2)\left(\frac{n}{r}-3(r-1) \theta n\right)-((s-1) k(r+1)+1)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right) \\
& \quad-\theta n-\varepsilon_{2} n
\end{aligned}
$$

$$
\begin{aligned}
& >\frac{n}{r}-12 \operatorname{skr}(r+1) \theta n \\
& >k(r+1)
\end{aligned}
$$

Then we can find $k(r+1)$ vertices $u_{s+1,1}, \ldots, u_{s+1, k(r+1)} \in V_{s+1} \backslash(W \cup L)$, which together with $\{u, v\},\left\{u_{2,1}, \ldots, u_{2, k(r+1)}\right\}, \ldots,\left\{u_{s, 1}, \ldots, u_{s, k(r+1)}\right\}$ forms a complete $(s+1)$-partite subgraph in G. Therefore, for every $2 \leqslant i \leqslant r$, there exist $k(r+1)$ vertices in $V_{i} \backslash(W \cup L)$ such that $\left\{u_{2,1}, \ldots, u_{2, k(r+1)}\right\}, \ldots,\left\{u_{r, 1}, \ldots, u_{r, k(r+1)}\right\}$ induce a complete $(r-1)$-partite subgraph in G, and u, v are adjacent to all the above $k(r-1)(r+1)$ vertices. Hence G has $k(r+1)$ copies of K_{r+1} which have only one common edge $u v$.

Lemma 13. For each $i \in[r]$, there exists an independent set $I_{i} \subseteq V_{i} \backslash(W \cup L)$ such that $\left|I_{i}\right| \geqslant\left|V_{i} \backslash(W \cup L)\right|-2(k-1)$.

Proof. We first claim that $G\left[V_{i} \backslash(W \cup L)\right]$ is M_{k}-free for any $i \in[r]$. Suppose to the contrary that there exists $i_{0} \in[r]$ such that $G\left[V_{i_{0}} \backslash(W \cup L)\right]$ contains a copy of M_{k}. Then we can find a $k K_{r+1}$ by Lemma 12, and this contradicts the fact that G is $k K_{r+1}$-free. For every $i \in[r]$, let M^{i} be a maximum matching of $G\left[V_{i} \backslash(W \cup L)\right]$, and B^{i} be the set of vertices covered by M^{i}. Since $G\left[V_{i} \backslash(W \cup L)\right]$ is M_{k}-free, $\left|B^{i}\right| \leqslant 2(k-1)$. Therefore, there exists an independent set $I_{i} \subseteq V_{i} \backslash(W \cup L)$ by deleting all vertices of B^{i}, and $\left|I_{i}\right| \geqslant\left|V_{i} \backslash(W \cup L)\right|-2(k-1)$.

Lemma 14. For any $i \in[r]$ and any $v \in V_{i} \backslash(W \cup L), d_{V_{i} \backslash(W \cup L)}(v)<k(r+1)$.
Proof. We will prove this lemma by contradiction. Without loss of generality, suppose that there exists a vertex $u \in V_{1} \backslash(W \cup L)$ such that $d_{V_{1} \backslash(W \cup L)}(u) \geqslant k(r+1)$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \cup\{u w: u w \notin E(G)\}$. It follows from $u \in V_{1} \backslash(W \cup L)$ that $E(G) \subset E\left(G^{\prime}\right)$. By the maximum of $\rho(G), G^{\prime}$ contains $k K_{r+1}$, say F_{1}, as a subgraph. From the construction of G^{\prime}, we see that $u \in V\left(F_{1}\right)$, and there is a $(k-1) K_{r+1}$, say F_{2}, in $F_{1} \backslash\{u\}$. Obviously, $F_{2} \subseteq G$. Thus F_{2} is a $(k-1) K_{r+1}$ copy of G, and $u \notin V\left(F_{2}\right)$. Since $d_{V_{1} \backslash(W \cup L)}(u) \geqslant k(r+1)$, there exists a vertex $v \in N_{V_{1} \backslash(W \cup L)}(u)$ such that $v \notin V\left(F_{2}\right)$. Then we can find $k(r+1)$ copies of K_{r+1} which have only one common edge $u v$ by Lemma 12. Thus, we can find a K_{r+1}, say F_{3}, such that $V\left(F_{3}\right) \cap V\left(F_{2}\right)=\emptyset$. Thus $F_{2} \cup F_{3}$ is a $k K_{r+1}$ copy of G, which contradicts the fact that G is $k K_{r+1}$-free.

Lemma 15. For any $u \in W \backslash L, G$ contains $k(r+1)$ copies of K_{r+1} which intersect only in u.

Proof. For any $u \in W \backslash L$, without loss of generality, we may assume that $u \in V_{1}$. Combining with Lemmas 10 and 11, we have $d(u)>\left(1-\frac{1}{r}-\varepsilon_{1}\right) n$, and

$$
\begin{aligned}
d_{V_{1} \backslash(W \cup L)}(u) & \geqslant d_{V_{1}}(u)-|W \cup L| \\
& \geqslant 2 \theta n-\theta n-\varepsilon_{2} n \\
& >k(r+1) .
\end{aligned}
$$

Let $u_{1,1}, \ldots, u_{1, k(r+1)}$ be the neighbors of u in $V_{1} \backslash(W \cup L)$. Then for every $i \in[k(r+1)]$, we have $d\left(u_{1, i}\right)>\left(1-\frac{1}{r}-\varepsilon_{1}\right) n, d_{V_{1}}\left(u_{1, i}\right)<2 \theta n$, and

$$
\begin{align*}
d_{V_{2}}\left(u_{1, i}\right) & \geqslant d\left(u_{1, i}\right)-d_{V_{1}}\left(u_{1, i}\right)-(r-2)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right) \\
& >\frac{n}{r}-\varepsilon_{1} n-2 \theta n-3(r-2) \sqrt{\varepsilon} n \\
& >\frac{n}{r}-3(r-1) \theta n . \tag{4}
\end{align*}
$$

Since $V(G)=V_{1} \cup \cdots \cup V_{r}$ is the vertex partition that maximizes the number of crossing edges of G, we have $d_{V_{1}}(u) \leqslant \frac{1}{r} d(u)$. Therefore

$$
\begin{align*}
d_{V_{2}}(u) & \geqslant d(u)-d_{V_{1}}(u)-(r-2)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right) \\
& >\frac{r-1}{r}\left(1-\frac{1}{r}-\varepsilon_{1}\right) n-(r-2)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right) \\
& >\frac{n}{r^{2}}-\varepsilon_{1} n-3(r-2) \sqrt{\varepsilon} n \\
& >\frac{n}{r^{2}}-(3 r+5) \varepsilon_{1} n . \tag{5}
\end{align*}
$$

We consider the common neighbors of $u, u_{1,1}, \ldots, u_{1, k(r+1)}$ in $V_{2} \backslash(W \cup L)$. Combining with Lemma 7, we have

$$
\begin{aligned}
& \left|N_{V_{2}}(u) \cap\left(\cap_{i \in[k(r+1)]} N_{V_{2}}\left(u_{1, i}\right)\right) \backslash(W \cup L)\right| \\
\geqslant & d_{V_{2}}(u)+\sum_{i=1}^{k(r+1)} d_{V_{2}}\left(u_{1, i}\right)-k(r+1)\left|V_{2}\right|-|W|-|L| \\
> & \frac{n}{r^{2}}-(3 r+5) \varepsilon_{1} n+k(r+1)\left(\frac{n}{r}-3(r-1) \theta n\right)-k(r+1)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right)-\theta n-\varepsilon_{2} n \\
> & \frac{n}{r^{2}}-16 k r(r+1) \theta n \\
> & k(r+1)
\end{aligned}
$$

Let $u_{2,1}, \ldots, u_{2, k(r+1)}$ be the common neighbors of $u, u_{1,1}, \ldots, u_{1, k(r+1)}$ in $V_{2} \backslash(W \cup L)$. For an integer $2 \leqslant s \leqslant r-1$, suppose that $u_{s, 1}, \ldots, u_{s, k(r+1)}$ are the common neighbors of $\left\{u, u_{i, 1}, \ldots, u_{i, k(r+1)}: 1 \leqslant i \leqslant s-1\right\}$ in $V_{s} \backslash(W \cup L)$. We next consider the common neighbors of $\left\{u, u_{i, 1}, \ldots, u_{i, k(r+1)}: 1 \leqslant i \leqslant s\right\}$ in $V_{s+1} \backslash(W \cup L)$. Using the similar method as in the proof of (4) and (5), for every $i \in[s]$ and $j \in[k(r+1)]$, we have

$$
d_{V_{s+1}}\left(u_{i, j}\right)>\frac{n}{r}-3(r-1) \theta n
$$

and

$$
d_{V_{s+1}}(u)>\frac{n}{r^{2}}-(3 r+5) \varepsilon_{1} n
$$

By Lemma 7, we have

$$
\begin{aligned}
& \left|N_{V_{s+1}}(u) \cap\left(\cap_{i \in[s], j \in[k(r+1)]} N_{V_{s+1}}\left(u_{i, j}\right)\right) \backslash(W \cup L)\right| \\
\geqslant & d_{V_{s+1}}(u)+\sum_{i=1}^{s} \sum_{j=1}^{k(r+1)} d_{V_{s+1}}\left(u_{i, j}\right)-s k(r+1)\left|V_{s+1}\right|-|W|-|L| \\
> & \frac{n}{r^{2}}-(3 r+5) \varepsilon_{1} n+s k(r+1)\left(\frac{n}{r}-3(r-1) \theta n\right)-s k(r+1)\left(\frac{n}{r}+3 \sqrt{\varepsilon} n\right) \\
& -\theta n-\varepsilon_{2} n \\
> & \frac{n}{r^{2}}-16 s k r(r+1) \theta n \\
> & k(r+1) .
\end{aligned}
$$

Let $u_{s+1,1}, \ldots, u_{s+1, k(r+1)}$ be the common neighbors of $\left\{u, u_{i, 1}, \ldots, u_{i, k(r+1)}: 1 \leqslant i \leqslant s\right\}$ in $V_{s+1} \backslash(W \cup L)$. Therefore, for every $i \in[r]$, there exist $k(r+1)$ vertices, denoted by $\left\{u_{i, 1}, \ldots, u_{i, k(r+1)}\right\}$, in $V_{i} \backslash(W \cup L)$ such that $\left\{u_{1,1}, \ldots, u_{1, k(r+1)}\right\},\left\{u_{2,1}, \ldots, u_{2, k(r+1)}\right\}$, $\ldots,\left\{u_{r, 1}, \ldots, u_{r, k(r+1)}\right\}$ form a complete r-partite subgraph in G, and u is adjacent to the above $k r(r+1)$ vertices. Hence we can find $k(r+1)$ copies of K_{r+1} in G which intersect only in u.

Lemma 16. $|W \backslash L| \leqslant k-1$.
Proof. Suppose to the contrary that $|W \backslash L| \geqslant k$. By Lemma 15 , for any $u \in W \backslash L$, we can find $k(r+1)$ copies of K_{r+1} in G which intersect only in u. Therefore, we can find at least k disjoint K_{r+1} in G. This is a contradiction to the fact that G is $k K_{r+1}$-free.

Lemma 17. $L=\emptyset$.
Proof. Let $x_{v_{0}}=\max \left\{x_{v}: v \in V(G) \backslash W\right\}$. Recall that $x_{z}=\max \left\{x_{v}: v \in V(G)\right\}=1$, then

$$
\rho(G)=\rho(G) x_{z} \leqslant|W|+(n-|W|) x_{v_{0}} .
$$

By Lemmas 11 and 16, we have

$$
\begin{equation*}
|W|=|W \cap L|+|W \backslash L| \leqslant|L|+k-1 \leqslant \varepsilon_{2} n+k-1 . \tag{6}
\end{equation*}
$$

Combining with Lemma 8, we have

$$
\begin{equation*}
x_{v_{0}} \geqslant \frac{\rho(G)-|W|}{n-|W|} \geqslant \frac{\rho(G)-|W|}{n} \geqslant 1-\frac{1}{r}-\varepsilon_{2}-\frac{O(1)}{n}>1-\frac{2}{r} . \tag{7}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
\rho(G) x_{v_{0}} & =\sum_{v v_{0} \in E(G)} x_{v}=\sum_{v \in W, v v_{0} \in E(G)} x_{v}+\sum_{v \notin W, v v_{0} \in E(G)} x_{v} \\
& \leqslant|W|+\left(d\left(v_{0}\right)-|W|\right) x_{v_{0}}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
d\left(v_{0}\right) & \geqslant \rho(G)+|W|-\frac{|W|}{x_{v_{0}}} \\
& \geqslant \rho(G)-\frac{2|W|}{r-2} \\
& \geqslant \frac{r-1}{r} n+\frac{2(k-1)}{r}-\frac{1}{n}\left(\frac{(k-1)(r+k-1)}{r}+\frac{r}{2}\right)-\frac{2 \varepsilon_{2} n}{r-2}-\frac{2(k-1)}{r-2} \\
& >\left(1-\frac{1}{r}-\varepsilon_{1}\right) n,
\end{aligned}
$$

where the last inequality holds as $\varepsilon_{2} \ll \varepsilon_{1}$. Thus we have $v_{0} \notin L$, that is $v_{0} \in V(G) \backslash$ $(W \cup L)$. Without loss of generality, we assume that $v_{0} \in V_{1} \backslash(W \cup L)$. Combining with Lemmas 13 and 14, we have

$$
\begin{aligned}
\rho(G) x_{v_{0}} & =\sum_{\substack{v \in W \cup L, v v_{0} \in E(G)}} x_{v}+\sum_{\substack{v \in V_{1} \backslash\left(W \cup(L), v v_{0} \in E(G)\right.}} x_{v}+\sum_{\substack{v \in\left(\cup_{i=2}^{r} V_{i)} \backslash(W \cup L), v v_{0} \in E(G)\right.}} x_{v} \\
& <|W|+|L| x_{v_{0}}+k(r+1) x_{v_{0}}+\sum_{\substack{v \in \cup_{i=2}^{r} I_{i}, v v_{0} \in E(G)}} x_{v}+\sum_{\substack{v \in\left(\cup_{i=2}^{r} V_{i} \backslash I_{i}\right) \backslash \backslash(W \cup L), v v_{0} \in E(G)}} x_{v} \\
& \leqslant|W|+|L| x_{v_{0}}+k(r+1) x_{v_{0}}+2(k-1)(r-1) x_{v_{0}}+\sum_{v \in \cup_{i=2}^{r} I_{i}} x_{v},
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\sum_{v \in \cup_{i=2}^{r} I_{i}} x_{v} \geqslant(\rho(G)-|L|-k(3 r-1)+2(r-1)) x_{v_{0}}-|W| . \tag{8}
\end{equation*}
$$

Next we will prove $L=\emptyset$. Suppose to the contrary that there is a vertex $u_{0} \in L$, then $d\left(u_{0}\right) \leqslant\left(1-\frac{1}{r}-\varepsilon_{1}\right) n$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=$ $E\left(G \backslash\left\{u_{0}\right\}\right) \cup\left\{w u_{0}: w \in \cup_{i=2}^{r} I_{i}\right\}$. It is obvious that G^{\prime} is $k K_{r+1}$-free. Combining with Lemmas 8, 11, (6), (7) and (8), we have

$$
\begin{aligned}
\rho\left(G^{\prime}\right)-\rho(G) & \geqslant \frac{\mathbf{x}^{T}\left(A\left(G^{\prime}\right)-A(G)\right) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{2 x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}}\left(\sum_{w \in \cup_{i=2}^{r} I_{i}} x_{w}-\sum_{u u_{0} \in E(G)} x_{u}\right) \\
& \geqslant \frac{2 x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}}\left((\rho(G)-|L|-k(3 r-1)+2(r-1)) x_{v_{0}}-2|W|-\left(d\left(u_{0}\right)-|W|\right) x_{v_{0}}\right) \\
& =\frac{2 x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}}\left(\left(\rho(G)-|L|-k(3 r-1)+2(r-1)-d\left(u_{0}\right)+|W|\right) x_{v_{0}}-2|W|\right) \\
& \geqslant \frac{2 x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}}\left(\frac{r-2}{r}\left(\varepsilon_{1} n-\varepsilon_{2} n-O(1)\right)-2|W|\right)
\end{aligned}
$$

$$
\geqslant \frac{2 x_{u_{0}}}{\mathbf{x}^{T} \mathbf{x}}\left(\frac{r-2}{r}\left(\varepsilon_{1} n-\varepsilon_{2} n-O(1)\right)-2\left(\varepsilon_{2} n+k-1\right)\right)>0
$$

where the last inequality holds since $\varepsilon_{2} \ll \varepsilon_{1}$. This contradicts the fact that G has the largest spectral radius over all $k K_{r+1}$-free graphs, so L must be empty.

Lemma 18. For any $v \in V(G), x_{v} \geqslant 1-\frac{1}{r-1}$.
Proof. Since $L=\emptyset$, then $|W|=|W \backslash L| \leqslant k-1$ by Lemma 16. Let $x_{v_{0}}=\max \left\{x_{v}: v \in\right.$ $V(G) \backslash W\}$. Recall that $x_{z}=\max \left\{x_{v}: v \in V(G)\right\}=1$, then

$$
\rho(G)=\rho(G) x_{z} \leqslant|W|+(n-|W|) x_{v_{0}} .
$$

Combining with Lemma 8, we have

$$
\begin{equation*}
x_{v_{0}} \geqslant \frac{\rho(G)-|W|}{n-|W|} \geqslant \frac{\rho(G)-|W|}{n} \geqslant 1-\frac{1}{r}-\frac{O(1)}{n} . \tag{9}
\end{equation*}
$$

Using the similar method as in the proof of (8), we have

$$
\sum_{v \in \cup_{i=2}^{r} I_{i}} x_{v} \geqslant(\rho(G)-k(r+3)+2) x_{v_{0}}-(k-1) .
$$

Suppose to the contrary that there exists $u \in V(G)$ such that $x_{u}<1-\frac{1}{r-1}$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G \backslash\{u\}) \cup\left\{u w: w \in \cup_{i=2}^{r} I_{i}\right\}$. It is obvious that G^{\prime} is $k K_{r+1}$-free. Therefore, we have

$$
\begin{aligned}
\rho\left(G^{\prime}\right)-\rho(G) & \geqslant \frac{\mathbf{x}^{T}\left(A\left(G^{\prime}\right)-A(G)\right) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{2 x_{u}}{\mathbf{x}^{T} \mathbf{x}}\left(\sum_{w \in \cup_{i=2}^{r} I_{i}} x_{w}-\sum_{u v \in E(G)} x_{v}\right) \\
& \geqslant \frac{2 x_{u}}{\mathbf{x}^{T} \mathbf{x}}\left((\rho(G)-k(r+3)+2) x_{v_{0}}-(k-1)-\rho(G) x_{u}\right) \\
& >\frac{2 x_{u}}{\mathbf{x}^{T} \mathbf{x}}\left((\rho(G)-k(r+3)+2)\left(1-\frac{1}{r}-\frac{O(1)}{n}\right)-(k-1)-\rho(G)\left(1-\frac{1}{r-1}\right)\right) \\
& >\frac{2 x_{u}}{\mathbf{x}^{T} \mathbf{x}}\left(\frac{n}{r^{2}}-O(1)\right)>0 .
\end{aligned}
$$

This contradicts the fact that G has the largest spectral radius over all $k K_{r+1}$-free graphs.

Lemma 19. $|W|=k-1$, and $V_{i} \backslash W$ is an independent set for any $i \in[r]$.
Proof. Let $|W|=s$. Then $s \leqslant k-1$ by Lemmas 16 and 17 .
Claim 20. $\nu\left(\cup_{i=1}^{r} G\left[V_{i} \backslash W\right]\right) \leqslant k-1-s$.

Proof of Claim 20. Otherwise, $\nu\left(\cup_{i=1}^{r} G\left[V_{i} \backslash W\right]\right) \geqslant k-s$. By Lemma 12, we can find a $(k-s) K_{r+1}$, denoted by F_{1}. Since $|W|=s$, by Lemma 15 , we can find a $s K_{r+1}$, denoted by F_{2}, such that $V\left(F_{1}\right) \cap V\left(F_{2}\right)=\emptyset$. Therefore, $F_{1} \cup F_{2}$ is a copy of $k K_{r+1}$ in G, a contradiction.

Suppose to the contrary that $s<k-1$. By Lemmas 14 and 17 , we have $\Delta\left(\cup_{i=1}^{r} G\left[V_{i} \backslash\right.\right.$ $W])<k(r+1)$. Combining with Lemma 6, we have

$$
\begin{aligned}
e\left(\cup_{i=1}^{r} G\left[V_{i} \backslash W\right]\right) & \leqslant f\left(\nu\left(\cup_{i=1}^{r} G\left[V_{i} \backslash W\right]\right), \Delta\left(\cup_{i=1}^{r} G\left[V_{i} \backslash W\right]\right)\right) \\
& \leqslant f(k-s-1, k(r+1)) \\
& \leqslant k(k-s)(r+1)
\end{aligned}
$$

Take $S \subseteq V_{1} \backslash W$ with $|S|=k-s-1$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \backslash\left\{u v: u v \in \cup_{i=1}^{r} E\left(G\left[V_{i} \backslash W\right]\right)\right\} \cup\left\{u v: u \in S, v \in\left(V_{1} \backslash W\right) \backslash S\right\}$. It is obvious that G^{\prime} is $k K_{r+1}$-free. Therefore,

$$
\begin{aligned}
& \rho\left(G^{\prime}\right)-\rho(G) \\
& \geqslant \frac{\mathbf{x}^{T}\left(A\left(G^{\prime}\right)-A(G)\right) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \\
& =\frac{2}{\mathbf{x}^{T} \mathbf{x}}\left(\sum_{i j \in E\left(G^{\prime}\right)} x_{i} x_{j}-\sum_{i j \in E(G)} x_{i} x_{j}\right) \\
& \geqslant \frac{2}{\mathbf{x}^{T} \mathbf{x}}\left((k-s-1)\left(\left|V_{1}\right|-|W|-k+s+1\right)\left(1-\frac{1}{r-1}\right)^{2}-k(k-s)(r+1)\right) \\
& \geqslant \frac{2}{\mathbf{x}^{T} \mathbf{x}}\left((k-s-1)\left(\frac{n}{r}-3 \sqrt{\varepsilon} n-k+1\right)\left(1-\frac{1}{r-1}\right)^{2}-k(k-s)(r+1)\right) \\
& >0 .
\end{aligned}
$$

This contradicts the fact that G has the largest spectral radius over all $k K_{r+1}$-free graphs. Therefore, $|W|=s=k-1$. Then it follows from the claim that $\nu\left(\cup_{i=1}^{r} G\left[V_{i} \backslash W\right]\right) \leqslant$ $k-1-s=0$ for any $i \in[r]$. So $V_{i} \backslash W$ is an independent set.

Lemma 21. For any $u \in W, d(u)=n-1$.
Proof. Suppose to the contrary that there exists $u \in W$ such that $d(u)<n-1$. Let $v \in V(G)$ be a vertex such that $u v \notin E(G)$. Let G^{\prime} be the graph with $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \cup\{u v\}$. We claim that G^{\prime} is $k K_{r+1}$-free. Otherwise, G^{\prime} contains a copy of $k K_{r+1}$, say F_{1}, as a subgraph, and $u v \in E\left(F_{1}\right)$. Let F_{2} be the K_{r+1} of F_{1} which contains $u v$. Then G contains a $(k-1) K_{r+1}$, denoted by F_{3}, as a subgraph, with $V\left(F_{2}\right) \cap V\left(F_{3}\right)=\emptyset$ and $u \notin V\left(F_{3}\right)$. Since $u \in W$, by Lemmas 15 and 17 , we can find a K_{r+1}, denoted by F_{4}, which contains u and $V\left(F_{4}\right) \cap V\left(F_{3}\right)=\emptyset$. Thus $F_{3} \cup F_{4}$ is a copy of $k K_{r+1}$ in G, a contradiction. Therefore, G^{\prime} is $k K_{r+1}$-free. By the construction of G^{\prime}, we have $\rho\left(G^{\prime}\right)>\rho(G)$, which contradicts the assumption that G has the maximum spectral radius among all $k K_{r+1}$-free graphs on n vertices.

Proof of Theorem 3. Now we prove that G is isomorphic to $K_{k-1} \vee T_{n-k+1, r}$. For any $i \in[r]$, let $\left|V_{i} \backslash W\right|=n_{i}$. By Lemmas 19 and 21, there exists an r-partite graph H with classes of size $n_{1}, n_{2}, \ldots, n_{r}$ such that $G \cong K_{k-1} \vee H$. By the maximum of $\rho(G)$, $H \cong K_{r}\left(n_{1}, n_{2}, \ldots, n_{r}\right)$. It suffices to show that $\left|n_{i}-n_{j}\right| \leqslant 1$ for any $1 \leqslant i<j \leqslant r$. Suppose $n_{1} \geqslant n_{2} \geqslant \ldots \geqslant n_{r}$. We prove the assertion by contradiction. Assume that there exist i_{0}, j_{0} with $1 \leqslant i_{0}<j_{0} \leqslant r$ such that $n_{i_{0}}-n_{j_{0}} \geqslant 2$. Let $H^{\prime}=K_{r}\left(n_{1}, \ldots, n_{i_{0}}-\right.$ $\left.1, \ldots, n_{j_{0}}+1, \ldots, n_{r}\right)$, and $G^{\prime}=K_{k-1} \vee H^{\prime}$.

Recall that \mathbf{x} is the eigenvector of G corresponding to $\rho(G)$, by the symmetry we may assume $\mathbf{x}=(\underbrace{x_{1}, \ldots, x_{1}}_{n_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{n_{2}}, \ldots, \underbrace{x_{r}, \ldots, x_{r}}_{n_{r}}, \underbrace{x_{r+1}, \ldots, x_{r+1}}_{k-1})^{\mathrm{T}}$. Thus by (1), we have

$$
\begin{equation*}
\rho(G) x_{i}=\sum_{j=1}^{r} n_{j} x_{j}-n_{i} x_{i}+(k-1) x_{r+1}, \text { for any } i \in[r], \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(G) x_{r+1}=\sum_{j=1}^{r} n_{j} x_{j}+(k-2) x_{r+1} . \tag{11}
\end{equation*}
$$

Combining (10) and (11), we have $x_{i}=\frac{\rho(G)+1}{\rho(G)+n_{i}} x_{r+1}$ for any $i \in[r]$, which implies that $x_{r+1}=\max \left\{x_{v}: v \in V(G)\right\}$. Recall that $\max \left\{x_{v}: v \in V(G)\right\}=1$, then $x_{r+1}=1$, and $x_{i}=\frac{\rho(G)+1}{\rho(G)+n_{i}}$ for any $i \in[r]$. Let $u_{i_{0}} \in V_{i_{0}} \backslash W$ be a fixed vertex. Then G^{\prime} can be obtained from G by deleting all edges between $u_{i_{0}}$ and $V_{j_{0}} \backslash W$, and adding all edges between $u_{i_{0}}$ and $V_{i_{0}} \backslash\left(W \cup\left\{u_{i_{0}}\right\}\right)$. According to (2), we deduce that

$$
\begin{aligned}
\rho\left(G^{\prime}\right)-\rho(G) & \geqslant \frac{\mathbf{x}^{\mathrm{T}}\left(A\left(G^{\prime}\right)-A(G)\right) \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \\
& =\frac{2}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}\left(\left(n_{i_{0}}-1\right) x_{i_{0}}^{2}-n_{j_{0}} x_{i_{0}} x_{j_{0}}\right) \\
& =\frac{2 x_{i_{0}}}{\mathbf{x}^{T} \mathbf{x}}\left(\left(n_{i_{0}}-1\right) \frac{\rho(G)+1}{\rho(G)+n_{i_{0}}}-n_{j_{0}} \frac{\rho(G)+1}{\rho(G)+n_{j_{0}}}\right) \\
& =\frac{2 x_{i_{0}}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \frac{(\rho(G)+1)\left(n_{i_{0}} \rho(G)-n_{j_{0}} \rho(G)-\rho(G)-n_{j_{0}}\right)}{\left(\rho(G)+n_{i_{0}}\right)\left(\rho(G)+n_{j_{0}}\right)} \\
& \geqslant \frac{2 x_{i_{0}}}{\mathbf{x}^{T} \mathbf{x}} \frac{(\rho(G)+1)\left(\rho(G)-n_{j_{0}}\right)}{\left(\rho(G)+n_{i_{0}}\right)\left(\rho(G)+n_{j_{0}}\right)}>0,
\end{aligned}
$$

where the last second inequality holds as $n_{i_{0}}-n_{j_{0}} \geqslant 2$, and the last inequality holds since $\rho(G) \geqslant \frac{r-1}{r} n+\frac{2(k-1)}{r}-\frac{1}{n}\left(\frac{(k-1)(r+k-1)}{r}+\frac{r}{2}\right)$, and $n_{j_{0}}=\left|V_{j_{0}} \backslash W\right| \leqslant \frac{n}{r}+3 \sqrt{\varepsilon} n-(k-1)$. This contradicts the assumption that G has the maximum spectral radius among all n-vertex $k K_{r+1}$-free graphs. Therefore, G is isomorphic to $K_{k-1} \vee T_{n-k+1, r}$.

Acknowledgements

The authors would like to thank the anonymous referees for valuable suggestions, which have considerably improved the presentation of the paper.

References

[1] N. Alon, R. Duke, H. Lefmann, V. Rödl, R. Yuster. The algorithmic aspects of the regularity lemma. J. Algorithms, 16(1): 80-109, 1994.
[2] L. Babai, B. Guiduli. Spectral extrema for graphs: the Zarankiewicz problem. Electron. J. Combin., 16 (1): \#R123, 2009.
[3] B. Bollobás. Extremal Graph Theory. Academic Press, New York, 1978.
[4] B. Bollobás, V. Nikiforov. Cliques and the spectral radius. J. Combin. Theory Ser. B, 97: 859-865, 2007.
[5] G. Chen, R. Gould, F. Pfender, B. Wei. Extremal graphs for intersecting cliques. J. Combin. Theory. Ser. B, 89: 159-171, 2003.
[6] V. Chvátal, D. Hanson. Degrees and matchings. J. Combin. Theory Ser. B, 20 (2): 128-138, 1976.
[7] S. Cioabă, D.N. Desai, M. Tait. The spectral radius of graphs with no odd wheels. European J. Combin., 99: 103420, 2022.
[8] S. Cioabă, L. Feng, M. Tait, X. Zhang. The maximum spectral radius of graphs without friendship subgraphs. Electron. J. Combin., 27 (4): \#P4.22, 2020.
[9] D. N. Desai, L. Kang, Y. Li, Z. Ni, M. Tait, J. Wang. Spectral extremal graphs for intersecting cliques. Linear Algebra Appl., 644: 234-258, 2022.
[10] P. Erdős, Z. Füredi, R. Gould, D. Gunderson. Extremal graphs for intersecting triangles. J. Combin. Theory. Ser. B, 64(1): 89-100, 1995.
[11] Z. Füredi. Extremal hypergraphs and combinatorial geometry. In: Chatterji S. D. (eds) Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1343-1352, 1995.
[12] D. Gerbner, A. Methuku, M. Vizer. Generalized Turán problems for disjoint copies of graphs. Discrete Math., 342(11): 3130-3141, 2019.
[13] Y. Li, Y. Peng. The spectral radius of graphs with no intersecting odd cycles. Discrete Math., 345(8): 112907, 2022.
[14] J. Moon. On independent complete subgraphs in a graph. Canad. J. Math., 20: 95-102, 1968.
[15] V. Nikiforov. A contribution to the Zarankiewicz problem. Linear Algebra Appl., 432 (6): 1405-1411, 2010.
[16] V. Nikiforov. A spectral condition for odd cycles in graphs. Linear Algebra Appl., 428 (7): 1492-1498, 2008.
[17] V. Nikiforov. Bounds on graph eigenvalues II. Linear Algebra Appl., 427: 183-189, 2007.
[18] V. Nikiforov. Stability for large forbidden subgraphs. J. Graph Theory, 62 (4): 362368, 2009.
[19] V. Nikiforov. The spectral radius of graphs without paths and cycles of specified length. Linear Algebra Appl., 432(9): 2243-2256, 2010.
[20] M. Simonovits. A method for solving extremal problems in graph theory, stability problems. Theory of Graphs (Proc. colloq., Tihany, 1996), Academic Press, New York, 279-319, 1968.
[21] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48: 436-452, 1941.
[22] J. Wang, L. Kang, Y. Xue. On a conjecture of spectral extremal problems. J. Combin. Theory. Ser. B, 159: 20-41, 2022.
[23] W. Yuan, B. Wang, M. Zhai. On the spectral radii of graphs without given cycles. Electron. J. Linear Algebra, 23: 599-606, 2012.
[24] M. Zhai, B. Wang. Proof of a conjecture on the spectral radius of C_{4}-free graphs. Linear Algebra Appl., 437 (7): 1641-2647, 2012.
[25] M. Zhai, B. Wang, L. Fang. The spectral Turán problem about graphs with no 6-cycle. Linear Algebra Appl., 590: 22-31, 2020.
[26] M. Zhai, R. Liu, J. Xue. A Unique Characterization of Spectral Extrema for Friendship Graphs. Electron. J. Combin., 29 (3): \#P3.32, 2022.

[^0]: ${ }^{*} \mathrm{Z}$. Ni is partially supported by Hainan Provincial Natural Science Foundation of China (No. 122QN218) and the National Nature Science Foundation of China (No. 1220010800)
 ${ }^{\dagger}$ Corresponding author. Supported by the National Nature Science Foundation of China (Nos. 11871329, 11971298)

