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Abstract

Ikeda—Mihalcea—Naruse’s double Schubert polynomials [Adv. Math. 226 (2011)]
represent the equivariant cohomology classes of Schubert varieties in the type C
flag varieties. The goal of this paper is to obtain a new tableau formula of these
polynomials associated to wvexillary signed permutations introduced by Anderson—
Fulton. To achieve that goal, we introduce flagged factorial (Schur) Q-functions,
combinatorially defined functions in terms of marked shifted tableauz for flagged
strict partitions, and prove their Schur—Pfaffian formula. As an application, we
also obtain a new combinatorial formula of factorial @-functions of Ivanov in which
monomials bijectively corresponds to flagged marked shifted tableaux.

Mathematics Subject Classifications: 05E05, 14M15

1 Introduction

Ikeda—Mihalcea—Naruse [14] introduced the double Schubert polynomials of type C' (also B
and D) by extending Billey-Haiman [5]’s construction for the single variable case. These
polynomials represent the equivariant cohomology classes of Schubert varieties in type C
flag varieties. By the work of the work of Kazarian [16] and Ikeda [12], Ikeda—Mihalcea—
Naruse’s double Schubert polynomials associated to Lagrangian signed permutations can
be expressed by the Schur-Pfaffian and also coincide with the factorial Schur Q-functions
of Ivanov [15] defined in terms of marked shifted tableauz of strict partitions (cf. [22]).
The corresponding fact for the single variable case was established in the earlier work
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of Pragacz [23]. In [1, 2], Anderson—Fulton extended the Schur-Pfaffian formula for the
Lagrangian elements to so-called vezillary signed permutations. In [3], Anderson—Fulton
characterized the vexillary signed permutations in terms of pattern-avoidance and show
that their vexillary signed permutations coincide with the type B vexillary elements orig-
inally introduced by Billey and Lam [6].

The goal of this paper is to give a new tableau formula for the double Schubert
polynomials associated to vexillary signed permutations. For this purpose, we introduce
marked shifted tableaux for flagged strict partitions, extending the notation of marked
shifted tableaux of strict partitions. This leads us to define a new type of functions,
called flagged Schur Q-functions, which generalize Ivanov’s factorial Schur @-functions.
We prove that those flagged Schur ()-functions can be expressed by the Schur-Pfaffian
formula written in terms of the flagged strict partitions. It turns out that this formula
is identical to the Schur-Pfaffian formula obtained by Anderson-Fulton in [1, 2]. Thus
we conclude that the double Schubert polynomials for vexillary signed permutations are
flagged Schur-@ functions.

Our study is motivated by the analogy in type A. Lascoux—Schiitzenberger’s double
Schubert polynomials [18, 19, 20] represent the equivariant cohomology classes of Schu-
bert varieties of type A flag varieties, due to Fulton [9]. The double Schubert polynomials
associated to Grassmannians coincide with the factorial Schur polynomials, that are es-
sentially introduced and studied by Biedenharn—Louck [4]. Lascoux then identified the
family of permutations, now called wvexillary permutations, such that that their associ-
ated double Schubert polynomials are given in a Jacobi-Trudi type determinant formula.
The vexillary permutations include the Grassmannian elements and the associated double
Schubert polynomials are further generalized to the flagged double (or factorial) Schur
polynomials. These are defined either by Jacobi—Trudi type determinant or by flagged
semistandard tableaux for a partition, by the work of Chen-Li-Louck [8] (for the single
variable case, see Gessel-Viennot [10], and Wachs [27]).

Below we explain our main results in more detail. Let A\ = (Aq,...,\;) be a strict
partition of length r, i.e., a strictly decreasing sequence of r positive integers. We identify
it with its shifted Young diagram, obtained from the usual Young diagram by shifting the
i-th row (i — 1) boxes to the right, for each i > 1. Let f = (f1,..., f;) be a sequence
of nonnegative integers. We call f a flagging of A and the pair (A, f) a flagged strict
partition. Consider the ordered set consisting of unmarked numbers 1,2, ... and primed
numbers 1,2',... with 1’ < 1 < 2/ < 2 < ---. The classical marked shifted tableau
T of X is an assignment of a primed or unmarked number to each box of the diagram
subject to the rules: (1) assigned elements are weakly increasing in each column and
row; (2) unmarked numbers are strictly increasing in each column; (3) primed numbers
are strictly increasing in each row. In order to extend this notion, we add, to the above
ordered set, circled numbers 1° < 2° < --- which are greater than any unmarked and
primed number. We denote this extended ordered set by P. We define a (flagged) marked
shifted tableau of (), f) to be an assignment of an element of P to each box of A with rules:
in addition to (1), (2), and (3), we require (4) circled numbers are strictly increasing in
each row, and (5) each element in the i-th row is at most f?. See Example 3. We denote
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the set of all marked shifted tableaux of (A, f) by MST(A, f).
A signed permutation w is a permutation on the set {1,2,...} U{—1,—2,...} such

that w(i) # i for only finitely many ¢, and w(i) = w(i) where we denote i = —i. Let
r = (z;)ien, 2 = (2i)ien, b = (b;)ien. The double Schubert polynomial associated to a
signed permutation w is denoted by €, (z;2|b). Note that the variables b coincide with
—t in the notation of [14].

Anderson—Fulton [3] defined a signed permutation to be wvezillary if it arises from a
triple T = (k,p,q). On the other hand, each triple reduces to a unique essential triple
from which we can construct a flagged strict partition (A, f). The correspondence between
(essential) triples and flagged strict partitions will be explained in Section 5.2.

For each T' € MST(), f), we assign

(z2|b)" = H (21 + be(r)—r(k)) - H (21 = be(e)—r(i)) - H (21 4 brr(e)—c(ke)) »

keT k'eT keeT

where r( ) and ¢( ) denote the column and row indices of the entry respectively, and we
set b_; :== —b;;1 for all © > 0.
Our main result is as follows.

Theorem A (Theorem 24). Let w be a vezillary signed permutation in the sense of
Anderson—Fulton [3] and (X, f) the corresponding flagged strict partition. Then we have

Co(z;zt) = > (az[b)" (1)

TEMST(A,f)

For a general flagged strict partition (A, f), we denote by Q) s(x; z|b) the function
defined by the right hand side of (1). We call it a flagged factorial Q-function, since
it is nothing but the original definition of Ivanov’s factorial Q-functions @Q,(z|b) when
f=1(0,...,0). The proof of Theorem A is based on the following Schur—Pfaffian formula
of @, ¢(z; z|b) which generalizes the corresponding formula of @, (x|b) when f = (0,...,0)
in [15, Theorem 9.1].

Theorem B (Theorem 22). Let (A, f) be a flagged strict partition of length r. Assume
that, if r =22, (a) i — fi 2 A\j — fj forall1 <i < j <71 and (b) \p_1 — fro1 > 0. Then
we have

Y

A—fi—1 Ao—fa—1 | Ar—fr—1
Qus(w; 2b) = P | g h T lglbem et glrid ]]

where Pf is the Schur—Pfaffian defined in §4, and the function qL’i‘” = qﬁle](m;db) is
defined by

k

1 [[a+zw) k>0,
S (T e, =1
, — LU 1
m>0 1>1
= = k < 0 .
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For a flagged strict partition (A, f), if the inequality A, — f. > 0 holds, as well as the
assumption for (A, f) in Theorem B, we can associate to it a vexillary signed permutation.
Conversely, if A\, — f,. < 0, we cannot associate to (\, f) a vexillary signed permutation w
such that @y = &,,. For example, Q) s)(2; 2|b) is not the double Schubert polynomial
of any vexillary signed permutation if f > r.

As an application of Theorem A, we obtain a new tableau formula of Ivanov’s factorial
Q-function Q,(x|b). Ikeda—Mihalcea—Naruse [14] showed that &€, (x;z]b) = €,-1(z;b|2)
and Anderson—Fulton [3] showed that if w is vexillary, then so is w™!. If w is Lagrangian
with strict partition A of length r, we can see that the strict partition of w=! is also A
and its flag is f = (A —1,..., A\, — 1). All together we obtain

Theorem C (Theorem 25). Let A be a strict partition of lengthr and f = (M —1,..., A\, —
1), then we have

Q)= Y (@)

TeMST(A,f)

where (xb)T is the monomial given by

keT k'eT keeT

Anderson—Fulton [2] also introduced a larger family of theta-vexillary signed permutations
(Lambert [17]), containing the k-Grassmannian signed permutations. They obtained the
theta-polynomial (or raising operator, Pfaffian-sum) formula of double Schubert polyno-
mials associated to such elements, extending the ones for k-Grassmannians ([7, 28, 13]).
The combinatorial aspect of these signed permutation is far more complicated than the
vexillary ones. In particular, there is a tableau formula of the corresponding single vari-
able Schubert polynomials associated to k-Grassmannian signed permutations, due to
Tamvakis [26]. Since some of those polynomials can also be given in terms of the tableaux
introduced in this paper, it is an interesting problem to find the relation to these expres-
sions and to extend the formula to all theta-vexillary double Schubert polynomials.

This paper is organized as follows. In Section 2, we introduce a few basic functions
and set up an algebraic framework to study double Schubert polynomials and the com-
binatorially defined functions defined in this paper. In Section 3, we introduce flagged
marked shifted tableaux and the functions defined by them. We prove a few basic for-
mulas that will be used in the proof of Theorem B. In Section 4, we review the definition
of the Schur-Pfaffian and prove Theorem B. In Section 5, we first recall the basic facts
about double Schubert polynomials and vexillary signed permutations, following Ikeda—
Mihalcea—Naruse [14] and Anderson—Fulton [3]. We explain how Theorem A and Theorem
C follow from Theorem B. In the appendix, we give a proof of a Jacobi—Trudi type formula
of row-strict skew Schur polynomials, extending the work of Wachs [27] and Chen-Li-
Louck [8]. This formula is used in the proof of Theorem B.
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2 Preliminary

Before we proceed with our main object of interest, we prepare the notations for a few basic
functions. The goal is to set an algebraic framework in which we can study combinatorially
defined functions. In particular, our Pfaffian formula of the vexillary double Schubert
polynomials (and also the factorial flagged Q-functions) will be in terms of the basic
functions that we review here. We use infinite sequences of variables, * = (x;)en, 2 =
(Zi)ieN, and b= (bi)ieN-

We define functions ¢,, = ¢, (x) in the z-variables for integers m > 0 by the generating

function i,
m . T;u
B qu(x)u —II 1—zu’

m2=0 1>1

where u is a formal variable. For each integer k, we also define polynomials e%(b) in the
b-variables for m > 0 by

[k] [k] i=1
Z Em ko

11— biu
The polynomials egi](b) and ek, k](b) are nothing but the elementary and complete sym-
metric polynomials of degree m in by, ..., b, respectively.

For integers k, { € 7Z, we set

ef(zp) = Y el(zb)um = elfl(2)ell (),

m=0
a)(zb) = Y ap(alb)u™ = qulx)el (b),
m=0
[km(x z|b) = Zqiﬁlz](m;ﬂb)um = qu(m)eﬁ(z)eg](b).
m=0
We will also denote A! M]( b) == i e( |b). Moreover, we often suppress the variables
when it is clear from the context, e.g., eh " * = ,[;kl_f](z|b), gl = q,[gle](x; z|b), and so

on.

Occasionally we use the infinite sequence of variables b = (b;);cz. With this extended
sequence of b-variables in mind, we will use the following index shifting operator 7. For
each integer k € Z, let 7%(b) be the sequence of variables defined by

Tk(b) = (bl-i-k;; b2+k;, b3+1€, . )

Similarly 7%(b) denotes the sequence of variables such that its i-th variable is b;,; for
1 € 2.
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We consider the ring T' = Z[q1, q2, . . . ]. We should note that this is not a polynomial
ring since ¢;’s are not algebraically independent. It is well-known that I" has a Z-basis con-
sisting of Schur Q-functions Q,(x) (cf. [22]). Ivanov’s factorial Q-functions @y (z|b) [15]
form a Z[b]-basis of the Z[b]-algebra I'[b] := I" ®y Z[b] where Z[b] denotes the polynomial
ring in b-variables. All functions defined above are regarded as elements of

[[z,0] := T ®gz Z[z] ®7 Z[b).

3 Flagged factorial Q-functions

In this section, we introduce flagged factorial Q-functions Q, (x; z|b) based on the notion
of marked shifted tableaux of flagged strict partitions (A, f). We will also discuss basic
formulas that will be used in the proof of Schur-Pfaffian formula for @, s(x; 2|b) in the
next section.

3.1 Definition of tableaux and functions

A strict partition A = (A1, Ag,...) is a sequence of non-negative integers such that \; >
Aiv1 if A; # 0 and the number of positive integers in A, called the length of A, is finite.
We also denote a strict partition of length r as a finite sequence of r positive integers
A = (A1,...,\) and identify it with its shifted Young digram, obtained from the usual
Young diagram by shifting the i-th row (i — 1) boxes to the right, for 1 <i < r. Let SP
be the set of all strict partitions and SP, the set of all strict partition of length at most r.

Consider the ordered set P consisting of unmarked numbers 1,2, ..., primed numbers
17,2, ..., and circled numbers 1°,2°, ..., where the total order is given by

/"<1<2<2<3 <3< <1°<2°< .

For a given strict partition A of length r, a flagging of \ is a sequence f = (f1,..., f) of
non-negative integers. We call the pair (A, f) a flagged strict partition.

Definition 1. A (flagged) marked shifted tableau of a flagged strict partition (A, f) is
a filling of the shifted Young diagram of A which assigns an element in P to each box,
subject to the rules

1. assigned elements are weakly increasing in each row and column,
2. unmarked numbers are strictly increasing in each column,

3. primed numbers are strictly increasing in each row,

4. circled numbers are strictly increasing in each row, and,

5. for 1 < i < r, each element assigned in the i-th row is at most f?

i
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Remark 2. By the total order of P and the rule (1), the part consisting of unmarked and
primed numbers forms the usual marked shifted tableaux of the shifted Young diagram
of a strict partition p contained in A (cf. [22, p.256]). It is also clear from the order
of P that the part consisting of circled numbers forms a row-strict semistandard Young
tableau of a skew shape \/pu.

Example 3. Let A = (5,3,1) and f = (2,1,0). The following are examples of marked
shifted tableaux of the flagged strict partition (A, f):

1] 2]2]2]3]  [i]2]2]2]19 [1]2]2]1929
234 23] 1° 2'[3]1°
14 14 L4

The following are non-examples due to rules (2), (5), (4), respectively:

1] 2]2]2]3]  [1]2]2]2]1d [1]2]2]1919
224 23] 1° 23] 1°
14 11 L4

We call the element of P assigned to a box of A by T an entry of T', and denote it
by e € T. Abusing the notation slightly, we often write those entries by their assigned
elements and denote the numeric value of an entry e € T by |e|, i.e., k, k', k° € T and
|k| = |K'| = |k°| = k. Let c¢(e) and r(e) be the column and row indices of an entry

e respectively. Let MST(A, f) be the set of all marked shifted tableaux of (A, f). If
f=1(0,...,0), we denote MST()\) instead of MST(A, f).

Definition 4. Consider the infinite sequence of variables © = (;)ien, 2 = (2)ien, b =
(bi)ien as before. Let (A, f) be a flagged strict partition. To each T € MST(A, f), we
assign the weight

(z2|b)" = H (21 + be(k)—r(k)) - H (21 = be(er)—r()) - H (2 + brr (ko) —c(ke))
keT k'eT keeT

where we set b_; := —b;y1 for all ©+ > 0. We define the flagged factorial Q-function
@ s(x; 2[b) by
Qns(zizlp) = > (wz[b)"

TEMST(A,f)

Remark 5. When f = (0,...,0), the z-variables are not involved and Q) ;(z; 2|b) coincides
with Ivanov’s factorial Q-function Qx(z|b) [15]:

Qo)=Y @B @) =] (o +begwyrm) - [T (6 = betrry—rim) -
TEMST(N) keT keT

Furthermore, in view of Remark 2, @, ¢(x; z|b) can be expanded in terms of @, (z|b) for
strict partitions p C A. This expansion, as we see in the example below, will be discussed
in the next subsection.
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Example 6. Let A = (3,1) and f = (1,0). In this case, MST(], f) can be divided into
two families of tableaux

’***‘ ’**1"‘

x x

where the part with * consists of unmarked and primed numbers. Thus we have

Qxrr(z;2b) = Qz1(x]b) + Qa1 (z|b) (21 — b2)
Similarly, if A = (5,3,1) and f = (2,1,0), we have

’*****‘ ’****kzﬂ ’*****‘ ’****kﬁ ’***1020
* | % | % * | % | % * | x| 19 * | x| 19 * | x| 19
L* ] L* ] L* ] L* ] L* ]

where k = 1 or 2 so that

Qxrf(zlb) = Qs31(x|b) + Quz1(x|b) (21 — ba + 22 — b3) + Qs21(x[b) (21 — b2)
+Qua21(x|b) (21 — ba + 22 — b3) (21 — b2) + Q321(z|b) (21 — b3)(22 — b3)(21 — b2).

3.2 Decomposition into Q-functions and skew Schur polynomials

We can expand Q,(z;z|b) in terms of Ivanov’s factorial @) functions in x and b where
the coefficients are a variant of row-strict flagged skew Schur polynomials considered by
Wachs [27, p.288] in z and b.

A partition X\ is a weakly decreasing finite sequence of positive integers and we identify
it with its Young diagram. The length of \ is r if it consists of r positive integers. We
denote the set of all partitions by P. Let A = (A\,...,\.) and p = (p1,..., ) be
partitions of length at most r such that  C A, and A/ the corresponding skew diagram.
A flagging f = (f1,..., fr) of A\/u is a sequence of non-negative integers. We call the pair
(M, f) a flagged skew diagram. A row-strict (flagged) tableau T of (A/u, f) is a filling of
the skew diagram A/p which assigns a positive integer to each box of A\/u subject to the
rules:

e numbers increase strictly from left to right along rows,
e numbers increase weakly from top to bottom along columns, and
e for each i = 1,...,r, the numbers used in the i-th row are at most f;.
Let SST*(A\/pu, f) be the set of all row-strict tableaux of the flagged skew diagram (\/pu, f).

Definition 7. Let b = (b;);cz. We define the row-strict flagged skew factorial Schur
polynomial of a flagged shape (\/pu, f) by

S = Y ()

TeSST* (M 1.f)
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where we assign the weight for each T" by

(2[b)” =TT (21el + bjefsrte)—cte))-

ecT

Note that here we do not assume b_; = —b; ;1 for i > 0. In the case when y = &, then we
denote the corresponding polynomial by s (z|b).

Remark 8. In §6, we will obtain a Jacobi-Trudi type determinant formula for the row-
strict flagged skew factorial Schur polynomials (Theorem 29). Our proof is analogous to
the lattice path method given in [8], although their set-up is technically different. Namely,
our factorial (or double) Schur polynomials are row-strict flagged, or equivalently, column-
strict and column-flagged, while theirs are column-strict and row-flagged (cf. [27, Theorem
3.5 and Theorem 3.5%]).

Proposition 9. Let )\ be a strict partition of length r. For a strict partition u C X, let
i = (fi1,-.., M) be the sequence defined by ji; = p; +1—1 fori=1,...,r. Assume that,
if r =2, then \,_1 > f,_1 or A\, = f.. Then we have

Qxslxi2lb) = > Qul|b) - 55y (2[b)*, (2)

HCA
REP

where x is the substitution b_; — —b;1q for all i > 0.

Proof. The circled numbers form a row-strict flagged skew tableau of a skew shifted dia-
gram \/p since the entries must be weakly increasing in each row and column. Further-
more, the assumption assures that this skew shifted diagram is indeed a skew wunshifted
diagram A/fi, i.e., ji is a partition contained in the partition A. Indeed the assumption
A1 > fr_1 or A\, > f,. implies that the circled numbers can appear in the j-th column
for j > r. Therefore we have ;i € P. Thus we see that there is an obvious bijection

MST(A, f) = | | MST(u) x SST*(M/ @, f), T~ (T',T°)
neESP
pnCA
GeEP
where T” is the part of T" with unmarked and primed numbers and 7 is the part of T" with
circled numbers. This bijection apparently preserves the weights after the substitution x,

and hence we obtain the desired formula. OJ

Remark 10. Proposition 9 implies that @ ¢(z; 2]b) is an element of I'[z, b] defined in §2.
Indeed, it follows from the facts that the summation in (2) is finite, and that both @, (z|b)
and 83, ¢(z|b)* are elements of I'[z, b].
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3.3 One row case

In this section, we describe @ (x; z|b) in the case A has only one row.

Lemma 11. Let r,t and f be nonnegative integers such that r —t > 0. We have
~ flr—t—f—1 _
S (2lb) = e} (=l

In particular, if r —t > f, both sides of the equation are zero.

Proof. If r —t > f, then the left hand side is zero, since the tableaux are row-strict. The
right hand side is also zero, since it is the (r — t)-th elementary symmetric polynomial in
r —t — 1 variables. Suppose r —t < f. If t = 0, then we have

Sm.n(zlb) = > (2 +bi) (20 bip) - (2 + bisa—y)

1<i1 <-+<irn < f

B > (0j, + 2) (b, + 2jo41) -+ (bj + 25 pr-1)-

11 < <Gr < fHL—r
Since this is the usual one-row factorial Schur polynomial, we have
8. (2[b) = W0 (b]2) = el 1 (2 b).

In the general case t > 0, let m := r — t, then we have

Smy/w.n(zb) = > (2 A i) (2 + biym1t) < (Zi, F biri—mt)

1<i1<...<im<f
= Smy(p (277 D) = el (27 ).
This completes the proof of the formula. ]

Remark 12. Suppose that 0 <7 —t < f. The b-variables appearing in 5(,,¢),s)(2|b) are

brt bt Dpys bt

If r > f, then t > 0 and the indices of those b;’s are all nonpositive.
Proposition 9 and Lemma 11 imply the following.

Proposition 13. For nonnegative integers r and f, we have

Q) (w5 2Ib) = qu‘k’“z\b ey "I

where x is the substitution b_; = —b; 1 for all i > 0.
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Proof. Proposition 9 implies that
Q( ZE Z|b ZQ(T k) Ji|b T ),(f)(z|b)*.

It is known that Q) (z|b) = gl (m|b) (see [14, §11]) and thus together with Lemma 11
we have

Q5 (w; 2|b) = Zq[r - 1‘|b eg‘k_f_l](zh'k_rb)*.

The upper bound for £ in the summation can be f instead of r: if » < f, the claim holds

since qy ,f 1 (:z:|b) =0forr < k < f;if f <r, the claim holds since egcf|k_f_1](z|7'k_’”b) =0

for f < k < r. Thus we have proved the desired formula. O]

3.4 Other formulas

In the rest of the section, we prove Proposition 15 below. It will be used in the proof of
Theorem 22 in the next section. Let x denote the substitution b_; — —b;, 1 for all ¢ > 0
as before. We start with the following lemma.

Lemma 14. Let s,t,m € Z and n € Z>y. For each s € 7Z, we have
Zq[m] et Z' 1] —mb)* :qL[gm—l] [ n— 1] —mb + Z q et K 1 mb)

I<s I<s—1

Proof. By definition, we have qq[L m qu 1 - (1 + b%,u) so that

o =" g b, ((em). (3)
Similarly, we have el " (7-m)* = el " (77™b)* - (1 + b%,u) so that
ey () = e o) e ), (Le D). (4)

Using these identities, we can compute:

Zq[m] el” n 1] _mb)*

1<s
3 m— —n=dl g -m m— b n— %
@ § gl B+ g b, - el ()
€<s <5
— qu—l] et - 1] TR + Z [m—1] 4:2_1}(7,7%)*
<s—1
LD DN LA ()
1<s—1
@ m-1] | [-n— 1) (pmmpye 1] [l 1-mp
= (s et s + Z qy €t € )
I<s—1
Thus we obtain the desired formula. O
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Proposition 15. For integers r, f > 0 and an integer a, we have

Q=11 (e 2 ) = qu () - A k),

In particular, we have
Qe () (3 210) = /"=~ (w: 2|b) (5)

in view of Proposition 13.

Proof. First we observe that el '~ f](b) = eg](b) el (777b)*. Indeed, if r > f, then
elrl(b) - el oy = ey, ) e T by by b )

Ly, by) - el 1T (=

f
eg](bl’ Tt br) : €L +1](b7“*f7 e 7b7“717 b?’)il
eg_l_f](b]_, NN 7b7»_f_1) = eq[f_l_f}(b).

If r < f, then

by - el oy = ey, ) e N by by b o, by by )

-~
r

= by, ... b)) el (b, b,y

T

= ey, b)) = el (D).

B _b27 _blj bl cee 7bf+1—r)

Thus ¢/ "/~ " = . eg‘_l_ﬁ(zh*’"b)*. In particular, we have
T 1 T 1 —rI\x
o= a el ey (6)
I<r+a

On the other hand, by setting s =r+a—k, m=r—k, t =r+a, n = f — k for
k=0,...,f in the identity of Lemma 14, we obtain

T— k—1 —7r *
S>oogr e el )

(<r+a—k

r—k—1 k—1— _r k1 i .
q7['+a7k} _eLfl f}(z|7_k' b)* + Z QL I, Eﬂa Jg](Z|Tk+1 b)*.
{<r+a—k—1
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We apply this to the right hand side of (6) consecutively from k£ = 0 to k = f, and obtain

r—f—1 T 1 —r7\*
A D DN AR A C )
I<r+a
= gl el N 30 e ey
{<r+a—1
1
r—1—k k—1— r r—2 1 —7r *
= Yoot ey e 0 o L)
k=0 {<r+a—2
- [r—1-k] _[flk—1—/f] [r=f=1] | Lf10]
= qr:-a—k " €k (Z‘Tkirb)*—i_ Z qBT 'r+a ( ‘Tf+1irb>*'
k=0 {<r+a—f—1

The last summation is zero since r +a — ¢ > f and e s a degree f polynomial in w.

Thus we obtain the desired equation. O

Remark 16. The identity of Proposition 15 can be also written as

r r—k k— T
b (i 2le) = > q T i) - e Gy
keZ

since, if £ > f, then eLflk_l_ﬂ(zh'k_’”b) is a degree k — 1 polynomial in u so that
eLf|k_1_f](z|Tk_Tb) =0.

4 Schur-Pfaffian formula

In this section, we review the basic properties of Schur-Pfaffian and then prove a Pfaffian
formula of the flagged factorial Q-functions Qy(x; z|b).

4.1 Schur-Pfaffian and factorial Q-functions

Let @« = (a1,...,,) € Z" be a sequence of integers. Consider the Laurent series in
variables tq,...,t,
1—t;/t;
o= T
1<i<j<r L+ti/t
where we expand ﬁ as the series Y, _o(—t;t;')™. Consider sequences of indetermi-
v/ by =
nants . '
M = (cﬁ,?)mez (i=1,...,7).

The Schur-Pfaffain Pt [c(l) c&r) ] associated to « is defined by replacing each monomial

ty -t in fo(t) by c(l) c,(nz
Below in Lemma 17 and 19, we list well-known properties without proofs (cf. [13, §4]).
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Lemma 17.

(1) If Pf[cal caj] + Pf[ca] cal] =0 for all 1 <i,j <1, then for any w € S, we have
pf [csl) - -cgﬂ = sign(w) Pf [c&))(l) > (TU)J(T)]

(2) If W — kap, + b, with variables a = (am)mez and b = (by)mez, we have

Pt [C(l) co @ C&Tr)] — L Pf [081) g, C&TT)] + /Pt [C((lll) by - (r)]

i a; i ar

(3) If r is even, then

O‘J

Pf [ ] = Pt (Pf[ O)

])1<i<j<r

where the right hand side is the Pfaffian of the r X r skew symmetric matriz given by

(PLe)e)
I 1i<g<r
with (i, j)-entry
P[] = cel) +23 (=) el el
k>1

foriv<j.
Remark 18. Lemma 17 (3) follows from the identity
1—1/1; 1—1;/t;
1<i<j<r L+ti/t L+1:/t; 1<i<j<r

for r even, which is due to Schur [24].

(1]

Lemma 19. We denote the substitution cym = 0 for all m < 0 and i = 1,...,7 by
Pt [c((lll) X c((;)} oo~ We have

(1) Pf[cf)--- cgr)]>0 is a polynomial in ¢ ’s (m > 0).

(2) If a, =0, then Pf [cg}l) S T)] o= Pt [CSI) )

&T ar 1}>0'

If ar <0, then Pf [c) .- D] =o0.

>0

By the work of Kazarian [16] and Tkeda [12], it is known that the factorial Q-functions

Qx(x|b) of Ivanov [15] can be expressed as a Schur-Pfaffian: for a strict partition A\ =
(Ah R )‘T‘)v

Q)\(ZL’“)) — Pf q/[\il l]q,[\);_ﬂ . q/[\)w—l]} — Pt |: (2) L cg\”r)]

T A2

NONMCYES]

Vi,m
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Lemma 20. For k,{ € Z>,, we have
Pf[ b1 gle- ]+Pf[ 6-1] gl 1]] _o

Proof. The left hand side equals to 2> _,(—1)" q,[g o ]qy Tl], which is the coefficient of u***
in 2¢% gl = 2el* 1](b) = 1}(b), a polynomial in u of degree k + ¢ — 2. Therefore it is
ZEero. O

Lemma 17 (1) and Lemma 20 imply the following.

Lemma 21. For a sequence of positive integers (aq, ..., a,) and w € S,., we have

Pf [gigt ™1 - - gl Y] = sgn(w) Pf [qa‘”m” QL““”}

w(r)

If particular, if o; = «; for some i # j, we have Pt [qull e qg‘o’l"ﬁl]] =0.

4.2 Schur-Pfaffian formula of flagged factorial Q-functions

In this section, we prove the Schur—Pfaffian formula of flagged @-functions. The idea of the
proof is to separate the part of the function given in the z-variables and to identify it as a
(factorial) skew Schur polynomials. This allows us to apply the Schur-determinant formula
of skew Schur polynomials from the appendix below and the Schur-Pfaffian formula of
Schur @-functions.

Theorem 22. Let (A, f) be a flagged strict partition of length r. Assume that, if r > 2
(@) i —fizNj— fj forall1 <i<j<rand(b) \,_1 — fr—1 > 0. We have

Q)\’f(x7 2|b) = Pf [qg\f;\>\1—f1—1]q£\f22|>\2—f2—1] . qg\{TP‘T‘_f?”_l]] .

Proof. Let (v,...,v,.) € Z". By Proposition 15 (and Remark 16), we have
A Ai_ i Qi — A )‘1 Qi —Ji —Q; .
q[f| [ 1]:Zq[ 1 Uil fi— ( |7 ip)* (i=1,...,r).

Xitv; o +v; )\ —oy
o, €7
By linearity (Lemma 17 (2)),

A 1 Ag—fa—1 | Ar—fr—1
Pf [qulﬂ 1—fi— }q[f2| 2—f2 ]"‘Q[A{‘ J ]}

— Z <H [filXi—oi—fi— 1]( E _aib>*> Pf [q[al glaa=1]. q[aT—l]}
Ai—a; a1 a9 o7
(a1 Yezr

=1

Suppose that A, — f. > 0. In this case, by the assumption (a), we have \; — f; > 0 for

[fz|>\z ai—fi— 1]( |7_7aib)*

all e =1,...,r so that e} =0 for a; < 0. Thus we have

A2

_ Z ( [)lekgh o;—fi— ( |7_ aip ) >Pf [q([xoil l}qg);g 1] | q([xo:nr—lq )

(1) E(Zs0)" \i=1

Pt [Q[Afll|A1—f1—1]q[f2\A2—f2—1] . qg\{rl%-—fr—l}]
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By Lemma 21, we have

pf [q[ilm fi— 1]q£\f22|/\2 f2-1] q[;:rw fr—l]]
i —fio1
- X (X s T o) gt
HESPr \wES, i=1
pr >0
= 3 det (P ) Q)
1<i,j<r
HESPr
pr>0

It is easy to see that the determinant vanishes if there is k£ such that Ay — pr < 0. Thus
the sum runs over all u € SP, such that p, > 0 and p C A. In particular, i is a partition
since j,. > 0. Finally, by Theorem 29, we have

det (X el ) = det (B o))
1 4 J

I<i,g<r 1<ig<r

where the assumption (a) implies the inequalities that must be satisfied by (X, f). Thus
we obtain

Pt q[ﬂlm fi- 1]q[AJ;2\A2 f-1] q[AJ:rm fr—l}] _ z Samr(2D) - Qulalb),

neESP
HCA
AEP

and finally the claim follows from Proposition 9. Here note that s, ;(2|b)* = 0 if g, = 0
since A\, — f,. > 0.
Suppose that p, — f. < 0. In this case, we have

A 1 A -1 | Ar—fr—1
Pf [qg\{ﬂ 1—f1i— ]q/[\J;z\ 2—f2—1] | qLJi| —f }]

_ Z ( [){CZD\OZ o —fi— 1](z|7_—aib)*> Pf [qaoil 1q<[346;2 1] qgoir—l}]

(al,...,aT)E(Z>Q)T i=1

_I_ Z egi:F‘Ar_fr_l](z|b)*

r—1
X (H eE\sz\al o;—fi— ( |T—aib)*) Pf[ [C¥11 l]qgl; 1] . ql[larr 11 1]]

=1
= > Syus(zb) - Qulalb)
neSP
nCA
pur >0

+ Z [frlAr—fr— |b) det( [fz|>‘ MJ fi— ]( |7_—ujb)*>1<ij<r_1 Qu($|b)

HneSP
BCA
pr=0
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Since e&’?'_’\lj:“’“*frl](z]r‘“’"b)* =0foralli=1,...,7 — 1, we have

fr )"r_fr_l [fi|>\i— '—fi—l] —
I o) et (e TR ) wb)*)qu_l

()

1<i,g<r

Thus we obtain

Pf [qE\Jil\)\1—f1—1]q/[\J;2\>\2—f2—1] . .qg\f:p\r—fr—ﬂ] _ Z gj\/ﬁ,f(z|b)* ) Q#(l’|b),

neSP
pCA
ReEP

and finally the claim follows from Proposition 9. O

5 Vexillary double Schubert polynomials of type C

5.1 Double Schubert polynomials of type C

In this section, we briefly recall the double Schubert polynomials of Tkeda—Mihalcea—
Naruse. Please see [14] for more detail.

Let W4 be the infinite hyperoctahedral group, i.e., the Weyl group of type C,, (or
B). It is given as the group defined by generators (simple reflections) {s; | i = 0,1,2,...}
and relations

S? =€ (Z 2 0), 51505150 = S0S15051, SiSi+1Si = SZ'+1SZ'S7;+1(Z' 2 1), SZ'S]' = S]SZ(|Z—]| 2 2),

where e is the identity element. We identify W, with the group of signed permuta-
tions, i.e., permutations w of the set {1,2,...} U {—1,—2,...} such that w(i) # i for

only finitely many 4, and w(i) = w(i) where we denote i« = —i. Each element of W,
therefore, can be specified by the sequence (w(1)w(2)w(3)---) which we call the one-line
notation of w. The simple reflections are identified with the transpositions sq = (1,1) and
s; = (i,i + 1)(4,4+ 1) for i > 1. Similarly we consider the group W, of signed permu-
tations of {1,2,...,n} U{1,2,...,n} and naturally regard it as a subgroup of W,,. If a
signed permutation w in W, its one line notation is also denoted by the finite sequence
(w(Lw(2) ---w(n)).

To each w € W, Ikeda—Mihalcea—Naruse [14] associated a unique function &€, =
€, (z; 2|b) in the ring T'[z,b]'. They are characterized by left and right divided difference
operators ¢; and 0; with ¢ = 0,1,2,.... Namely there is a unique family of elements
Cop(z; 2]0) € T'[2,b] (w € W), satisfying

e {etwsi if fws) < (), oo {@w if ((s;w) < L(w),

0 otherwise, 0 otherwise,

forall i =0,1,2,..., and such that €, has no constant term except for €, = 1.

!Note that the parameters t = (t1,t2,...) in [14] are replaced by —b = (—by, —bs,...) in this paper.
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5.2 Vexillary signed permutations

We follow Anderson—Fulton [3]. A triple is a three r-tuples of positive integers, 7 =
(k7p7q>7 Wlthk: (0 < kl < e < k8)7 P = (pl 2 >ps > 0)7 andk: (Q1 2 2
qs > 0), satisfying the inequality

(%) ki1 — ki < pi — Pit1 + ¢ — Gita (1<i<s—1).

A triple is essential if the inequality (x) is strict for all i. Each triple reduces to a unique
essential triple by successively removing (k;, p;, ¢;) such that the equality holds in () and
two triples are equivalent if they reduce to the same essential triple.

Anderson—Fulton explained how to construct a signed permutation w = w(7) in [3,
§2]. They define a signed permutation to be wvezillary if it arises from a triple in such
a way. Equivalent triples give the same vexillary signed permutation ([3, Lemma 2.2]).

An essential triple 7 determines a strict partition A\(7) of length r := k,, by setting
Mo, = pi +q—1for i =1,...,s, and filling in the remaining \; minimally so that
A1 > -+ > \.. Similarly, we introduce a flag f(7) = (fi,..., f.) associated to an essential

triple 7 by setting fi, :=p; — 1 for ¢« =1,...,s, and filling in the remaining f; minimally
so that f; > --- > f,. In this way, we can assign a unique flagged strict partition to each
vexillary signed permutation. For example, consider an (essential) triple 7 = (k, p,q) =
(234,421,663). The corresponding vexillary signed permutation is w = (38176245). The
associated flagged strict partition is A = (10,9,7,3) with f = (3,3,1,0).

A flagged strict partition under a certain condition gives rise to an (essential) triple
and hence a vexillary signed permutation. For a flagged strict partition (X, f), let k =
(k1 < -+ < ks) be the row indices of the south-east corners of the shifted Young diagram
of A\. Suppose that the following condition holds:

Jr, <M fori=1,...,sand fr, — fo,,, < M, — Mgy, fori=1,...,5s—1. (7)

The corresponding triple 7 = (k, p, q) is given by setting p; = fi,+1 and ¢; = A\, —p;+1 =
Ak, — fr,- Note that fi,’s form nothing but the labeling (m;) of A(7) given in [3, §4]. On
the other hand, we cannot associate a triple to a flagged strict partition that does not
satisfy the condition (7). In this point of view, our flagged strict partitions generalize the
labelled Young diagrams in [3] which are in bijection with vexillary signed permutations.

One of the characterizations obtained by Anderson—Fulton relates vexillary signed
permutations to vexillary permutations. A permutation u € S,, of {1,...,m} is called
vexillary if it is 2143-avoiding, i.e. thereisnoi < j < k < I such that u(j) < u(i) < u(l) <
u(k). Anderson—Fulton show that w € W, is vexillary if and only if ¢(w) is 2143-avoiding
where ¢ is the obvious embedding of W,, into the symmetric group Ss,.+1 obtained by
setting ¢(w) (i) = w(i —n—1) and w(0) := 0. It is easy to check, by this characterization,
that the above example w = (38176245) is a vexillary signed permutation.

From the work of Anderson-Fulton [1, 2], it follows that the double Schubert polyno-
mials associated to vexillary signed permutations can be given in the following Pfaffian
formula.
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Theorem 23 (Anderson-Fulton [1, 2]). Let w be a vexillary signed permutation and (A, f)
the associated flagged strict partition. Then we have

Q:w(l‘; Z|b) — Pf [qg\f;|>\1—f1—1}q£\1;2|)\2—f2—1] . qg\{rlA'r—fr_l] '

By construction, the flagged strict partition (), f) associated to a vexillary signed
permutation w satisfies the requirement in Theorem 22. Thus we obtain the following
theorem.

Theorem 24. Let w be a vexillary signed permutation and (A, f) the associated flagged
strict partition. Then we have €, (z;2|b) = Qx f(z; 2]b).

In Example 6, we considered the flagged strict partition (A, f) = ((3,1),(1,0)) and
(A f) = ((5,3,1),(2,1,0)). These examples give rise to triples 7 = (12,21,21) and
T = (123,321, 321) respectively. The corresponding vexillary signed permutations are
w = (12) and (123) respectively. These are the longest elements in Wy and W3. By
Theorem 24, we have

Ciz(z; 2|b) = Qz1),1,0)(w;2b),  Cyaz(w; 2]b) = Q5.3,1),(2,1,0) (@5 2]D).

and we can further decompose the right hand side into Schur @-functions and skew Schur
polynomials as in Example 6. As mentioned in above, the condition (7) is necessary
to associate a vexillary signed permutation to a flagged strict partition. For example,
Q1)) (w; 2|b) is not the double Schubert polynomial of a vexillary signed permutation if
f = 1 because the vexillary signed permutation w of length 1 is only s¢ by [3, Proposition
3.1] and 650 = Q(l),(o)-

5.3 A new tableau formula of Ivanov’s factorial ) functions

A signed permutation w is Lagrangian if w(1) < w(2) <--- <w(r) <0< w(r+1) <---
for some integer r > 1. A Lagrangian signed permutation is vexillary. Indeed, we can
define a triple 7 from which w is constructed by setting k; = 4,p; = 1, and ¢; = w(i) for
i=1,...,r. The associated flagged strict partition (), f) is given by \; = w(7) and f; =0
fori=1,...,r.

Anderson-Fulton showed that, if w is vexillary, then w™" is also vexillary. In fact, for
a triple 7 = (k,p,q), we have w(7)™' = w(7*) where 7* = (k,q,p) ([3, Lemma 2.4]).
From this, we can deduce that if w is Lagrangian with the strict partition A\ of length r
(and the flag f = (0,...,0)), then w™! is a vexillary signed permutation with the strict
partition A and the flag f = (A — 1,..., A — 1).

Due to the work of Kazarian [16] and Ikeda [12], we have €, (z;z2|b) = Qa(z|b) for a
Lagrangian signed permutation w with the associated strict partition A. On the other
hand, we have €, (x; z|b) = €,-1(z;b|z) for any signed permutation w by [14, Theorem 8.1
(3) ]. Combining these facts with Theorem 24, we obtain that &, (x;2|b) = Q. s)(2;0]2)
for a Lagrangian signed permutation w with the associated strict partition A where we
set f= (A —1,...,A\ —1). Thus we can conclude that Q\(z|b) = Qs (z;b|z), which
shows that the function on the right hand side does not depend on the z-variables. Now
by applying Theorem 22, we obtain the following theorem.
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Theorem 25. Let A = (A,...,\.) be a strict partition of length r, and f = (A —

1,..., A —1). Then Ivanov’s factorial Q) function associated to A can be expressed as
Q)= > (@), @) == [T [ tr-
TEMST(\,f) keT  KeT  koeT

Remark 26. From Theorem 25 and Proposition 9, we can also write

Qx(z[b) = Z Qu SA/u f( ),
pneSP
pnCA
AEP
for a strict partition A of length r where f = (A —1,..., A, —1). In view of Theorem 29,
this recovers [15, Theorem 10.2].

6 Appendix: Lattice path method for row-strict Schur polyno-
mials

In this section, we prove a Jacobi-Trudi type formula (Theorem 29 below) for the row-
strict flagged skew factorial Schur polynomials from Definition 7. It is a factorial general-
ization of Theorem 3.5* in [27]. We prove it by interpreting the tableaux as lattice paths
and applying [25, Theorem 1.2] (cf. [21, 10, 11]). The analogous proof in the column-strict
case has been obtained in [8] (cf. Theorem 3.5 in [27]). One of the main differences from
8] is that their formula is given by a determinant with entries in (double) complete sym-
metric polynomials while Theorem 29 is given in terms of (double) elementary symmetric
polynomials.

First we recall the basic notations from [25]. Let D = (V, E) be an acyclic oriented
graph without multiple edges: V' is the set of vertices and F is the set of edges in D. For
vertices v and v, a path from u to v is a sequence of edges ey, ..., e,, such that the source
of e; is u, the target of e, is v, and the target of e; coincides with the source of e;;; for
alli=1,...,m—1. Let Z(u,v) be the set of all paths from u to v. Let w: E — R be a
weight function where R is some commutative ring. For a path P, we also denote w(P)
the product of the weights of all edges in P. Let

GF[Zw,v)= > w(P)

PeZ(u,v)

Let u = (uy,...,u,) and v = (vy,...,v,) be ordered sets of vertices of D. Let Zy(u,v)
is the set of all non-intersecting r-tuples of paths, P = (P,..., P,), with P, € 2 (u;, v;).
We denote
GF[Zo(u,v)| = Y  w(P)
PeZy(u,v)
where we set w(P) = w(P)w(Fs) - --w(F,). Finally, we say that u is D-compatible with
v if a path P € & (u;,v;) intersects with a path Q) € Z(uy, v;) whenever ¢ < k and j > [.
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Theorem 27 (Theorem 1.2, [25]). Let u = (uy,...,u,) and v = (vy,...,v,) be ordered
sets of vertices such that u is D-compatible with v. Then

GF [ZPy(u, V)] = det (GF [ 2 (u;,v;)])

1<, g<r”

In order to apply Theorem 27 to the row-strict flagged Schur polynomials, we introduce
an acyclic directed graph D as follows: its vertex set V' is Z X Z-, and there is an edge
(u,v) € E from the source u to the target v if u — v is (0,1) or (1,1). We call an edge
(u,v) diagonal if u—v = (1,1), and vertical if u—v = (0, 1).

We define a weight function w : E — Z|[z, b] by setting w(e) = 1 if e is horizontal and
w(e) = z; + by, if e is a diagonal edge with its source at (s,t).

Let A/ is a skew (unshifted) diagram of length at most r and f its flag. Consider the
ordered sets of vertices u = (uy,...,u,) and v = (vy,...,v,) where

There is a bijection between SST*(A\/u, f) and Py(u,v) defined as follows. Let T €
SST*(A/u, f). Let P = (Py,...,P,) be the corresponding r-tuple of paths defined as
follows. If j,, < --- < j; are the entries of i-th row of 7" where m = \; — p;, then we
define P; to be the unique path from u; to v; such that the k-th diagonal edge has its
source at (\; —i —k+1,7x) for k=1,... m. For example, let A = (3,2,1), up = (1,1,0)
and f = (3,2,1). The following is an example of a tableaux 7" in SST*(\/pu, f) and the
corresponding triple of non-intersecting paths.

U3 V2 U1

[ )
Mu f M 0
L4 1
2| 3] 3 us
[ ]
T 2 2 Uz :
04 3
1] ! &
4
5

-3-2-10 1 2 3

It is not difficult to see that this defines a bijection from SST*(A/u, f) to Py(u,v).
Moreover, this bijection preserves the weights. Namely, suppose that T" corresponds to P.
Let j,, < --- < 71 be the entries of the i-th row of T. The column index of the entry ji
is A\; — k+ 1 and thus its corresponding weight is zj, + bj, +i—(x,—k+1). On the other hand,
P;’s k-th diagonal edge has its sources at (A; — i — k + 1, jx) and thus its weight is also
Zj, + bj,4i—(ni—k+1)- For example, the weights of the above examples of a tableau and the
corresponding paths are both (o + b1)(x3 + b1) - (x2 + b2) - (1 + b3). Thus we have

Svmpzl) = Y (zb)" = GF[Zp(u,v)]. (8)
TEeSST* (A p,f)
The following is an extension of Lemma 11 in view of the lattice path interpretation and

will be used in the proof of Theorem 29 below.
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Lemma 28. Let u = (s — 1, f) and v = (t — 1,0) where s,t € Z and f € Zy, then we
have
GF [2(u,v)] = e/l (27 71).

In particular, this identity is trivially zero unless 0 < s —t < f.

Proof. If s —t < 0, clearly the identity is zero. If 0 < f < s — ¢, then Z(u,v) = & so
that GF [Z(u,v)] = 0. Furthermore, el 77171 ig 5 polynomial in u of degree s —¢ — 1
so that egﬁi_t_f_l] = 0. Below we suppose that 0 < s —t < f.

If ¢ > 0, the claim follows from Lemma 11. If t < 0, consider v’ = (s — 1+ n, f) and
v/ = (t —1+mn,0) for some n such that t +n > 0, and then we have, also by Lemma 11,

GF (2 V)] = el I (2|7 m).

Since the paths in & (u, v) are obtained from the paths in &2 (v, v") by shifting horizontally
to the left by n units, we obtain GF [Z(u,v)] from GF [Z(u/,v')] by adding n to all
indices of b variables. Thus the claim follows. O

Theorem 29. Let (A, f) be a flagged skew partition where \ is a partition of length r.
Assume that Ny —i— f; 2 X\j —j — f; for all i < j. Then we have

1 _ [filAi—pj+i—i—fi—1] L
Sy (afb) = det (0T )
Proof. By the assumption, it follows that u is D-compatible with v. Thus we can apply
Theorem 27 to the right hand side of (8), and obtain

Sx/uf(z|b) = det (GF [P (uy, v;)])

1<i,j<r
Now the claim follows by applying Lemma 28 with v = u; = (A\; — ¢, f;) and v = v; =
(uj—j,0)sothat f=fi,s—t=N—pj+j—i,andt =p; —j+ 1 O
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