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Abstract

Given a family G of graphs spanning a common vertex set V , a cooperative
coloring of G is a collection of one independent set from each graph G ∈ G such
that the union of these independent sets equals V . We prove that for large d, there
exists a family G of (1 + o(1)) log d

log log d forests of maximum degree d that admits
no cooperative coloring, which significantly improves a result of Aharoni, Berger,
Chudnovsky, Havet, and Jiang (Electronic Journal of Combinatorics, 2020). Our
family G consists entirely of star forests, and we show that this value for |G| is
asymptotically best possible in the case that G is a family of star forests.

Mathematics Subject Classifications: 05C15

1 Introduction

In this paper, all graphs and vertex sets that we consider are finite. Given a family
G = {G1, . . . , Gk} of graphs that span a common vertex set V , a cooperative coloring of
G is defined as a family of sets R1, . . . , Rk ⊆ V such that for each 1 6 i 6 k, Ri is an
independent set of Gi, and V =

⋃k
i=1Ri. If each graph Gi ∈ G is equal to a single graph

G, then the problem of finding a cooperative coloring of G is equivalent to the problem of
finding a proper k-coloring of G. Hence, in the cooperative coloring problem, the indices
of the graphs in G resemble colors used in the traditional graph coloring problem, and we
often refer to the indices of graphs in our family G as colors.

The cooperative coloring problem is a specific kind of independent transversal prob-
lem, which is defined as follows. Given a graph H with a vertex partition V1 ∪ · · · ∪ Vr,
we say that an independent transversal on H is an independent set I in H such that I
contains exactly one vertex from each part Vi. Given a graph family G = {G1, . . . , Gk}
on a common vertex set V , we can transform the cooperative coloring problem on G
into an independent transversal problem as follows. We define a graph H with a vertex
set V (H) = V × [k], an edge (u, i)(v, i) for each edge uv ∈ E(Gi), and with a vertex
partition consisting of a part {v} × [k] for each vertex v ∈ V . Then, given such a graph
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H constructed from G, an independent transversal on H with respect to the parts de-
scribed above gives a cooperative coloring of G, and any cooperative coloring of G can be
transformed into an independent transversal on H after possibly deleting extra vertices
to make the independent sets Ri disjoint. Certain other graph coloring problems can also
be naturally described as independent transversal problems. For example, DP-coloring
(also called correspondence coloring) is a recent generalization of list coloring invented
by Dvořák and Postle [5]. One way of defining the DP-chromatic number χDP (G) of
a graph G is with the following statement: χDP (G) 6 k if and only if every graph H
forming a k-sheeted covering space of G with a projection p : H → G has an independent
transversal with respect to the partition

⋃
v∈V (G) p

−1(v) of V (H).
The notion of a cooperative coloring can be naturally generalized to the notion of a

cooperative list coloring, defined as follows. Consider a graph family G = {G1, . . . , Gk}
in which each graph Gi has a vertex set Vi that may or may not share vertices with the
vertex sets Vj of the other graphs Gj ∈ G. We write V = V1 ∪ · · · ∪ Vk. Then, we say
that a cooperative list coloring of G is a family of vertex subsets R1, . . . , Rk such that
for each value 1 6 i 6 k, it holds that Ri ⊆ Vi and Ri is an independent set of Gi, and
such that V =

⋃k
i=1Ri. Every list coloring problem on a graph G with a list function

L can be transformed into a cooperative list coloring problem as follows. For each color
c ∈

⋃
v∈V (G) L(v), we define the graph Gc to be the subgraph of G induced by those

vertices v ∈ V (G) for which c ∈ L(v). Then, finding a list coloring on G is equivalent
to finding a cooperative list coloring on the family G = {Gc : c ∈

⋃
v∈V (G) L(v)}. The

cooperative list coloring problem can also be transformed into an independent transversal
problem in a similar way to the cooperative coloring problem.

One natural question in graph coloring asks for an upper bound on the number of
colors needed to color a graph in terms of its maximum degree. Similarly, in the setting of
cooperative colorings, we may ask how many graphs of maximum degree d are necessary
in a graph family G on a common vertex set in order to guarantee the existence of a
cooperative coloring. A simple argument using the Lovász Local Lemma shows that if
each graph in G is of maximum degree at most d, then G has a cooperative coloring
whenever |G| > 2ed. A more involved argument of Haxell [8] implies that G is guaranteed
a cooperative coloring whenever |G| > 2d. When d is large, Loh and Sudakov [11] have
shown that a lower bound of the form |G| > (1 + o(1))d also guarantees the existence of a
cooperative coloring on G. On the other hand, Aharoni, Holzman, Howard, and Sprüssel
[2] have constructed families containing d + 1 graphs of maximum degree d spanning a
common vertex set that do not admit a cooperative coloring.

For a graph class H, Aharoni, Berger, Chudnovsky, Havet, and Jiang [1] defined the
parameter mH(d) to be the minimum value m for which the following holds: If G is a
family of at least m graphs of H of maximum degree at most d that span a common
vertex set, then G must have a cooperative coloring. When H is the family of all graphs,
they write m(d) = mH(d). The discussion above implies that m(d) 6 2d for all values
d > 1, and m(d) 6 d+ o(d) asymptotically when d is large. Note that all asymptotics in
this paper will be with respect to the parameter d, which will always be an upper bound
for the maximum degree of each graph in a given graph class.

In a similar fashion to Aharoni, Berger, Chudnovsky, Havet, and Jiang, we will define
the parameter `H(d) for a graph class H as follows. We say `H(d) is the minimum value
` such that if G is a family of graphs from H of maximum degree at most d whose vertex
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sets are subsets of a universal vertex set V , and if each vertex v ∈ V belongs to at least
` graphs in G, then G has a cooperative list coloring. It is straightforward to show that
for any graph class H and for any value d, mH(d) 6 `H(d). When H is the class of all
graphs, we write `(d) = `H(d). Haxell’s argument [8] showing m(d) 6 2d and Loh and
Sudakov’s argument [11] showing m(d) 6 d + o(d) were both originally formulated for a
more general independent transversal problem, and hence their arguments give the same
upper bounds on `(d) as well.

We summarize the discussion above with the following inequalities:

d+ 2 6 m(d) 6 `(d) 6 2d (1)

d+ 2 6 m(d) 6 `(d) 6 d+ o(d).

In [1], Aharoni, Berger, Chudnovsky, Havet, and Jiang considered the value mF(d)
for the class F of forests. These authors obtained a lower bound for mF(d) from a
construction and obtained an upper bound formF(d) by using a creative application of the
Lovász Local Lemma that resembles an earlier method used by Bernshteyn, Kostochka,
and Zhu [3, Section 4.2], which involves giving each vertex in the problem a random color
inventory and then attempting to greedily give each vertex a color from its inventory.
Since the method for obtaining an upper bound on mF(d) also applies to the cooperative
list coloring problem with no changes, we have the following result from [1]:

log2 log2 d 6 mF(d) 6 `F(d) 6 (1 + o(1)) log4/3 d. (2)

By using a similar approach involving the Lovász Local Lemma, Bradshaw and
Masař́ık [4] showed that the upper bound in (2) applies not only to forests, but also to
graph families of bounded degeneracy k at the expense of a constant factor. In particular,
they showed that ifH is the family of k-degenerate graphs, then `H(d) 6 13(1+k log(kd)).

In this paper, we will construct a family of forests which we can use to prove that
mF(d) > (1+o(1)) log d

log log d
, improving the lower bound in (2) significantly. One interesting

feature of our construction is that each graph in our family is a forest of stars. Hence, we
write S for the class of of star forests, and since S ⊆ F , we observe that mS(d) 6 mF(d).
With S defined, we remark that our construction actually implies the stronger lower
bound mS(d) > (1 + o(1)) log d

log log d
. With a lower bound for mS(d) established, it is also

natural to ask for an upper bound on mS(d). We will prove two results that both imply,
as a corollary, that mS(d) 6 `S(d) 6 (1 + o(1)) log d

log log d
, and hence, we will conclude that

both mS(d) and `S(d) are of the form (1 + o(1)) log d
log log d

.

2 A lower bound for mS(d)

In this section, we will give a construction that shows that mF(d) > mS(d) > (1 +
o(1)) log d

log log d
. For ease of presentation, we will work in the setting of adapted colorings,

which are defined as follows. Given a multigraph G with a (not necessarily proper) edge
coloring ϕ, an adapted coloring on (G,ϕ) is a (not necessarily proper) vertex coloring σ
of G in which no edge e is colored the same color as both of its endpoints u and v—
that is, ¬ (ϕ(e) = σ(u) = σ(v)). In other words, if e ∈ E(G) is a red edge, then both
endpoints of e may not be colored red, but both endpoints of e may be colored, say,
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blue, and the endpoints of e may also be colored with two different colors. A cooperative
coloring problem on a family G may be translated into an adapted coloring problem
by coloring the edges of each graph Gi ∈ G with the color i and then considering the
multigraph obtained from the union of all graphs in G, and an adapted coloring problem
may be similarly translated into a cooperative coloring problem. Adapted colorings were
first considered by Kostochka and Zhu [10] and have been frequently studied since then
[7, 9, 12, 14].

With the adapted coloring framework defined, we are ready to prove our lower bound
for mS(d).

Theorem 1. mS(d) > (1 + o(1)) log d
log log d

.

Proof. For each value t > 1, we will construct a graph Gt whose edges are colored with
{1, . . . , t} by some function ϕt and whose monochromatic subgraphs are star forests. We
will show that (Gt, ϕt) does not have an adapted coloring with the colors {1, . . . , t}. Then,
we will translate the edge-colored graph (Gt, ϕt) into a graph family Gt that proves our
lower bound.

We will construct the edge-colored graphs (Gt, ϕt) recursively. First, we let (G1, ϕ1)
be a K2 whose edge is colored with the color 1. Now, suppose we have constructed Gt

along with an edge-coloring ϕt : E(Gt)→ {1, . . . , t}, and suppose that (Gt, ϕt) does not
have an adapted coloring with the color set {1, . . . , t}. For 1 6 i 6 t + 1, we define a
shift function ψi : {1, . . . , t} → {1, . . . , t+ 1} so that

ψi(x) =

{
x 1 6 x 6 i− 1

x+ 1 i 6 x 6 t.

Now, we construct (Gt+1, ϕt+1) first by creating t+ 1 disjoint copies H1, . . . , Ht+1 of Gt,
where each Hi is edge-colored with the function ψi ◦ ϕt. Observe that (Hi, ψi ◦ ϕt) is
isomorphic to (Gt, ϕt) as an edge-colored graph, and hence (Hi, ψi ◦ϕt) does not have an
adapted coloring with the colors {1, . . . , i− 1, i+ 1, . . . , t+ 1}. Therefore, in any adapted
coloring of (Hi, ψi ◦ ϕt) using the color set {1, . . . , t + 1}, some vertex must be colored
i. Now, we construct (Gt+1, ϕt+1) by first taking our t + 1 disjoint edge-colored copies
(Hi, ψi ◦ ϕt) of Gt and adding a single new vertex v, and then adding an edge of color
i joining v and each vertex of Hi, for 1 6 i 6 t + 1. We call this new graph Gt+1, and
we call its edge-coloring ϕt+1. We sketch the construction of (Gt+1, φt+1) from (Gt, φt) in
Figure 1.

Observe that by construction, all monochromatic subgraphs of (Gt+1, ϕt+1) are star
forests. Furthermore, for each value 1 6 i 6 t+1, some vertex of Hi must be colored with
i, and hence no color from the set {1, . . . , t+ 1} is available at v. Therefore, (Gt+1, ϕt+1)
has no adapted coloring using the set {1, . . . , t+ 1}.

Now, we compute the maximum degree of each monochromatic subgraph of Gt. We
write Vt = |V (Gt)|, and we write ∆t for the maximum number of edges of a single color
incident to a vertex in (Gt, ϕt). It is easy to see that ∆1 = 1, V1 = 2, and that the
following recursion holds for t > 2:

∆t = Vt−1

Vt = tVt−1 + 1.
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1 2 3 4 t+ 1

v

· · ·H1 H2 H3 H4 Ht+1

Figure 1: The figure shows the construction of (Gt+1, ϕt+1) from (Gt, ϕt). First, we make
t + 1 copies H1, . . . , Ht+1 of Gt, and we obtain an edge-coloring of each Hi from ϕt by
shifting the colors so that no edge of Hi uses the color i. Then, we add a universal vertex
v that is joined to each vertex in each Hi by an edge of color i. These colored edges are
denoted by the numbers above each Hi. In any cooperative coloring of this new graph
using the set {1, . . . , t+ 1}, some vertex of each Hi must be colored i, and hence there is
no available color at v.

Solving this recurrence, we see that

Vt = V1t
t−1 + tt−2 + · · ·+ t2 + t1 + 1 = (e+ o(1))t!

∆t = (e+ o(1))(t− 1)!,

where tk = t!/(t− k)! is the falling factorial.
Now, consider a value d, and choose t so that ∆t 6 d < ∆t+1. We construct (Gt, ϕt) as

above, and we obtain a graph family Gt = {G1, . . . Gt} on the universal vertex set V (Gt)
by letting each Gi ∈ Gt have an edge set consisting of those edges of color i in (Gt, ϕt).
Observe that each graph in Gt is a star forest of maximum degree at most d. Furthermore,
since (Gt, ϕt) has no adapted coloring using the color set {1, . . . , t}, it follows that Gt has
no cooperative coloring. Since d 6 (e+o(1))t!, it follows that t > (1+o(1)) log d

log log d
. Hence,

mS(d) > (1 + o(1)) log d
log log d

, completing the proof.

3 A partition lemma and an upper bound on `S(d)

In this section, we aim to show that `S(d) 6 (1+o(1)) log d
log log d

. In order to prove this upper
bound, we establish a partition lemma, which essentially shows that if H is a graph class
whose graphs can be vertex-partitioned into members of classes A and B for which `A(d)
and `B(d) are not too large, then `H(d) is also not too large. While proving the partition
lemma, it is essential that we work in the setting of cooperative list colorings rather than
the setting of cooperative colorings.

While we can use our partition lemma to prove the upper bound `S(d) 6 (1 +
o(1)) log d

log log d
directly, we will see that the lemma gives us stronger results that imply

this upper bound on `H(d) as a corollary. We will prove two results that both show an
upper bound on `H(d) for some graph class H based on certain forest structures in the
graphs of H, and both of these results will imply that `S(d) 6 (1 + o(1)) log d

log log d
.

One tool that we will need to prove the partition lemma is the well-known Lovász
Local Lemma, which first appears in a weaker form in [6] and can be found in many
textbooks, including for example [13, Chapter 4].
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Lemma 2. Let Q be a finite set of bad events. Suppose that each event B ∈ Q occurs
with probability at most p, and suppose further that each event B ∈ Q is dependent with
at most D other events B′ ∈ Q. If

ep(D + 1) 6 1,

then with positive probability, no bad event in Q occurs.

Our partition lemma is as follows.

Lemma 3. Let H, A, and B be graph classes, and let t = t(d) be a function of d. Suppose
that

• Each graph G ∈ H of maximum degree at most d can be vertex-partitioned into sets
A and B so that G[A] ∈ A and G[B] ∈ B, and so that each vertex in A has at most
t neighbors in B,

• `A(d) = o(log d),

• `B(d)t = o(log d).

Then,

`H(d) 6 (1 + o(1))
log d

log log d− log(`B(d)t)
+ `A.

It may help the reader first to visualize A = B as the class of edgeless graphs and
to visualize H = S as the class of star forests. In this special case, for each star forest
G ∈ H, we may let A denote the leaf set of G and let B denote the set consisting of the
centers of the star components of G. In this special case, `A(d) = `B(d) = t = 1, so the
lemma immediately implies that `S(d) 6 (1 + o(1)) log d

log log d
.

Proof. We fix a value d, and we consider a family G = {G1, . . . , Gk} of graphs from H
of maximum degree at most d whose vertex sets are subsets of a universal vertex set V .
We will write `A = `A(d) and `B = `B(d). We assume without loss of generality that
each vertex v ∈ V belongs to exactly ` graphs in G. We will show that for each γ > 0, if
` = (1 + γ) log d

log log d−log(`Bt)
+ `A, then when d is sufficiently large, G has a cooperative list

coloring.
We let ε > 0 be a sufficiently small constant (which is at most 1). For each graph

Gi ∈ G, we suppose that V (Gi) can be partitioned into sets Ai and Bi satisfying the
properties of A and B in the lemma’s hypothesis. Note that if every vertex of V belongs
to at most ε(`−`A) sets Bi, then every vertex of V must belong to at least `−ε(`−`A) > `A
sets Ai, and hence a cooperative list coloring on V can be found by taking independent
subsets of the graphs Gi[Ai]. Therefore, we assume that for some nonempty set U ⊆ V
of vertices, each vertex u ∈ U belongs to more than ε(`− `A) sets Bi.

Before we proceed to the next step of our proof, we need to show that `B < ε(`− `A).
To show this, we use the third condition of the lemma to write `Bt = log d/f , for some
unbounded function f for which infx∈[d,∞] f(x) is increasing with respect to d. Then, we

observe that when d is large, log d · log f
f

< ε log d, which implies

`Bt = log d/f <
ε log d

log f
=

ε log d

log log d− log(log d/f)
=

ε log d

log log d− log(`Bt)
< ε(`− `A),
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which is even stronger than what we needed to show.
Now, for each vertex u ∈ U , we write Bu for the family of all sets Bi containing u,

for 1 6 i 6 k. Then, we choose a family B′u of exactly `B sets Bi uniformly at random
(without replacement) from Bu, and we write Cu = {i : Bi ∈ B′u}. This is possible due to
the fact that |Bu| > ε(`− `A) > `B. We assign each vertex u a color from Cu so that G[U ]
receives a cooperative list coloring, where G[U ] = {G[U ∩V (G)] : G ∈ G}. Note that this
is possible, since |Cu| = `B for each vertex u ∈ U , and since u ∈ Gi[Bi] for each i ∈ Cu.
After this assignment, if a vertex v ∈ V has a neighbor u ∈ U via a graph Gj and u is
assigned the color j, we then say that j is unavailable at v. If v ∈ Aj and the color j is
not unavailable at v, then we say that j is available at v. Observe that if each uncolored
vertex v ∈ V has at least `A available colors, then we may extend our cooperative list
coloring on G[U ] to a cooperative list coloring on G. Therefore, for each vertex v ∈ V \U ,
we define a bad event Xv, which is the event that fewer than `A colors are available at
v. The bad event Xv depends on at most t` neighbors of v, each of which has at most d`
neighbors. Therefore, Xv is dependent with at most `2td + t` < 2`2td other bad events.
We will use the Lovász Local Lemma to show that with positive probability, no bad event
occurs and that we can hence find a cooperative coloring of G.

Now, consider a vertex v ∈ V \ U . Suppose that v ∈ Aj for some value j. Recall
that v has at most t neighbors u ∈ Bj via Gj, and each such neighbor u belonging to
U is colored from a randomly chosen set Cu of `B potential colors. The probability that
a given vertex u ∈ U ∩ NGj

(v) is assigned the color j is at most the probability that

j ∈ Cu, which is at most `B
ε(`−`A)

. Therefore, the probability that j is unavailable at v is

at most `Bt
ε(`−`A)

. Note that this argument remains true even if it is given that some other
set of colors has already been made unavailable at v. Therefore, since v belongs to at
least `− ε(`− `A) sets Ai, Pr(Xv) is bounded above by the probability that more than

`− ε(`− `A)− `A = (1− ε)(`− `A)

colors are made unavailable at v, which is at most(
`

(1− ε)(`− `A)

)(
`Bt

ε(`− `A)

)(1−ε)(`−`A)

< 2`
(

`Bt

ε(`− `A)

)(1−ε)(`−`A)

.

Since each bad event Xv is dependent with fewer than 2`2td other bad events, the Local
Lemma tells us that all bad events are avoided with positive probability as long as

2`
(

`Bt

ε(`− `A)

)(1−ε)(`−`A)

· 2`2td · e 6 1.

Equivalently, by taking the natural logarithm on both sides, no bad event occurs with
positive probability as long as

` log 2+(1−ε)(`− `A)(log(`Bt)− log ε− log(`− `A))+log 2+2 log `+log t+log d+1 6 0.

This inequality can be written more simply as follows:

(1− ε+ o(1))(`− `A)(log(`Bt)− log(`− `A)) + (1 + o(1)) log d 6 0.
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We claim that this inequality holds when d is sufficiently large and ε is sufficiently
small. Recall that ` = (1+γ) log d

log log d−log(`Bt)
+`A. When we substitute this value for ` and assume

d is large, we can first write the inequality as

(1− ε+ o(1))

(
(1 + γ) log d

log log d− log(`Bt)

)
(log(`Bt)− log log d) + (1 + o(1)) log d 6 0,

or more simply,

−(1− ε+ o(1))(1 + γ) log d+ (1 + o(1)) log d 6 0,

which holds when ε is sufficiently small and d is sufficiently large. Therefore, with positive
probability, our random procedure allows us to complete a cooperative list coloring of G.
Since γ > 0 can be arbitrarily small, this completes the proof.

As mentioned before, we can use Lemma 3 directly to prove that `S(d) 6 (1 +
o(1)) log d

log log d
, which shows that the lower bound in Theorem 1 is best possible up to the

o(1) function. We will see that Lemma 3 also implies much stronger results, and we will
prove two such results that both imply this upper bound on `S(d) as a corollary.

For the first of our results, we will need some definitions. Given a rooted tree T with
a root r, the height of a vertex v in T is the distance from v to r, and the height of T
is the maximum height achieved over all vertices v ∈ V (T ). Given integers q > 1 and
h > 1, a q-ary tree of height h is a rooted tree in which every vertex of height at most
h− 1 has exactly q children. Given an integer k > 1, we write log(k) d = log log · · · log︸ ︷︷ ︸

k times

d.

Then, we have the following result.

Theorem 4. Let q > 2 and h > 1 be fixed integers. If H is a family of graphs with no
q-ary tree of height h as a subgraph, then

`H(d) 6 (1 + oq,h(1))
log d

log(h) d
+Oq(1).

Proof. We will prove the theorem by induction on h. When h = 1, then our hypothesis
implies that each graph of H has maximum degree q − 1. Hence, by (1), it holds that
`H(d) 6 2q − 2, which is certainly of the form Oq(1). Hence, the theorem holds when
h = 1.

Now, suppose that h > 2 and that the graphs of H contain no q-ary tree of height h
as a subgraph. We write t = 2qh. We consider a graph G ∈ H, and we let A ⊆ V be
the set of all vertices v ∈ V for which degG(v) < t. Now, we claim that G \ A has no
q-ary tree subgraph of height h− 1. Indeed, suppose that G \ A contains a q-ary tree T
of height h− 1 as a subgraph. Since no vertex of T belongs to A, this implies that every
vertex of T must have degree at least t in G. However, since

t = 2qh > (qh−1 − 1)q + 2qh−1 > (qh−1 − 1)q + |V (T )|,

we hence can greedily choose a set Nx of q neighbors in NG(x) ∩ (V (G) \ V (T )) for each
of the qh−1 leaves x ∈ V (T ) in such a way that the sets Nx are pairwise disjoint. Then,
by taking the union of T and the sets Nx, we have a q-ary tree of height h in G, a
contradiction. Thus, we conclude that G \ A has no q-ary tree of height h− 1.
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Now, for each G, we define the set A as described above, and we let B = V (G)\A. By
construction, each vertex of A as at most t neighbors in B via the graph G. Furthermore,
G[A] belongs to the familyA of graphs of maximum degree t, which satisfies `A(d) 6 2t by
Equation (1), and G[B] belongs to the family B of graphs with no subgraph isomorphic
to a q-ary tree of height h. By the induction hypothesis, it holds that `B(d) 6 (1 +
oq,h(1)) log d

log(h−1) d
+Oq(1). Therefore, we can apply Lemma 3.

By applying Lemma 3 and recalling that t and `A(d) are constants depending on q
and h, we conclude that

`H(d) 6 (1 + oq,h(1))
log d

log log d− log(`B)
.

As h > 2, it holds that log `B(d) 6 log log d− log(h) d + Oq,h(1), and thus the theorem is
proven.

To use Theorem 4 to prove that `S(d) 6 (1 + o(1)) log d
log log d

, consider a binary tree of
height 2, which has 7 vertices and 4 leaves. Since no star forest contains this binary tree
as a subgraph, the upper bound on `S(d) follows from Theorem 4 with q = h = 2.

Next, we show that if H is a graph class whose graphs have a certain quotient of
bounded treedepth, then `H(d) can be bounded above. For this next theorem, we will
need some more definitions. If G is a graph and U1, . . . , Uk is a partition of V (G), then
the quotient graph G/(U1, . . . , Uk) is the graph on k vertices obtained by contracting each
part Ui to a single vertex and deleting all resulting loops and parallel edges.

Given a rooted tree T with a root r, we define the closure of T as the graph on V (T )
in which two vertices u, v ∈ V (T ) are adjacent if and only if u and v form an ancestor-
descendant pair. Given a rooted forest F , in which each tree component has a root, the
closure of F is the union of the closures of the components of F . For a graph G, if there
exists a rooted tree T of height h− 1 such that G is a subgraph of the closure of T , then
we say that the treedepth of G is at most h. The reason for this “off-by-one error” is that
if T has height h − 1, then the longest path in T with the root as an endpoint contains
exactly h vertices.

With these definitions in place, we are ready for our second theorem implying that
`S(d) 6 (1 + o(1)) log d

log log d
.

Theorem 5. Let 0 < ε < 1
2

be a fixed value. Let H be a graph class for which each
graph G ∈ H has a partition into parts U1, . . . , Uk of size at most t = (log d)ε, so that
each component of the quotient graph G/(U1, . . . , Uk) has treedepth at most h. Then,

`H(d) 6 h−1+oh(1)
1−2ε · log d

log log d
.

Proof. We prove the theorem by induction on h. When h = 1, for each graph G ∈ H,
the quotient graph G/(U1, . . . , Uk) is an independent set, so each component of G has at

most t vertices. Therefore, `H(d) < 2t = o
(

log d
log log d

)
by (1).

Now, suppose that h > 2. Consider a graph G ∈ H. Let F be a rooted forest
subgraph of G/(U1, . . . , Uk) in which each component has height at most h − 1 and so
that the closure of F contains G/(U1, . . . , Uk). We partition V (G) into parts A and B
so that B contains the sets Ui corresponding to the roots of F and A contains all other
vertices of G. Observe that each component of G[B] contains at most t vertices, and each
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component K of G[A] can be partitioned using the sets Ui so that the quotient graph
of K with respect to this partition has treedepth at most h− 1. Finally, observe that a
vertex v ∈ A is adjacent to a given vertex u ∈ B only if v belongs to a set Ui, Uj is the
root ancestor of Ui in F , and u ∈ Uj. Hence, each vertex v ∈ A has at most |Uj| 6 t
neighbors in B.

Now, we apply Lemma 3 to H. We let A be the graph class defined to satisfy the
same conditions of H except with h replaced by h − 1, and we let B be the class of
graphs whose components each have at most t vertices. By the induction hypothesis,
`A(d) 6 (h−2+oh(1))

1−2ε · log d
log log d

, and `B(d) < 2t by (1). Since 2t2 = o(log d), all of the
hypotheses Lemma 3 are satisfied, and we can apply the lemma to H.

By applying Lemma 3 and using the induction hypothesis, we see that

`H(d) 6 (1 + o(1))
log d

log log d− 2 log t
+
h− 2 + o(1)

1− 2ε
· log d

log log d
=
h− 1 + o(1)

1− 2ε
· log d

log log d
.

Hence, the theorem is proven.

In order to use Theorem 5 to prove that `S(d) 6 (1 + o(1)) log d
log log d

, we observe that if
G is a star forest, then every component of G has treedepth at most 2, so we can apply
Theorem 5 with h = 2 and obtain the upper bound.

4 Conclusion

By combining (2) and Theorem 1, we obtain the following inequality:

(1 + o(1))
log d

log log d
6 mS(d) 6 mF(d) 6 `F(d) 6 (1 + o(1)) log4/3 d.

While this inequality is certainly much tighter than (2), the correct asymptotic growth
rates for mF(d) and `F(d) remain open. While we do not have a conjecture for the correct
growth rates of these quantities, we remark that if mF(d) = Θ(log d), then Theorem 4
gives a strong necessary condition for forest families that demonstrate this growth rate.
Namely, suppose that {Gd}d>1 is a sequence of forest families such that |Gd| = Θ(log d),
the forests of Gd have maximum degree at most d, and Gd has no cooperative coloring.
Then, Theorem 4 implies that for each finite tree T , T must appear as a subgraph of
infinitely many forests from the families in {Gd}d>1.
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P. Erdős on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János
Bolyai, Vol. 10. 1975.
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