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Abstract

We show that Hobart’s inequality for quasisymmetric designs is equivalent to
Calderbank’s inequality.

Mathematics Subject Classifications: 05B05,05E30

It has been an open problem whether Hobart’s inequality on the parameters of a
quasisymmetric 2-design is independent of earlier known restrictions. In this note we
show that it is equivalent to inequalities found by Neumaier and Calderbank. We also
give some more parameter sets ruled out by the Blokhuis-Calderbank inequality.

1 Quasisymmetric designs

A design is a finite set called the point set, provided with a collection of subsets called
blocks. A t-(v, k, λ) design is a design with v points, where all blocks have size k and any
t distinct points are in precisely λ blocks.

A quasisymmetric design with intersection numbers x, y, is a design where distinct
blocks meet in either x or y points, where x, y are distinct and both occur.

A strongly regular graph with parameters (v, k, λ, µ) is a finite undirected graph without
loops, having both edges and nonedges, with v vertices, regular of valency k, where
two distinct adjacent (resp. nonadjacent) vertices have precisely λ (resp. µ) common
neighbours. In this note we shall write (V,K,Λ,M) for the parameters of a strongly
regular graph, to avoid a clash with design parameters.

Let (X,B) be a quasisymmetric 2-(v, k, λ) design with intersection numbers x, y, where
1 < k < v. The number of blocks on each point is r = λ(v − 1)/(k − 1) and the total
number of blocks is b = vr/k.
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Let N be the point-block incidence matrix. Let A be the 0-1 matrix indexed by the
blocks with (B,C)-entry 1 precisely when |B ∩C| = x. Then NN> = rI + λ(J − I) and
N>N = kI + xA + y(J − I − A). Now A is the adjacency matrix of a strongly regular
graph. Indeed, NN> has two eigenvalues r − λ and kr, so N>N has three eigenvalues
0, r − λ and kr, and also A = 1

x−y (N>N − (k − y)I − yJ) has three eigenvalues, namely

K = (r−1)k−(b−1)y
x−y , R = r−λ−k+y

x−y and S = −k−y
x−y with multiplicities 1, v − 1, and b − v,

respectively.

We see that the intersction-x graph of (X,B) with vertex set B, where B ∼ C when
|B ∩ C| = x, is strongly regular with parameters (V,K,Λ,M) and eigenvalues K, R, S,
where V = b, and K,R, S are as above, and Λ,M are determined by RS = M −K and
R + S = Λ−M .

Many examples are known. For example, the Steiner system S(4, 7, 23) is a qua-
sisymmetric 2-(23, 7, 21) design with intersection numbers 1 and 3. Its intersection-3
graph is strongly regular with parameters (V,K,Λ,M) = (253, 140, 87, 65) with spectrum
1401 2522 (−3)230 where multiplicities are written as exponents.

Blokhuis & Haemers [3] constructed an infinite family of examples with parameters
v = q3, k = 1

2
q2(q − 1), λ = 1

4
q(q3 − q2 − 2), x = 1

2
k, y = x − 1

4
q2 where q is a power of

two.

1.1 Complement

Given a quasisymmetric 2-(v, k, λ) design (X,B), with b blocks, r on each point, and
intersection numbers x, y, the complementary design is (X,B′), where B′ = {X \B | B ∈
B}. It has parameters v′ = v, k′ = v−k, λ′ = b−2r+λ, b′ = b, r′ = b−r, x′ = v−2k+x,
y′ = v − 2k + y.

2 Inequalities

2.1 The Calderbank-Cowen inequality

The following result allows one to express the number of blocks b of a quasi-symmetric
2-design in terms of the parameters v, k, x, y.

Proposition 1. (Calderbank [4]) Every 1-(v, k, r) design with b blocks, and two block
intersection numbers x, y, satisfies

1− 1

b
6
k(v − k)

v(v − 1)

(
(v − 1)(2k − x− y)− k(v − k)

(k − x)(k − y)

)
with equality if and only if the design is a 2-design.
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2.2 Neumaier’s inequality

Let Γ be a strongly regular graph. A proper nonempty subset Y of its vertex set is called
a regular set with degree d and nexus e when each vertex inside (resp. outside) Y has d
(resp. e) neighbours in Y .

Let Γ be the strongly regular graph on the blocks of a quasi-symmetric 2-(v, k, λ)
design (X,B) with block intersection numbers x, y, where blocks are adjacent if they
meet in x points. Let r = λ(v − 1)/(k − 1) be the replication number (number of blocks
on any point).

Proposition 2. (Neumaier [8]) The sets of all blocks S(u) containing a fixed point u

are regular sets in Γ of size r, degree d = (λ−1)(k−1)−(r−1)(y−1)
x−y and nexus e = λk−ry

x−y .

Proof. Clearly, |S(u)| = r. For B ∈ S(u), with dB neighbours in S(u), count the number
of pairs (v, C) with v 6= u and C 6= B and u, v ∈ C and v ∈ B. This number is
(k− 1)(λ− 1) and also dB(x− 1) + (r− dB− 1)(y− 1) so that d = dB does not depend on
B and has the stated value. Similarly, for B 6∈ S(u), with eB neighbours in S(u), we find
kλ = eBx+ (r − eB)y, so that eB does not depend on B and has the stated value.

Proposition 3. (Neumaier [8]) The parameters of (X,B) satisfy

B(B − A) 6 AC, (N)

where
A = (v − 1)(v − 2), B = r(k − 1)(k − 2)

C = rd(x− 1)(x− 2) + r(r − 1− d)(y − 1)(y − 2).

Equality holds if and only if (X,B) is a 3-design.

Proof. For distinct points u, v, w, let λuvw denote the number of blocks containing these
three points. Fix u and sum over all ordered pairs v, w with u, v, w distinct. One obtains∑

1 = A,
∑
λuvw = B,

∑
λuvw(λuvw−1) = C. Now 0 6

∑
(λuvw− B

A
)2 = B+C− B2

A
.

One may check that Neumaier’s inequality (N) for a design is equivalent to the
inequality for the complementary design.

2.3 The Calderbank and Hobart inequalities

Proposition 4. (Calderbank [4]) Let x̄ = k − x and ȳ = k − y. Then

(v − 1)(v − 2)x̄ȳ − k(v − k)(v − 2)(x̄+ ȳ) + k(v − k)(k(v − k)− 1) > 0, (C)

with equality if and only if the design is a 3-design.

Clearly, inequality (C) for a design is equivalent to this inequality for the complemen-
tary design. Calderbank observes that (C) is equivalent to (N).

The following inequality was derived by Hobart as a consequence of inequalities for
coherent configurations.
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Proposition 5. (Hobart [7]) The parameters of a quasisymmetric 2-(v, k, λ) design with
intersection numbers x, y, where k > x > y, with strongly regular intersection-x graph with
eigenvalues K,R, S, where K > R > S, satisfy

v − 2

v

(
1 +

R3

K2
− (R + 1)3

(b−K − 1)2

)
− (v − 2k)2λ

k2(k − 1)(v − k)
> 0. (H)

This can also be formulated as Q1
11 > (v−2k)2(v−1)

k(v−k)(v−2) , where Q1
11 is the obvious Krein

parameter of the strongly regular graph.
Since the strongly regular graph (for the largest intersection size) is the same for a

quasisymmetric design and the complementary design, we see that inequality (H) for a
design is equivalent to this inequality for the complementary design.

In the next section we show the equivalence of (C) and (H).

3 Proof of Hobart’s inequality

Let A = 1 + R3

K2 − (R+1)3

(b−K−1)2 be the parenthetical part of the inequality (H). Substitute

b = V and V = (K−R)(K−S)
M

and M = K +RS to get

A = − (K−R)(KR+R2−2KS+2R2S−KS2−RS2)
K2(S+1)2

. Now (H) says

−v − 2

v

(K −R)(KR+R2 − 2KS + 2R2S −KS2 −RS2)

K2(S + 1)2
− (v − 2k)2λ

k2(k − 1)(v − k)
> 0.

If S = −1, then x = k and the design is a multiple of a square (or symmetric)
design, a case that was excluded. Hence S < −1. Multiply by vK2(S+1)2 and substitute

R = r−λ−k+y
x−y and S = −k−y

x−y and K = (r−1)k−(b−1)y
x−y and multiply by (x−y)4 and substitute

λ = r(k−1)
v−1 and r = bk

v
and multiply by (v−1)3

b3
and substitute the value of b found from

equality in Proposition 1. Since we have e > 0 in Proposition 2, it follows that kλ 6= ry,
that is, k2 − k − vy + y 6= 0. Divide by (k2 − k − vy + y)2. We see that (H) says

(v − 1)(v − 2)xy + k2(k − 1)(k − 3) + 2k(k − 1)(x+ y)− k(k − 1)v(x+ y − 1) > 0

but this is precisely inequality (C).
In the same way one sees that Calderbank’s inequality (C) is equivalent to Neumaier’s

inequality (N).

4 On the Blokhuis-Calderbank conditions

Additional nonexistence results were given by Bagchi [1] and Blokhuis & Calderbank
[2]. The methods and results are rather similar, but the results are not equivalent: the
latter paper eliminates several parameter sets that survive other tests. We do not repeat
their definitions and results, but add some comments. This is the table from [2], p. 203.
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v k λ y x comment
1090 540 2646 243 270 fails [2], Theorem 5.1
1101 495 2223 198 225
1266 396 1422 99 126 fails [2], Lemma 5.5
1443 624 2136 246 273 fails [2], Theorem 5.1
2704 544 1086 85 112
2976 528 1023 69 96 fails [2], Theorem 5.1 for complement
5292 378 29 0 27 fails [9], Theorem 3

In [2] it is said that Theorem 5.1 summarizes the earlier results, but that theorem does
not rule out the third parameter set, while Lemma 5.5 does (but the theorem rules out
the complementary parameter set).

The last parameter set here is that of an ARD(14, 2), where an affine resolvable
design ARD(n, t) is a 2-(v, k, λ) design with parameters v = nk = n2((n − 1)t + 1),
b = nr = n(n2t+n+ 1), λ = nt+ 1 where there is a resolution into r parallel classes, and
any two blocks from different classes have k2/v = (n− 1)t + 1 points in common. Using
the Hasse invariant Shrikhande [9] shows that no ARD(n, t) exists when n ≡ 2 (mod
4) and the square-free part of n contains a prime ≡ 3 (mod 4).

On the other hand, several far smaller parameter sets are ruled out.

v k λ y x r b comment
77 33 24 12 15 57 133 fails [1] and [2]

101 21 21 3 6 105 505 fails [1] and [2]
137 40 195 10 15 680 2329 fails [1] and [2]
145 70 161 28 35 336 696 fails [1] and [2]
163 64 672 22 28 1728 4401 fails [2]
172 28 63 4 10 399 2451 fails [2]
176 50 49 8 15 175 616 fails [2]

In the first four cases, the complementary design violates [1], Theorem 1.

5 History

This note was accepted for the volume in honour of Aart Blokhuis in Designs, Codes and
Cryptography. The publisher refused to print it when the author did not want to pay the
$2000+ publication charge for open source papers.
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