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Abstract

Partially ordered patterns (POPs) generalize the notion of classical patterns
studied in the literature in the context of permutations, words, compositions and
partitions. In this paper, we give a number of general, and specific enumerative re-
sults for POPs in permutations defined by bipartite graphs, substantially extending
the list of known results in this direction. In particular, we completely characterize
the Wilf-equivalence for patterns defined by the N-shape posets.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

An occurrence of a (classical) permutation pattern p = p1 · · · pk in a permutation
π = π1 · · · πn is a subsequence πi1 · · · πik , where 1 6 i1 < · · · < ik 6 n, such that πij < πim
if and only if pj < pm. For example, the permutation 364125 has two occurrences of the
pattern 123, namely, the subsequences 345 and 125, while this permutation avoids (that
is, has no occurrences of) the pattern 4321. Permutation patterns are an active area of
research that attracts much attention in the literature (e.g. see [1, 2, 3, 7] and references
therein).

A partially ordered pattern (POP) p of length k is defined by a k-element partially
ordered set (poset) P labeled by the elements in [k] := {1, . . . , k}. An occurrence
of such a POP p in a permutation π = π1 · · · πn is a subsequence πi1 · · · πik , where
1 6 i1 < · · · < ik 6 n, such that πij < πim if j < m in P . Thus, a classical pattern of
length k corresponds to a k-element chain. For example, the

POP p =
3 2
1 occurs four times in the permutation 41253, namely, as the subse-

quences 412, 413, 423, and 453, as in each of these subsequences the element in position 1
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is bigger than that in position 3. Clearly, avoiding the pattern p is the same as avoiding
the patterns 312, 321 and 231 at the same time, so POPs provide a convenient language
to deal with larger sets of permutation patterns. Moreover, the notion of a POP provides
a uniform notation for several combinatorial structures such as peaks, valleys, modified
maxima and minima, p-descents in permutations, and many others [6].

A POP is bipartite if the underlying graph of the poset defining it is a bipartite graph.
Clearly, a POP is bipartite if and only if in the Hasse diagram of the poset defining it the
longest increasing chain has length 1.

Permutations of length n are called n-permutations, and Sn denotes the set of all n-
permutations. For an n-permutation π, the complement c(π) of π is obtained from π by
replacing each element x by n+1−x. For example, c(52413) = 14253. The same operation
is well-defined on labels in [n] of an n-element poset. Also, the reverse r(π) of π is obtained
by writing the elements of π in the reverse order. For example, r(52413) = 31425. The
complement, reverse, and usual group theoretical inverse are known as trivial bijections
from Sn to Sn. Finally, for a sequence s of numbers, the reduced form red(s) of s is
obtained from s by replacing in it the i-th smallest element by i for i = 1, 2, . . .. For
example, red((2, 6, 9, 1, 4)) = (2, 4, 5, 1, 3) and in the context of this paper, commas and
brackets will be omitted.

Denote by Sn(p) the set of n-permutations avoiding p. Patterns p1 and p2 are Wilf-
equivalent if |Sn(p1)| = |Sn(p2)| for every n > 0. Throughout this paper, the notation
a(n) is used for the number of n-permutations avoiding the pattern p in question, that is,
a(n) = |Sn(p)|.

POPs were introduced in [5], and they were studied in the context of permutations,
words, compositions and partitions (see references in [4]). A systematic search for con-
nections between sequences in the Online Encyclopedia of Integer Sequences (OEIS) [8]
and permutations avoiding POPs of length 4 and 5 was conducted in [4], which resulted
in 13 new enumerative results for classical patterns of length 4 and 5. Five out of 15
open problems stated in [4] were answered in [9]. The most relevant to our paper are the
following general results about bipartite POPs obtained in [4], where “g.f.” stands for
“generating function”.

x2 x3 x4 xk

x1
a) b)

2 3 k − 1

1 k

Figure 1: The POPs in Theorems 1 and 2.

Theorem 1 ([4]). Let p be the POP in Figure 1a, where {x1, . . . , xk} = [k] and k > 1.
Then,

a(n) =

{
n! if n < k
(k − 1)!(k − 1)n−k+1 if n > k.
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Also, the respective g.f. is

∑
n>0

a(n)xn =
(k − 1)(k − 1)!xk

1− (k − 1)x
+

k−1∑
i=0

i!xi.

Theorem 2 ([4]). Let p be the POP in Figure 1b, where k > 2 (if k = 2 then p is two
independent elements). Then,

a(n) =

{
n! if n < k
2(k − 2) · a(n− 1)− (k − 2)(k − 3) · a(n− 2) if n > k.

Also, the respective g.f. is∑
n>0

a(n)xn =
A(x)−B(x) + C(x)

1− 2(k − 2)x+ (k − 2)(k − 3)x2
,

where

A(x) =
k−3∑
i=0

i!xi, B(x) = 2(k − 2)
k−4∑
i=0

i!xi+1, C(x) = (k − 2)(k − 3)
k−5∑
i=0

i!xi+2.

The following simple result is also useful.

Theorem 3 ([4]). Let p be a POP of length k. Also, let p′ be the POP obtained from
p by applying the complement operation on its labels, that is, by replacing a label x by
k + 1− x. Moreover, let p′′ be the POP obtained from p by flipping the poset with respect
to a horizontal line (that is, p′′ is the dual of p obtained by replacing each relation x < y
in p by y < x). Then, |Sn(p)| = |Sn(p′)| = |Sn(p′′)| for any n > 0, that is, p, p′ and p′′

are Wilf-equivalent.

In this paper, we extend the results in Theorems 1 and 2 to other bipartite POPs
and discuss certain generalizations for some of them. The paper is organized as follows.
In Section 2, we derive enumerative results about certain classes of POPs defined by
complete bipartite graphs, in particular, enumerating all avoidance classes for such POPs
of length at most 5. In Section 3, we give a complete classification of the Wilf-equivalence
for N-patterns, which are the bipartite POPs of length 4 defined by the posets of N-shape.
We prove that there are three Wilf-equivalence classes for N-patterns, and enumerate all
classes. In Section 4, we discuss enumeration of so-called DC POPs defined by disjoint
chains (including those of length 2). Finally, in Section 5 we discuss directions for further
research.

2 POPs defined by complete bipartite graphs

We denote by p = (A/B), where A ⊂ [k] and B = [k] \ A, the POP p of length k in
which each element corresponding to a position from A must be larger than all elements
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that are in positions from B. We call such patterns complete bipartite POPs. We are
interested in the number of n-permutations avoiding a given complete bipartite POP p of
length k. Clearly, for n < k there are n! p-avoiding n-permutations, so in our arguments
below we can assume that n > k. Note that the cases of |A| = 1 and A = {1, k} are given
by Theorems 1 and 2, respectively.

In this section, we prove that the number a(n) of n-permutations avoiding POPs with
A ∈ {{i, i+ 1}, {j, j + 2}}, where i ∈ [n− 1] and j ∈ [n− 2], satisfies the same recurrence
relation as that in Theorem 2.

Given an n-permutation π and t ∈ [n], denote by π′ = π \ t the (n− 1)- permutation
obtained from π by deleting the element t and decreasing by 1 each element in π larger
than t. For example, if π = 31524 and t = 2 then π′ = 2143. For any POP p, we say that
π and π′ are p-equivalent if either both of the permutations contain an occurrence of p, or
both of them are p-avoiding. For example, let p = (A/B) be a complete bipartite POP
of length k, where |A| = s and 1 ∈ A. If π = π1 · · · πn ∈ Sn and π1 = t, where t ∈ [k − s],
then π and π′ = π \ t are p-equivalent, since the first element of π clearly cannot be a part
of p. It is straightforward to extend the notion of p-equivalence to the situation when
more than one element are removed from a permutation.

Note that for establishing p-equivalence, it is sufficient to prove the implication: “If π
contains p then π′ contains p”, since the opposite implication is trivial taking into account
the hereditary nature of POP containment.

Our next theorem gives the same recurrence relation, and hence the same g.f., as that
in Theorem 2. In what follows, we use the notation [x, y] := {x, x+ 1, . . . , y} and remind
that [x] = [1, x].

Theorem 4. Let p = (A/B) be a complete bipartite POP of length k. If A = {i, i + 1},
where i ∈ [k − 1] for k > 3, then

a(n) =

{
n! if n < k
2(k − 2) · a(n− 1)− (k − 2)(k − 3) · a(n− 2) if n > k.

Proof. Let π = π1 · · · πn ∈ Sn and πs = n and πt = n−1 for some s, t ∈ [n]. Clearly, if both
s, t ∈ [i, n−k+ i+1] then π contains p. On the other hand, if s ∈ [i−1]∪ [n−k+ i+2, n]
(respectively, t ∈ [i− 1]∪ [n− k+ i+ 2, n]) then n = πs (respectively, n− 1 = πt) cannot
be a part of p, and thus, π and π \ n (respectively, π \ (n − 1)) are p-equivalent. In
total, there are 2(k − 2) · a(n− 1) such p-avoiding permutations. Among them, there are
(k−2)(k−3) ·a(n−2) p-avoiding permutations having both s, t ∈ [i−1]∪ [n−k+ i+2, n]
that were counted twice (note that in this case both n and n − 1 cannot be a part of p
and hence π and π \ {n− 1, n} are p-equivalent). In total, we have

a(n) = 2(k − 2) · a(n− 1)− (k − 2)(k − 3) · a(n− 2),

as required.

Generalizing the proof of Theorem 4 in a straightforward way (using the principle of
inclusion-exclusion) gives the following result.
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Theorem 5. Let p = (A/B) be a complete bipartite POP of length k. For A = [i, i+ j],
where i ∈ [k − j] and k > j + 2, a(n) = n! if n < k, and for n > k,

a(n) = (j + 1)(k − j − 1) · a(n− 1)−
(
j + 1

2

)
(k − j − 1)(k − j − 2) · a(n− 2)

+

(
j + 1

3

)
(k − j − 1)(k − j − 2)(k − j − 3) · a(n− 3) + · · ·

+(−1)j(k − j − 1)(k − j − 2) · · · (k − 2j − 1) · a(n− j − 1).

In particular, for A = {i, i+ 1, i+ 2} (the case of j = 2), we have

a(n) = 3(k − 3) · a(n− 1)− 3(k − 3)(k − 4) · a(n− 2) + (k − 3)(k − 4)(k − 5) · a(n− 3).

Proof. Let π = π1 · · · πn ∈ Sn. Let us say that an element x ∈ π is large if it is among the
j + 1 largest elements, i.e. x ∈ [n− j, n]. Clearly, if the positions of all large elements in
π are in [i, n− k + i+ j] then π contains p. On the other hand, any large element whose
position is in C := [i − 1] ∪ [n − k + i + j + 1, n] cannot be a part of p. So, applying
the principle of inclusion-exclusion, we count the number of p-avoiding permutations with
one large element in C, reduce that number by the number of p-avoiding permutations
with two large elements in C, add the number of p-avoiding permutations with three large
elements in C, etc. In order to count the number of p-avoiding permutations with ` large
elements in C, note that there are

(
j+1
`

)
ways to choose ` large elements. The first of

these elements has (k− j− 1) possible positions in C, the second one has just (k− j− 2)
positions, and so on, the `-th element has (k − j − `) possible positions. Removing these
` large elements we obtain a p-equivalent permutation of length n − `. Hence, the total
number of p-avoiding permutations with ` large elements in C is(

j + 1

`

)
(k − j − 1)(k − j − 2) · · · (k − j − `) · a(n− `).

Summing up these summands with a multiple of (−1)`−1 for all ` from 1 to j + 1 gives
the required formula.

Note that in the case of j = 0 in Theorem 5, we deal with the POP in Figure 1a, and
the recurrence given by Theorem 5 in this case, namely, a(n) = (k − 1)a(n − 1), can be
used to derive the formula in Theorem 1.

Theorem 6. Let p = (A/B) be a complete bipartite POP of length k. If A = {i, i + 2},
where i ∈ [k − 2] and k > 3, then

a(n) =

{
n! if n < k
2(k − 2) · a(n− 1)− (k − 2)(k − 3) · a(n− 2) if n > k.
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Proof. Let π = π1 · · · πn ∈ Sn and n = πs and n − 1 = πt for some s, t ∈ [n]. Further,
we let C := [i − 1] ∪ [n − k + i + 3, n]. Similarly to the proof of Theorem 4, if n or
n− 1 occurs in π in a position from C then it cannot be a part of p and hence there are
2(k − 3) · a(n − 1) − (k − 3)(k − 4) · a(n − 2) such p-avoiding n-permutations. Assume
s, t 6∈ C. Then s = t ± 1 since otherwise π contains p. Let π′ = π \ n. We next show
that π and π′ are p-equivalent. Indeed, assume that π contains an occurrence of p. Then,
this occurrence cannot involve both n and n − 1 since they are adjacent in π and hence
cannot correspond to i and i+ 2 in p. Therefore, if n is involved in an occurrence of p in
π then substituting it by n− 1 gives an occurrence of p in π′. Note that π′ has a property
that the position of its maximum element must be in [i, n− k + i+ 1]. Clearly, there are
a(n − 1) − (k − 3) · a(n − 2) such p-avoiding (n − 1)-permutations π′, and each of them
corresponds to two p-avoiding n-permutations π (n can go straight before or straight after
n− 1). Thus, we have

a(n) = 2(k − 3) · a(n− 1) + (k − 3)(k − 4) · a(n− 2) + 2[a(n− 1)− (k − 3) · a(n− 2)]

= 2(k − 2) · a(n− 1)− (k − 2)(k − 3) · a(n− 2),

as required.

Note that from Theorems 4 and 6, all complete bipartite POPs of length 4 with
|A| = 2 are Wilf-equivalent, and their counting sequence begins with 1, 2, 6, 20, 68, 232,
792, 2704, 9232, . . . (this is the sequence A006012 in [8] with the g.f.

∑
n>0 a(n)xn =

1−3x
1−4x+2x2 and several combinatorial interpretations, including two related to permuta-
tions). As for length 5, all POPs with |A| = 2 are also Wilf-equivalent except for
A ∈ {{1, 4}, {2, 5}}, and these two POPs are Wilf-equivalent by Theorem 3. In the
“generic case”, the counting sequence begins with 1, 2, 6, 24, 108, 504, 2376, 11232,
53136,. . . (the sequence A094433 in [8]), and in the “exceptional cases”, the counting
sequence begins with 1, 2, 6, 24, 108, 504, 2364, 11052, 51456, . . . .

The following theorem completes enumeration of complete bipartite POPs of length 5,

namely, it enumerates avoidance for the POP ({1, 4}, {2, 3, 5}) =
1

2

4

3 5
(equivalently,

({2, 5}, {1, 3, 4}) =
2

1

5

3 4
).

Theorem 7. Let p be the POP ({1, 4}, {2, 3, 5}) =
1

2

4

3 5
. Then,

a(n) =

{
n! if n 6 4
7a(n− 1)− 12a(n− 2) + 4a(n− 3) + 2b(n− 2) if n > 5,

where b(1) = 0, b(2) = 1 and for n > 3,

b(n) = a(n− 2) + b(n− 1) + 2
n−2∑
i=2

b(i).
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Proof. For p-avoiding permutations π1 · · · πn, we let

• b(n) (resp., b′(n)) be the number of n-permutations with πn−1 = n (resp., πn−1 =
n− 1);

• c(n) (resp., c′(n)) be the number of n-permutations with πi−1 = n − 1 and πi = n
(resp., πi−1 = n and πi = n− 1) for 2 6 i < n;

• d(n) (resp., d′(n)) be the number of n-permutations with πn−3 = n−1 and πn−1 = n
(resp., πn−3 = n and πn−1 = n− 1);

• e(n) (resp., e′(n)) be the number of n-permutations with πi−2 = n − 1 and πi = n
(resp., πi−2 = n and πi = n− 1) for 3 6 i < n− 1;

• f(n) (resp., f ′(n)) be the number of n-permutations with πn 6= n (resp., πn 6= n−1).

Clearly, for n < 5, a(n) = n!, f(n) = n! − (n − 1)!, b(n) = (n − 1)! except for b(1) = 0.
Also, for n < 3, c(n) = d(n) = e(n) = 0. Moreover, p is symmetric with respect to n and
n− 1 meaning that swapping n and n− 1 neither introduces an extra occurrence of p nor
removes an existent occurrence of p (both n and n− 1 can only play the role of 1 or 4 in
p). Hence, b′(n) = b(n), c′(n) = c(n), d′(n) = d(n), e′(n) = e(n) and f ′(n) = f(n), and
therefore in what follows we can assume that n is to the right of n− 1, and at the end we
multiply the result by 2.

Since, clearly, there are a(n− 1) n-permutations π1 · · · πn with πn = n, we have

f(n) = a(n)− a(n− 1).

If πi = n for i < n then either πi−1 = n− 1 or πi−2 = n− 1 (or else there is an occurrence
of p involving n − 1 and n). In the latter case, we consider separately the case when
πn−1 = n. Keeping in mind doubling the result, we obtain

a(n) = 2(a(n− 1) + c(n) + d(n) + e(n)). (1)

We now compute c(n). Let π be an n-permutation counted by c(n). Then, clearly,
removing n from π gives a p-equivalent permutation. Hence,

c(n) = f(n− 1) = a(n− 1)− a(n− 2). (2)

Let us compute e(n). If π is an n-permutation counted by e(n) then to the right of n in
π there are at least two elements. Consider possible positions j for n − 2. The case of
j < i − 3 is not possible because then π is not p-avoiding (n − 2 and n play the roles of
1 and 4 in p, respectively). The case of i + 1 < j < n is not possible either as then π is
not p-avoiding (n− 1 and n− 2 play the roles of 1 and 4 in p, respectively). This leaves
us with four possible cases for j to consider.
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• j = i− 3. In this case, π is p-equivalent to the permutation π′ obtained from π by
removing n− 2 and reducing n− 1 and n by 1. Indeed, n− 2 cannot play the role
of 2, 3, 5 in an occurrence of p as otherwise n− 1 and n must play the roles of 1 and
4 but there is only one element in π between them. On the other hand, if n − 2
plays the role of 1 or 4 in an occurrence of p in π, then the element n− 2 in π′ (the
former element n− 1 in π) plays the same role in an occurrence of p in π′. Hence,
there are e(n− 1) such permutations.

• j = i− 1. In this case, π is p-equivalent to the permutation π′ obtained from π by
removing n− 1 and n since only one of the consecutive elements n− 1, n− 2, n can
be involved in an occurrence of p. Since in π′ the maximum element n− 2 is not in
the last two positions, we have f(n− 2)− b(n− 2) such permutations.

• j = i+ 1 or j = n. In both cases, π is p-equivalent to the permutation π′ obtained
from π by removing n−2 and reducing n−1 and n by 1. In π′, there is one element
between the maximum elements n− 2 and n− 1, and the element n− 1 is not the
rightmost element. Hence, in each of the two cases, the number of permutations is
d(n− 1) + e(n− 1).

Summarizing the four cases, we obtain

e(n) = 3e(n− 1) + 2d(n− 1) + a(n− 2)− a(n− 3)− b(n− 2).

Next, we compute d(n). Let π be an n-permutation counted by d(n). Similarly to our
considerations in the case of e(n), we have three possibilities fo position j of the element
n− 2.

• j = n− 4. Removing n− 2 results in a p-equivalent permutation. Hence, there are
d(n− 1) permutations in this case.

• j = n − 2. Removing n − 1 and n results in a p-equivalent permutation. Hence,
there are b(n− 2) permutations in this case.

• j = n. Removing n − 2 and n results in a p-equivalent permutation. Hence, there
are b(n− 2) permutations in this case.

Summarizing the three cases, we obtain

d(n) = 2b(n− 2) + d(n− 1).

Finally, we compute b(n). Let π be an n-permutation counted by b(n) and πj = n − 1.
Clearly, to avoid p we must have j > n − 4. If j = n then π is p-equivalent to the
permutation obtained by removing n − 1 and n from π, and there are a(n − 2) such
permutations. If j = n−2 then π is p-equivalent to the permutation obtained by removing
n from π, and there are b(n−1) such permutations. Finally, if j = n−3 then by definition,
there are d(n) such permutations. Hence,

b(n) = a(n− 2) + b(n− 1) + d(n).
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As the final step, we simplify the obtained formulas.

d(n) = 2b(n− 2) + d(n− 1) = 2b(n− 2) + 2b(n− 3) + d(n− 2) = · · · = 2
n−2∑
i=2

b(i)

since b(1) = 0. But then

b(n) = a(n− 2) + b(n− 1) + d(n) = a(n− 2) + b(n− 1) + 2
n−2∑
i=2

b(i).

From (1) and (2), a(n) = 2[2a(n − 1) − a(n − 2) + d(n) + e(n)] and hence
d(n) + e(n) = a(n)/2− 2a(n− 1) + a(n− 2). On the other hand,

d(n) + e(n) = 2b(n− 2) + d(n− 1) + 3e(n− 1) + 2d(n− 1) + a(n− 2)− a(n− 3)− b(n− 2)

= b(n− 2) + a(n− 2)− a(n− 3) + 3(d(n− 1) + e(n− 1))

= b(n− 2) + a(n− 2)− a(n− 3) + 3(a(n− 1)/2− 2a(n− 2) + a(n− 3))

= b(n− 2) + 3a(n− 1)/2− 5a(n− 2) + 2a(n− 3).

Inserting the last expression for d(n) + e(n) into (1), we obtain the desired result:

a(n) = 2(2a(n− 1)− a(n− 2) + (b(n− 2) + 3a(n− 1)/2− 5a(n− 2) + 2a(n− 3)))

= 7a(n− 1)− 12a(n− 2) + 4a(n− 3) + 2b(n− 2).

3 Wilf-classification for N-pattern avoidance

Note that the minimal connected bipartite graph that is not a complete bipartite graph
is a 4-path. Due to Theorem 3, we may assume that the corresponding poset defining
a bipartite POP of length 4 has the N-shape, and we call such POPs N-patterns. The
following two theorems were obtained in [4].

Theorem 8 ([4]). For the N-pattern
2
1

3
4 , a(0) = a(1) = 1 and, for n > 2,

a(n) = 4a(n− 1)− 3a(n− 2) + 1, so that

a(n) =
3n − 2n+ 3

4
.

Also, ∑
n>0

a(n)xn =
(1− 2x)2

(1− 3x)(1− x)2
.

Theorem 9 ([4]). For the N-pattern p =
3
1

2
4 we have a(0) = a(1) = 1 and, for

n > 2, a(n) = 4a(n− 1)− 3a(n− 2) + a(n− 3), so that, for n > 1,

a(n) =
n−1∑
i=0

(
n+ 2i− 1

3i

)
.
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Also, ∑
n>0

a(n)xn =
1− 3x+ x2

1− 4x+ 3x2 − x3
.

Reading the labels of an N-pattern through the path starting from the left lower vertex
to the right upper vertex, we can encode such a pattern by a 4-permutation, called N-word,
that we record in bold to distinguish from a classical pattern. For example, the N-pattern

3
1

2
4 is encoded by the N-word 3124. In this section, for the reader’s convenience

we indicate elements of posets in bold in order to distinguish them from elements of
permutations.

N-patterns Reference
Wilf-class 1 given by the recurence a(n) = 4a(n− 1)− 3a(n− 2) + 1.
This is the sequence A111277 in [8] (1, 2, 6, 19, 59, 180, 544, 1637, 4917, . . .).

2
1

3
4 ,

3
4

2
1 ,

1
2

4
3 ,

4
3

1
2 Theorem 8

2
1

4
3 ,

3
4

1
2 Theorem 10

1
2

3
4 ,

4
3

2
1 Theorem 11

1
3

2
4 ,

4
2

3
1 Theorem 12

1
4

3
2 ,

4
1

2
3 ,

3
2

1
4 ,

2
3

4
1 Theorem 13

Wilf-class 2 given by the recurrence a(n) = 4a(n− 1)− 3a(n− 2) + a(n− 3).
This is the sequence A052544 in [8] (1, 2, 6, 19, 60, 189, 595, 1873, 5896, . . .).

3
1

2
4 ,

2
4

3
1 ,

1
3

4
2 ,

4
2

1
3 Theorem 9

1
4

2
3 ,

4
1

3
2 ,

2
3

1
4 ,

3
2

4
1 Theorem 14

Wilf-class 3 given by the recurrence a(n) = 3a(n− 1) + a(n− 2)− a(n− 3).
The sequence begins with 1, 2, 6, 19, 61, 196, 630, 2025, 6509, . . ..

3
1

4
2 ,

2
4

1
3 Theorem 15

Table 1: Wilf-equivalence classification for N-patterns where the patterns in the same row
are Wilf-equivalent by Theorem 3.

There are 24 N-words. By Theorem 3, complementing the labels of a poset gives a
Wilf-equivalent pattern, so in the cases to consider we can assume that in an N-word 1 is
to the left of 4. Moreover, by Theorem 3, flipping the poset with respect to a horizontal
line then complementing the labels and reading the word backward (to obtain N-shape
with 1 being to the left of 4) we see that 1423 is equivalent to 2314, 1432 is equivalent to
3214, 1342 is equivalent to 3124, 1243 is equivalent to 2134, while 1234, 1324, 2143
and 3142 are equivalent to themselves. These observations leave us with eight cases to
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consider, two of which are already considered in Theorems 8 and 9. It turns out that
there are three Wilf-equivalence classes for the 24 N-patterns, which are summarized in
Table 1.

3.1 N-patterns in Wilf-equivalence class 1 in Table 1

Theorem 10. For the N-bipartite POP p =
2
1

4
3 , we have a(0) = a(1) = 1 and, for

n > 2, a(n) = 4a(n − 1) − 3a(n − 2) + 1, hence giving the formula for a(n) and the g.f.
in the statement of Theorem 8.

Proof. Let b(n) (resp., c(n)) be the number of p-avoiding n-permutations where n is not
the rightmost element (resp., and the elements to the right of n are in increasing order).
Suppose that π1 · · · πn ∈ Sn. Clearly, if πn = n (or, πn = n−1) then πn cannot be involved
in an occurrence of p. Hence, removing πn one obtains a p-equivalent permutation and
therefore b(n) = a(n)− a(n− 1).

Let π = π1 · · · πn be p-avoiding. One can see that there are four possibilities to avoid
p.

• πn = n. Clearly, there are a(n− 1) such permutations.

• πn = n− 1. Clearly, there are a(n− 1) such permutations.

• πi−1 = n− 1 and πi = n for 2 6 i < n. We have b(n− 1) = a(n− 1)− a(n− 2) such
permutations since removing n from π gives a p-equivalent permutation.

• πi−1 = n and πi = n − 1 for 2 6 i < n. In this case, πi+1 · · · πn must be an
increasing permutation or else, there is an occurrence of p involving the elements
n − 1 and n. There are c(n − 1) permutations in this case since removing n we
obtain a permutation π′ counted by c(n−1) and n can be inserted back in any such
π′ next to the left of n− 1 without introducing an occurrence of p.

Summarising all the cases above, we obtain

a(n) = 3a(n− 1)− a(n− 2) + c(n− 1). (3)

Next, we find a recurrence relation for c(n). Supposed that π = π1 · · · πn is an n-
permutation counted by c(n). We consider all possibilities for position of n− 1 in π.

• n − 1 is to the left of n, in which case n − 1 must be immediately to the left of
n to avoid p. But then, removing n from π we obtain a p-equivalent permutation
counted by c(n− 1). So, there are c(n− 1) permutations in this case.

• πn−1πn = n(n − 1). Removing n(n − 1) from π we obtain a p-avoiding (n − 2)-
permutation, and conversely, we can adjoin n(n−1) to the right of any permutation
counted by a(n− 2) without creating an occurrence of p. Hence, we have a(n− 2)
permutations in this case.
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• πi · · · πn = nπi+1 · · · πn−1(n − 1) where i < n − 1 and πi+1 · · · πn−1 is an increasing
permutation. Removing (n− 1) we obtain a permutation counted by c(n− 1), and
conversely, we can adjoin the element n−1 at the end of any permutation π′ counted
by c(n − 1) (and replacing n − 1 in π′ by n) without introducing an occurrence of
p. Hence, we have c(n− 1) permutations in this case.

So, c(n) = 2c(n − 1) + a(n − 2). Now, we will prove by induction by n that c(n) =
a(n)− 2a(n− 1) + 1 for n > 1. The base cases of c(1) = 0 and c(2) = 1 are easy to check.
Suppose c(n− 1) = a(n− 1)− 2a(n− 2) + 1, then

c(n) = 2c(n− 1) + a(n− 2) = c(n− 1) + a(n− 1)− a(n− 2) + 1 = a(n)− 2a(n− 1) + 1

as desired, where the last equality is obtained by using (3). Finally,

a(n) = 3a(n− 1)− a(n− 2) + c(n− 1) = 4a(n− 1)− 3a(n− 2) + 1.

Theorem 11. For the N-bipartite POP p =
1
2

3
4, we have a(0) = a(1) = 1 and, for

n > 2, a(n) = 4a(n − 1) − 3a(n − 2) + 1, hence giving the formula for a(n) and the g.f.
in the statement of Theorem 8.

Proof. Let π = π1 · · · πn be a p-avoiding permutation. If π1 = n then there are clearly
a(n−1) such permutations. Let b(n) be the number of p-avoiding n-permutations π1 · · · πn
with πi = n for 1 < i 6 n. So,

a(n) = a(n− 1) + b(n). (4)

Note that in any permutation counted by b(n), πi+1 > πi+2 > · · · > πn because if πj < πs
for some i < j < s 6 n then the elements π1, n, πj and πs form an occurrence of p. We
claim that

b(n) = 3b(n− 1) + 1. (5)

Indeed, permutations counted by b(n) fall in one of the following four cases, where we
noted that if the element n − 1 is to the left of n then either the elements are next to
each other, or π1 = n− 1 (otherwise, an occurrence of p involving n and n− 1 would be
created):

• The element n−1 is to the right of n, and hence πi+1 = n−1. Removing n we obtain
a permutation counted by b(n−1). Vice versa, any permutation counted by b(n−1)
can be extended to a permutation counted by b(n) by inserting n immediately to
the left of the element n− 1. Thus, we have b(n− 1) permutations in this case.

• π1 = n− 1 and π2 = n. There is one such permutation.

• π1 = n − 1, π2 6= n. Removing n − 1 and replacing n by n − 1 in the obtained
permutation, we get a permutation counted by b(n−1). This operation is invertible
as n − 1 in the leftmost position of an n-permutation cannot be involved in an
occurrence of p. Hence, we have b(n− 1) permutations in this case.
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• πi−1πi = (n − 1)n for i > 2. It is easy to check that removing n we obtain a p-
equivalent permutation counted by b(n− 1). Thus, we have b(n− 1) permutations
in this case completing our proof of (5).

From (4) and (5), to complete the proof of the theorem, clearly we only need to show
that, for n > 2,

b(n) = 3a(n− 1)− 3a(n− 2) + 1.

Indeed, from (4), 3a(n− 1)− 3a(n− 2) = 3b(n− 1), and hence

3a(n− 1)− 3a(n− 2) + 1 = 3b(n− 1) + 1 = b(n)

as desired.

Theorem 12. For the POP p =
1
3

2
4 , we have a(0) = a(1) = 1 and, for n > 2,

a(n) = 4a(n − 1) − 3a(n − 2) + 1, hence giving the formula for a(n) and the g.f. in the
statement of Theorem 8.

Proof. The base cases are clearly true, so let n > 2. Let π = π1 · · · πn be a p-avoiding
permutation. Clearly, π1 ∈ {n − 1, n} or π2 ∈ {n − 1, n} since otherwise the elements
π1, π2, n− 1, n in π form an occurrence of p. This explains the term 4a(n− 1)− 2a(n− 2)
as we can insert either n− 1 or n in either the first or the second position in a p-avoiding
(n − 1)-permutation and subtract the case counted twice when {π1, π2} = {n − 1, n}.
However, some of the n-permutations counted by the term 4a(n− 1) are not p-avoiding,
as they contain an occurrence of p with n − 1 playing the role of 1. We say that a
permutation is bad if n − 1 ∈ {π1, π2}, n 6∈ {π1, π2}, π has an instance of p but the
permutation π′ obtained from π by removing n−1 and reducing n by 1 is p-avoiding. Let
b(n) be the number of bad n-permutations. Then

a(n) = 4a(n− 1)− 2a(n− 2)− b(n). (6)

Note that any bad n-permutation is of the form (n− 1)π2 · · · πinπi+2 · · · πn, where

• 2 6 i 6 n− 2 (that is, π2 6= n and πn 6= n), and

• there exist x ∈ {π2, . . . , πi} and y ∈ {πi+2, . . . , πn} such that x < y.

Indeed, if π1 = n − 1 and it plays the role of 1 in an occurrence of p then the role of 3
must be played by n, so that there exist x and y with the properties described above. On
the other hand, if π2 = n− 1 and π2xny is an occurrence of p then clearly x 6= n− 2. But
since π′ is p-avoiding, we have π1 = n − 2 or π3 = n − 2. This leads to a contradiction
with (n− 2)x(n− 1)y being an occurrence of p in π′ showing that no bad n-permutation
with π2 = n− 1 exists.

We next show, by induction on n, that b(n) = a(n− 2)− 1 (for n > 2), which gives us
the desired result by (6). The three base cases hold as there are no bad n-permutations
for n = 2, 3, and the only bad 4-permutation is 3142. Suppose now that n > 5 and the
statement holds for smaller length permutations.
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Since each bad n-permutation begins with n− 1, we can remove this element, replace
n by n− 1 in the obtained permutation, and focus on an equivalent problem of counting
p-avoiding (n − 1)-permutations having a subsequence x(n − 1)y, x < y; we call such
(n− 1)-permutations r-bad (standing for “reduced bad”). Clearly, removing the element
n− 1 from an r-bad permutation results in a p-avoiding (n− 2)-permutation, so we will
generate all r-bad permutations from the permutations counted by a(n− 2) by inserting
the element n− 1.

We can see that inserting n − 1 in the first position does not result in an r-bad
permutation. If n−1 is inserted in the second position of a p-avoiding (n−2)-permutation
π = π1 · · · πn−2, then the obtained permutation is r-bad if and only if π1 6= n− 2 (as only
then we obtain the subsequence x(n − 1)y; also, note that no occurrence of p can be
introduced in this case). This gives us a(n − 2) − a(n − 3) r-bad (n − 1)-permutations
since the number of p-avoiding (n−2)-permutations beginning with n−2 is clearly a(n−3).

Suppose now that n − 1 is inserted in position i, 3 6 i 6 n − 2. Since the result of
the insertion is a p-avoiding permutation π′ = π′1 · · · π′n−1, we see that either π′1 = n − 2
or π′2 = n− 2 (otherwise, π′1, π

′
2, n− 2, n− 1 form an occurrence of p). We consider these

two cases.

• π′1 = n− 2. π′ must contain a subsequence x(n− 1)y, x < y, and clearly x 6= n− 2.
But then (n − 2)x(n − 1)y is an occurrence of p, a contradiction showing that no
r-bad permutations can be obtained in this case.

• π′2 = n−2. We claim that removing the element n−2 in π′ and replacing the element
n − 1 by n − 2, one obtains an r-bad (n − 2)-permutation π′′. Indeed, π′2 = n − 2
cannot be involved in an occurrence of p, or be the x in the subsequence x(n− 1)y,
x < y. Hence, π′ is r-bad if an only if π′′ is r-bad, and therefore the number of
bad permutations π′ of this type is given by b(n− 1), which is a(n− 3)− 1 by the
induction hypothesis.

To summarise the cases above, b(n) = a(n− 2)− a(n− 3) + a(n− 3)− 1 = a(n− 2)− 1,
as desired.

Theorem 13. For the POP p =
1
4

3
2 , we have a(0) = a(1) = 1 and, for n > 2,

a(n) = 4a(n − 1) − 3a(n − 2) + 1, hence giving the formula for a(n) and the g.f. in the
statement of Theorem 8.

Proof. Let b(n) be the number of p-avoiding permutations π1 · · · πn such that πn 6= 1 and
each element to the left of the element 1 (if any) is larger than any element to the right
of 1.

Let us compute a(n). Suppose that π = π1 · · · πn is p-avoiding. If πn = 1 or πn = 2 then
πn cannot be involved in an occurrence of p. Hence there are 2a(n−1) such permutations.
Further, if πn 6= 1 and πn 6= 2 and the elements 1 and 2 are not next to each other in π,
then clearly there is an occurrence of p in π involving 1, 2 and πn, which is impossible.
Consider two cases.
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• Suppose that πi−1 = 1 and πi = 2 for some i ∈ [2, n − 1]. Then the permutation
π′ = π′1 · · · π′n−1 obtained from π by removing the element 1 and decreasing all other
elements by 1 is p-equivalent to π. Indeed, if the element 1 plays the role of 1 in an
occurrence of p in π then the element 2 cannot play the role of 2 in that occurrence
since there are no candidates for an element to play the role of 3 in this case. On the
other hand, if the element 1 plays the role of 3 in an occurrence of p in π then the
element 2 cannot play the role of 4 in that occurrence since there is no candidate to
play the role of 1 (which would have to be less than 2). Hence, in both cases, any
time the element 1 is involved in an occurrence of p, the element 2 may be involved
in the same occurrence of p in π′. We have a(n− 1)− a(n− 2) such permutations
since in π′n−1 6= 1.

• Suppose that πi−1 = 2 and πi = 1 for 2 6 i < n. If there exist k < i− 1 and j > i
such that πk < πj then the elements πk, 2, 1 and πj would form an occurrence of p,
which is impossible. If such k < i− 1 and j > i do not exist, then the permutation
obtained from π by removing the element 1 and reducing every other element by 1
is p-equivalent to π. Indeed, if the element 1 plays the role of 1 in an occurrence of
p then 2 also plays the role of 1 in the same occurrence of p in π′. Also, 1 cannot
play the role of 3 since there is no candidate for the role of 1 in that case (which
would have to be less than the element playing the role of 4). We have b(n − 1)
such permutations.

From our considerations above, we see that

a(n) = 3a(n− 1)− a(n− 2) + b(n− 1). (7)

Next, we computer b(n). Suppose that π = π1 · · · πn is p-avoiding, πi = 1 for some
i ∈ [1, n− 1] and for all 0 6 k < i < j 6 n we have πk > πj where π0 := ∞. Let πj = 2
then by definition j > i. We consider three cases.

• i = n − 1, j = n. Clearly, the permutation obtained by removing 1 and 2 from π
and reducing every other element by 2 is p-equivalent to π (none of 1 and 2 can play
the role of 4 in an occurrence of p). Therefore, we have a(n− 2) such permutations.

• i < n− 1, j ∈ [i+ 2, n− 1]. This case is impossible since then the elements 1, πi+1,
2, πn form an occurrence of p.

• i < n−1, j ∈ {i+1, n}. It is easy to see that the permutation obtained by removing
the element 2 from π and reducing each element in [3, n] by 1 is p-equivalent to π.
Hence, we have 2b(n− 1) such permutations.

Summarising the three cases above, we have

b(n) = 2b(n− 1) + a(n− 2).

The recursion for b(n) is the same as that for c(n) in the proof of Theorem 10, so we can
conclude from that proof that b(n) = a(n) − 2a(n − 1) + 1, which gives us the desired
recursion for a(n) from (7).
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3.2 N-patterns in Wilf-equivalence class 2 in Table 1

Theorem 14. For the POP p =
1
4

2
3 we have a(0) = a(1) = 1 and, for n > 2,

a(n) = 4a(n− 1)− 3a(n− 2) + a(n− 3), hence giving the formula for a(n) and the g.f. in
the statement of Theorem 9.

Proof. Let π = π1 · · · πn be a p-avoiding n-permutation. Clearly, {π1, π2}∩{n− 1, n} 6= ∅
as otherwise there would be an occurrence of p in π. Moreover, if π1 = n or π2 = n
then n cannot be involved in an occurrence of p in π, and hence there are 2a(n− 1) such
permutations. Also, if π2 = n− 1 and π1 6= n then removing n− 1 from π and decreasing
n by 1 we obtain a p-equivalent permutation π′ = π′1 · · · π′n−1, since n− 1 cannot play the
role of 2 in an occurrence of p, while if n − 1 plays the role of 1 in an occurrence of p
then π1 also plays the role of 1 in an occurrence of p in π′. Since π′1 6= n − 1 we have
a(n− 1)− a(n− 2) such permutations.

We let b(n) be the number of p-avoiding n-permutations π such that π1 = n− 1 and
π2 6= n. Then

a(n) = 3a(n− 1)− a(n− 2) + b(n).

Let us compute b(n). Suppose that π is a permutation counted by b(n) such that π1 =
n− 1, πi = n for i > 2 and πj = n− 2. We consider five possible cases.

• If j = 2 and i = 3 then removing from π the elements n − 2, n − 1, n, we obtain
a p-equivalent permutation (none of these elements can play the role of 1 in an
occurrence of p). Hence, we have a(n− 3) permutations in this case.

• If j = 2 and i > 3 then the permutation π′ obtained from π by removing n− 1 and
decreasing n by 1 is p-equivalent to π. Indeed, if the element n − 1 plays the role
of 1 in an occurrence of p in π then the element n − 2 cannot play the role of 2,
and therefore n− 2 may play the role of 1 in the same occurrence of p in π′. Since
i > 3, we have b(n− 1) such permutations.

• If 2 < j < i then the elements n − 1, π2, n − 2, n form an occurrence of p, so this
case is impossible.

• If 3 < i < j then the elements π2, π3, n, n− 2 form an occurrence of p, so this case
is impossible.

• If i = 3 and j > i then removing the elements n− 1 and n we obtain a p-equivalent
permutation π′ = π′1 · · · π′n−1. Indeed, n−1 cannot play the role of 1 in an occurrence
of p in π because n cannot play the role of 4, and since n − 1 is not involved in
an occurrence of p then n also cannot be involved in an occurrence of p. Since
π′1 6= n− 2, we have a(n− 2)− a(n− 3) such permutations.

Summarizing the cases, we have

b(n) = a(n− 3) + b(n− 1) + a(n− 2)− a(n− 3) = b(n− 1) + a(n− 2)
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= b(n− 2) + a(n− 2) + a(n− 3) = · · · =
n−2∑
i=1

a(i).

Hence,

a(n) = 3a(n− 1)− a(n− 2) + b(n) = 3a(n− 1) +
n−3∑
i=1

a(i)

and a(n)− a(n− 1) = 3a(n− 1)− 3a(n− 2) + a(n− 3) giving the desired result.

3.3 N-patterns in Wilf-equivalence class 3 in Table 1

Theorem 15. For the N-bipartite POP p =
3
1

4
2 , we have a(n) = n! for n 6 3 and, for

n > 4, a(n) = 3a(n− 1) + a(n− 2)− a(n− 3).

Proof. Suppose that π = π1 · · · πn is a p-avoiding n-permutation. Clearly, at least one of
πn−1 and πn is n − 1 or n, since otherwise there is an occurrence of p involving n − 1
and n. There are 2a(n − 1) permutations in question in which πn ∈ {n − 1, n}. Hence,
letting b(n) (resp., c(n)) be the number of p-avoiding n-permutations with πn < n − 1
and πn−1 = n (resp., πn−1 = n− 1), we have

a(n) = 2a(n− 1) + b(n) + c(n).

Let us compute b(n). Clearly, removing n from π we obtain a p-equivalent permutation in
which the maximum element n−1 is not the rightmost. Hence, there are a(n−1)−a(n−2)
such permutations.

Next, we compute c(n). We have πn−1 = n− 1 and we let πj = n− 2 and πi = n for
i 6= n and j 6 n. We consider three cases.

• j = n. In this case, removing n− 1 and n− 2 from π and reducing n by 2, we get a
p-equivalent permutation. Indeed, if n− 2 plays the role of 4 in an occurrence of p
in π then n and n− 1 must play the roles of 1 and 2, but there is no candidate for
the role of 3. Also, clearly, n− 1 cannot play the role of 4 in an occurrence of p in
π. Hence, there are a(n− 2) permutations in this case.

• i = n − 2 and j < n − 2. In this case, removing n from π we get a p-equivalent
permutation π′ = π′1 · · · π′n−1. Indeed, n cannot play the roles of 3 or 4 in an
occurrence of p in π, and if n plays the role of 2, then n − 1 must play the role of
3, but we have no candidate for the role of 1. Also, π′n−2 = n− 1 and π′n−1 6= n− 2,
so we have b(n− 1) = a(n− 2)− a(n− 3) permutations in this case.

• i < n−2 and j < n−1. In this case π contains an occurrences of p. Indeed, if i < j
then n, n− 2, n− 1, πn form an occurrence of p, while if j < i then n− 2, n, πn−2,
πn form an occurrence of p.
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Summarising the cases above, c(n) = 2a(n− 2)− a(n− 3) and

a(n) = 2a(n− 1) + b(n) + c(n) = 2a(n− 1) + a(n− 1)− a(n− 2) + 2a(n− 2)− a(n− 3)

= 3a(n− 1) + a(n− 2)− a(n− 3),

as desired.

4 POPs defined by disjoint chains

The minimal disconnected non-trivial bipartite graph K2∪K1 corresponds, up to comple-
menting the labels and taking the mirror image with respect to a horizontal line, to two

non-Wilf-equivalent POPs p1 =
1
2

3
and p2 =

1
3

2
for which the avoidance formulas

a1(n) = n and a2(n) = Fn, the n-th Fibonacci number, are well-known and easy to derive.
In this section we prove some interesting results concerning a generalization of the

POP p1. We introduce the notion of a disjoint chains POP, or DC POP, that is a POP
defined by disjoint chains. DC POPs extend the notion of multi-patterns introduced in
[5] to the case of non-consecutive patterns. A DC POP [σ1, . . . , σm] of length k, where
red(σi) ∈ Ski and

∑m
i=1 ki = k, is defined by m disjoint chains so that the i-th path is

labeled by {1 +
∑i−1

j=1 kj, . . . ,
∑i

j=1 kj} giving the permutation σi when reading from top
to bottom. For example, [12,43,65] and [231,54,678,(11)9(10)] correspond, respectively,
to the POPs

1

2

4

3

6

5
and 3

2

1
5
4

6

7
8

11

9
10

Clearly, a DC POP with each σi being of length 2 is a bipartite POP.
In this section we deal with the exponential generating function (e.g.f.) for a sequence

a(n), which is A(x) =
∑

n>0 a(n)x
n

n!
. A permutation π = π1 · · · πn quasi-avoids a POP p

if it contains at least one occurrence of p but the permutation red(π1 · · · πn−1) contains
no occurrences of p. For example, the permutation π = 416532 quasi-avoids the complete
bipartite POP p = ({1, 2}/{3, 4}) since π contains three occurrences of p while the per-
mutation red(41653)=31542 avoids p. We let a?(n) denote the number of n-permutations
quasi-avoiding the pattern in question and A?(x) is the respective e.g.f.. The notion
of quasi-avoidance was first introduced in [5] for so-called consecutive patterns (that is,
patterns whose occurrences form contiguous subsequences in permutations). Essentially
copy/pasting the arguments from [5] for consecutive patterns, we can derive the following
results.

Proposition 16. Let p be a POP and A(x) (resp. A?(x)) is the e.g.f. for the number of
permutations that avoid (resp. quasi-avoid) p. Then,

A?(x) = (x− 1)A(x) + 1.
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Proof. We first show that
a?(n) = n · a(n− 1)− a(n). (8)

Indeed, extending, in all possible ways, each (n− 1)-permutation avoiding p to the right
by adjoining an element gives n · a(n− 1) n-permutations. The set of these permutations
is a disjoint union of the set of all n-permutations that avoid p and the set of all n-
permutations that quasi-avoid p, which gives (8). Multiplying both sides of (8) by xn/n!
and summing over all n, as well as observing that a?(0) = 0, we obtain the desired
result.

Theorem 17. Let p be an arbitrary POP, and the POP p′ is obtained from p by increasing
each label by k and adding a disjoint path labeled by a permutation σ of {1, . . . , k} (from
top to bottom). Let C(x) (resp., A(x), B(x)) be the e.g.f. for the number of permutations
avoiding p′ (resp., σ, p). Then,

C(x) = A(x) +B(x)A?(x).

Proof. Let a(n), b(n), c(n) be the number of n-permutations avoiding the patterns σ, p
and p′, respectively. If a permutation π = π1 · · · πn avoids σ then it avoids p′. Otherwise,
π1 · · · πi quasi-avoids σ for a unique i, k 6 i 6 n. But then πi+1πi+2 · · · πn must avoid p.
Hence,

c(n) = a(n) +
n∑

i=0

(
n

i

)
a?(i)b(n− i) (9)

since a?(i) = 0 for i = 0, . . . , k− 1. Multiplying both sides of (9) by xn/n! and taking the
sum over all n we get the desired result.

The following corollary of Theorem 17 shows that all DC bipartite POPs are Wilf-
equivalent.

Corollary 18. Let p = [σ1, . . . , σm] be a bipartite POP of length 2m and C(x) is the e.g.f.
for the number of p-avoiding permutations. Then,

C(x) =
1− (1 + (x− 1)ex)m

1− x
.

Proof. We use Theorem 17, induction on m and the fact that A(x) = ex (there is only
one σi-avoiding n-permutation for each n > 0) and thus by Proposition 16, A?(x) =
1 + (x− 1)ex.

Corollary 18 can be generalized as follows.

Theorem 19. Let p = [σ1, . . . , σm] be a DC POP and Ai(x) is the e.g.f. for the number of
σi-avoiding permutations. Then, the e.g.f. A(x) for the number of p-avoiding permutations
is

A(x) =
m∑
i=1

Ai(x)
i−1∏
j=1

((x− 1)Aj(x) + 1).
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Proof. We use Theorem 17 and prove by induction on k that

A(x) =
m∑
i=1

Ai(x)
i−1∏
j=1

A?
j(x).

The rest is given by an application of Proposition 16.

5 Concluding remarks

There is of a host of research directions that can be taken based on our paper, and we
will briefly discuss here just some of them.

Can one generalize/extend Theorems 4 and 6 dealing with A = {i, i + 1} and A =
{i, i+ 2}, respectively, to the case of A = {i, i+ s} for any s > 1?

The Wilf-equivalent classes in Table 1 raise a number of interesting questions. Indeed,
while some of our proofs for the same recurrence relation look quite similar (e.g. those
of Theorems 10 and 13), some others are rather different (e.g. those of Theorems 11
and 12). That would be interesting to find direct (simple) bijections (rather than recursive
bijections) explaining (some of) Wilf-equivalences from different rows in Table 1.

Another natural research direction is in extending our classification and/or enumera-
tive results for N-patterns to POPs defined by paths of the forms

· · · and · · · .

In particular, the next natural step is in studing such POPs of length 5 that we call M-

patterns. For example, the avoidance sequence for the M-pattern
2

1

4

3 5
begins with

1, 2, 6, 24, 104, 448, 1888, 7808, 31872, . . . and this sequence is not in [8]. For another

example, the avoidance sequence for the M-pattern
1

3

2

4 5
begins with 1, 2, 6, 24,

104, 448, 1888, 7808, 31872, . . . and this sequence is also not in [8].
Finally, that could be interesting to obtain (general) enumerative/Wilf-equivalence

results for POPs defined by bipartite graphs of some regular shapes, e.g. such as

· · · .
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