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Abstract

We prove the conjecture that the higher Tamari orders of Dimakis and Müller-
Hoissen coincide with the first higher Stasheff–Tamari orders. To this end, we show
that the higher Tamari orders may be conceived as the image of an order-preserving
map from the higher Bruhat orders to the first higher Stasheff–Tamari orders. This
map is defined by taking the first cross-section of a cubillage of a cyclic zonotope.
We provide a new proof that this map is surjective and show further that the map is
full, which entails the aforementioned conjecture. We explain how order-preserving
maps which are surjective and full correspond to quotients of posets. Our results
connect the first higher Stasheff–Tamari orders with the literature on the role of the
higher Tamari orders in integrable systems.

Mathematics Subject Classifications: 05B45, 06A07, 35C08

1 Introduction

Two of the best known and most widely studied partially ordered sets in mathematics
are the Tamari lattice [73] and the weak Bruhat order on the symmetric group. The
Tamari lattice appears in a broad range of areas of mathematics, physics, and computer
science [54]. It was introduced by Tamari [73, 38] as an order on the set of bracketings of
a string. It is the 1-skeleton of the associahedron, which was famously used by Stasheff
in topology to define A∞-spaces [70]. The weak Bruhat order on the symmetric group
was first studied by statisticians in the 1960s [67, 47, 79] and is now a fundamental part
of Coxeter theory—see [5], for example. It furthermore provides a useful framework for
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studying questions in the theory of social choice [2, 13, 1, 17]. Both orders also appear
in the representation theory of algebras [11, 75, 52, 39] and the theory of cluster algebras
[29, 65].

These posets have higher-dimensional versions, namely the first higher Stasheff–Tamari
orders S(n, δ) [40, 26] and the higher Bruhat orders B(n, δ + 1) [50]. These higher posets
arise as orders on (equivalence classes of) maximal chains in the original posets, and then
as orders on (equivalence classes of) maximal chains in those posets, and so on [50, 60].
For instance, the elements of the higher Bruhat order B(n, 2) correspond to reduced ex-
pressions for the longest element in the symmetric group, while the covering relations
correspond to braid moves. In this way, the higher posets encode higher-categorical data
latent within the original posets. Another way of thinking of the higher-dimensional
posets is geometrically. The Tamari lattice concerns triangulations of convex polygons,
whereas the first higher Stasheff–Tamari orders concern triangulations of cyclic polytopes;
the weak Bruhat order concerns complexes of edges of hypercubes, whereas the higher
Bruhat orders concern complexes of faces of hypercubes, known as cubillages or fine
zonotopal tilings.

The first higher Stasheff–Tamari orders and the higher Bruhat orders have their own
connections with other areas of mathematics. The first higher Stasheff–Tamari orders
occur in the representation theory of algebras [78] and algebraic K-theory [57]. The
higher Bruhat orders were originally introduced to study hyperplane arrangements [50]
and have found application in the theories of Soergel bimodules [27], quasi-commuting
Plücker coordinates [46], and social choice [30]. They are also tightly connected with the
quantum Yang–Baxter equation and its generalisations [24, and references therein].

The relation between the Tamari lattice and the weak Bruhat order has been of sig-
nificant interest. There is a classical surjection from the latter to the former, which
can be realised as a map from permutations to binary trees. This map arises in many
different places [7, 8, 76, 48, 49, 64]. Kapranov and Voevodsky extended this surjec-
tion to a map from the higher Bruhat orders to the first higher Stasheff–Tamari orders
f : B(n, δ) → S(n + 2, δ + 1) [40], which they conjectured was a surjection as well. This
remains an open problem despite some detailed studies [60, 74].

In this paper, we consider a closely related map from the higher Bruhat orders to the
first higher Stasheff–Tamari orders g : B(n, δ+1)→ S(n, δ). This map was first considered
as a map of posets in [74], in its dual form, and was itself considered in [16, Appendix B].
As a map of sets it was considered and shown to be surjective in [62], using the language
of lifting triangulations. We provide a new proof of surjectivity, and go further by showing
that the map is full. We call order-preserving maps which are both surjective and full
quotient maps of posets.

Theorem 1 (Theorem 23). The map g : B(n, δ+1)→ S(n, δ) is a quotient map of posets.

Indeed, in this paper we give a new approach to quotients of posets. The quotient of
a poset by an arbitrary equivalence relation is not always a well-defined poset. Previous
authors [36, 12, 63] have given sufficient conditions for the quotient to be well-defined
which ensure that other structure is also preserved, such as lattice-theoretic properties.
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Because the posets we are considering are not in general lattices [80, 78], we instead
consider weaker conditions, which are necessary and sufficient for the quotient to be a
well-defined poset. We show that quotients of posets in this sense correspond to order-
preserving maps which are surjective and full.

Part of the motivation for considering quotient posets in the way that we do stems
from [23], where Dimakis and Müller-Hoissen apply an equivalence relation to the higher
Bruhat orders to define the “higher Tamari orders” in order to describe a class of soliton
solutions of the KP equation. In subsequent work [24], the authors make further con-
nections with mathematical physics by using the higher Tamari orders to define polygon
equations, an infinite family of equations which generalise the pentagon equation. The
pentagon equation appears in many different areas of physics, including the theory of
angular momentum in quantum mechanics [4], and conformal field theory [53], as well as
several other places [25, 66, 28]. The polygon equations which generalise the pentagon
equation themselves occur in category theory [41, 71] and as “Pachner relations” in 4D
topological quantum field theory [43].

Dimakis and Müller-Hoissen conjectured the higher Tamari orders to coincide with the
first higher Stasheff–Tamari orders. We prove this conjecture by showing that the higher
Tamari orders are given by the image of the map g, as first noted in [16, Appendix B]. We
then apply Theorem 1; for the two sets of orders to be equal, it is only necessary for the
map g : B(n, δ + 1)→ S(n, δ) to be a quotient map of posets in our sense, rather than in
any stronger sense. The upshot of our result is that two far-reaching sets of combinatorics
are united. We unite the first higher Stasheff–Tamari orders, with their connections to
the representation theory of algebras [78], and the higher Tamari orders, which describe
classes of KP solitons [23] and from which arise the polygon equations [24]. Since the map
g is defined by taking a certain cross-section of a cubillage, our work shows the connection
between [23] and the papers [42, 33], in which KP solitons are related to cross-sections of
three-dimensional cubillages, building on [45, 44, 37]. See also [31, 55], for more work on
cross-sections of cubillages.

Theorem 2 (Corollary 24). The higher Tamari orders and the first higher Stasheff–
Tamari orders coincide.

Our approach is to use the description of the higher Bruhat orders in terms of cubillages
of cyclic zonotopes and the description of these objects in terms of separated collections
established in [32] and studied extensively in [18, 19, 16, 20, 21]. These tools allow us to
construct cubillages which are pre-images under the map g, which is instrumental in the
proof of Theorem 1.

This paper is structured as follows. In Section 2, we lay out some notation and con-
ventions that we use in the paper. We give background on the higher Bruhat orders and
cubillages of cyclic zonotopes in Section 3.1 and on the higher Stasheff–Tamari orders
and triangulations of cyclic polytopes in Section 3.2. In Section 4 we consider the map
g : B(n, δ + 1) → S(n, δ). We give three different characterisations of this map in Sec-
tions 4.1, 4.2, and 4.3, which correspond to the three different possible interpretations of
the higher Bruhat orders. In Section 5, we lay the necessary groundwork in the theory of
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quotient posets to make the statement that g is a quotient map of posets precise. In Sec-
tion 6 we give a new proof of the fact that the map g is surjective. We prove in Section 7
that it is full, and hence a quotient map of posets.

An extended abstract of this paper appeared in the Proceedings of the 33rd interna-
tional conference on Formal Power Series and Algebraic Combinatorics [77].

2 Terminology and conventions

Here we outline some general terminology and conventions that we use throughout the
paper.

2.0.1 Notation

We use [n] to denote the set {1, . . . , n} and
(

[n]
k

)
to denote the subsets of [n] of size k. We

sometimes refer to such subsets as k-subsets. Given a set A ⊆ [n] such that #A = k + 1,
unless otherwise indicated, we shall denote the elements of A by A = {a0, . . . , ak}, where
a0 < · · · < ak. The same applies to other letters of the alphabet: the upper case letter
denotes the set; the lower case letter is used for the elements, which are ordered according
to their index starting from 0.

2.0.2 Ordering

In this paper, it is convenient for us to consider both the linear and cyclic orderings of
[n]. Unless stated otherwise, it should be assumed that we refer to the linear ordering on
this set.

We denote by (a, b), [a, b] ⊆ [n] respectively the open and closed cyclic intervals. That
is,

(a, b) := {i ∈ [n] | a < i < b is a cyclic ordering},
[a, b] := (a, b) ∪ {a, b}.

The one exception to this is that we will find it convenient to set [a, a − 1] := ∅. When
we have a < b in the linear ordering on [n], we say that [a, b] and (a, b) are intervals. We
call I ⊆ [n] an l-ple interval if it can be written as a union of l intervals, but cannot be
written as a union of fewer than l intervals. We similarly define cyclic l-ple intervals.

When we refer to the elements ai of a subset A ⊆ [n] with #A = d + 1, we will
sometimes write i ∈ Z/(d+ 1)Z to indicate that one should interpret ad+1 as being equal
to a0. That is, if A = {1, 3, 5}, then a0 = 1, a1 = 3, a2 = 5, a3 = 1.

Given a linearly ordered set L and S ⊂ L, we say that an element l ∈ L \S is an even
gap in S if #{s ∈ S | s > l} is even. Otherwise, it is an odd gap. A subset S ⊂ L is even
if every l ∈ L \ S is an even gap. A subset S ⊂ L is odd if every l ∈ L \ S is an odd gap.

Let P be a partially ordered set. We say that q covers p in P if p < q and whenever
p 6 r 6 q in P , then r = p or r = q. If q covers p in P then we write pl q. If P is a finite
poset, we have that P is the transitive-reflexive closure of its covering relations. Hence,
in this case one can define P by specifying its covering relations.
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2.0.3 Convex geometry

Recall that a set Γ ⊆ Rδ is convex if, for any x,y ∈ Γ, the line segment xy between x
and y is contained in Γ. Given a set of points Γ ⊆ Rδ, the convex hull conv(Γ) is defined
to be the smallest convex set containing Γ or, equivalently, the intersection of all convex
sets containing Γ.

A convex polytope is the convex hull of a finite set of points in Rδ. Let ∆ ⊂ Rδ be a
convex polytope. A facet of ∆ is a face of codimension one. The upper facets of ∆ are
those that can be seen from a very large positive δ-th coordinate. The lower facets of
∆ are those that can be seen from a very large negative δ-th coordinate. A k-face of a
polytope is a face of dimension k. In this paper, we consider a subcomplex of a polytope
to be a union of its faces, where the polytope is considered, as usual, as a face of itself.

Recall that for Γ,Γ′ ⊆ Rδ, the Minkowski sum of Γ and Γ′ is defined to be

Γ + Γ′ = {x + y | x ∈ Γ, y ∈ Γ′}.

3 Background

3.1 Higher Bruhat orders

In this section we give the definition of the higher Bruhat orders. The fundamental defini-
tion of the higher Bruhat orders for our purposes is the description in terms of cubillages
of cyclic zonotopes given in [40] and formalised in [74]. After giving this definition, we
give the characterisation of cubillages of cyclic zonotopes established in [32] and studied
in [18]. Finally, we explain the original definition of the higher Bruhat orders from [50],
which we will also need.

3.1.1 Cubillages

We first give the geometric description of the higher Bruhat orders due to [40, 74]. Con-
sider the Veronese curve ξ : R → Rδ+1, given by ξt = (1, t, . . . , tδ). Let {t1, . . . , tn} ⊂ R
with t1 < · · · < tn and n > δ + 1. The cyclic zonotope Z(n, δ + 1) is defined to be the
Minkowski sum of the line segments

0ξt1 + · · ·+ 0ξtn ,

where 0 is the origin. The properties of the zonotope do not depend on the exact choice of
{t1, . . . , tn} ⊂ R. Hence, for ease we set ti = i. For k > l we have a canonical projection
map

πk,l : Rk → Rl

(x1, . . . , xk) 7→ (x1, . . . , xl)

which maps Z(n, k)→ Z(n, l).
A cubillage Q of Z(n, δ+1) is a subcomplex of Z(n, n) such that πn,δ+1 : Q → Z(n, δ+

1) is a bijection. Note that Q therefore contains faces of Z(n, n) of dimension at most
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δ + 1. We call these (δ + 1)-dimensional faces of Q the cubes of the cubillage. In the
literature, cubillages are often called fine zonotopal tilings—for example, in [32].

After [40, Theorem 4.4] and [74, Theorem 2.1, Proposition 2.1] one may define the
higher Bruhat poset B(n, δ+1) as follows. The elements of B(n, δ+1) consist of cubillages
of Z(n, δ+1). The covering relations of B(n, δ+1) are given by pairs of cubillages QlQ′
where there is a (δ+ 2)-face Γ of Z(n, n) such that Q\Γ = Q′ \Γ and πn,δ+2(Q) contains
the lower facets of πn,δ+2(Γ), whereas πn,δ+2(Q′) contains the upper facets of πn,δ+2(Γ).
Here we say that Q′ is an increasing flip of Q.

The cyclic zonotope Z(n, δ + 1) possesses two canonical cubillages, one given by the
subcomplex Ql of Z(n, n) such that πn,δ+2(Ql) consists of the lower facets of Z(n, δ + 2),
which we call the lower cubillage, and the other given by the subcomplex Qu of Z(n, n)
such that πn,δ+2(Qu) consists of the upper facets of Z(n, δ + 2), which we call the upper
cubillage. The lower cubillage of Z(n, δ + 1) gives the unique minimum of the poset
B(n, δ + 1), and the upper cubillage gives the unique maximum.

3.1.2 Separated collections

We now explain how one may characterise cubillages as separated collections of subsets,
as shown in [32].

The subsets E ⊆ [n] are naturally identified with the corresponding points ξE :=∑
e∈E ξe in Z(n, n), where ξ∅ := 0. This represents each vertex of a cubillage Q as a

subset of [n]. For a cubillage Q of Z(n, δ + 1), the collection of subsets corresponding
to its vertices is called the spectrum of Q and is denoted by Sp(Q). Each cube in Q is
viewed as the Minkowski sum of line segments

ξEξE∪{ai}

for some set A with #A = δ + 1 and E ⊆ [n] \ A. Here we call ξE the initial vertex of
the cube, ξE∪A the final vertex, and A the set of generating vectors.

We say that, given two sets A,B ⊆ [n], A δ-interweaves B if there exist iδ+1, iδ−1, . . . ∈
B \ A and iδ, iδ−2, . . . ∈ A \B such that

i0 < i1 < · · · < iδ+1.

We also say that {iδ+1, iδ−1, . . . } and {iδ, iδ−2, . . . } witness that A δ-interweaves B. If ei-
ther A δ-interweaves B or B δ-interweaves A, then we say that A and B are δ-interweaving.
If A δ-interweaves B as above and B \ A = {iδ+1, iδ−1, . . .} and A \ B = {iδ, iδ−2, . . .},
then we say that A tightly δ-interweaves B, in the manner of [3]. If A and B are not
δ-interweaving then we say that A and B are δ-separated, following [32, 18]. We call a
collection C ⊆ 2[n] δ-separated if it is pairwise δ-separated.

If δ = 2d, then being δ-interweaving is the same as being (d + 1)-interlacing in the
terminology of [3] and (d + 1)-intertwining in the terminology of [51]. We choose new
terminology because we wish to have an opposite of δ-separated for δ odd as well as δ
even.
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It follows from [32, Theorem 2.7] that the correspondence Q 7→ Sp(Q) gives a bijection
between the set of cubillages on Z(n, δ + 1) and the set of δ-separated collections of
maximal size in 2[n]. In particular, for any cubillage Q of Z(n, δ + 1), we have that
#Sp(Q) = Σδ+1

i=0

(
n
i

)
, which is the maximal size of a δ-separated collection in 2[n].

For A ⊆ [n], if πn,δ+1(ξA) is a boundary vertex of the zonotope Z(n, δ + 1), then ξA is
a vertex of every cubillage of Z(n, δ + 1), and hence A is in every δ-separated collection
in 2[n] of maximal size. Moreover, the subsets A ⊆ [n] such that πn,δ+1(ξA) is a boundary
vertex of the zonotope Z(n, δ + 1) are precisely those subsets which are δ-separated from
every other subset of [n]. Hence the subsets of interest are those which project to the
interior of the zonotope Z(n, δ+1). The vertices of the zonotope Z(n, δ+1) are known to
be in bijection with the number of regions of the arrangement of (δ−1)-spheres associated
with the set of points Ξ = {ξ1, . . . , ξn} on the Veronese curve, see [6, Proposition 2.2.2].
Since no set of δ points of Ξ lie in a linear hyperplane, the number of regions of this
arrangement of (δ − 1)-spheres is the maximal number of(

n− 1

δ

)
+

δ∑
i=0

(
n

i

)
.

(For instance, see [14, Problem 4, p.73].) Hence a cubillage Q of Z(n, δ + 1) has

δ+1∑
i=0

(
n

i

)
−

((
n− 1

δ

)
+

δ∑
i=0

(
n

i

))
=

(
n− 1

δ + 1

)
vertices which project to the interior of Z(n, δ + 1) if n > δ + 1, and 0 otherwise. We
call a point ξA ∈ Rn an internal point in Z(n, δ + 1) if πn,δ+1(ξA) lies in the interior of
Z(n, δ + 1). We call a vertex ξA of a cubillage Q ⊂ Rn of Z(n, δ + 1) internal if ξA is an
internal point in Z(n, δ + 1). Given a cubillage Q of Z(n, δ + 1), we define its internal
spectrum ISp(Q) to consist of the elements of Sp(Q) which correspond to internal vertices
of Q.

By [18, (2.7)], ξA is an internal point in Z(n, δ + 1) if and only if

• δ = 2d and A is a cyclic l-ple interval for l > d+ 1, or

• δ = 2d+1 and A is an l-ple interval for l > d+2, or a (d+1)-ple interval containing
neither 1 nor n.

We will also need the following concepts from [19]. Given a cubillage Q of Z(n, δ+ 1)
and a subcomplex M of Q, we say that M is a membrane in Q if M is a cubillage of
Z(n, δ). We say that an edge in a cubillage Q from ξE to ξE∪{i} is an edge of colour i,
where E ⊆ [n] \ {i} is any subset. For a cubillage Q of Z(n, δ + 1) and i ∈ [n], we define
the i-pie Πi(Q) to be the subcomplex of Q given by all the cubes which have an edge of
colour i. In [81, Chapter 7], the i-pie is called the i-th zone.

By [18, 32], we can obtain a cubillage Q/i from Q by contracting the edges of colour
i until they have length zero. The cubillage Q/i is known as the i-contraction of Q.
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The image of the n-pie Πn(Q) is a membrane in Q/n, but this is not in general true for
1 < i < n, by [18, (4.4)]. An example of 4-contraction is shown in Figure 1. Here the 4-pie
is shown in red on the left-hand cubillage, and this is contracted to zero in the right-hand
cubillage, where its image is a membrane. Note that here we are illustrating cubillages of
Z(4, 2) and Z(3, 2) by their images under the projection maps π4,2 and π3,2 respectively.
We will always illustrate cubillages in this way.

∅

1

12

123

1234

234

34

4

3

13

23
∅

1

12

123

3

13

23

Figure 1: 4-contraction.

3.1.3 Admissible orders

The original definition of the higher Bruhat orders from [50] is as follows. Given A ∈
(

[n]
δ+2

)
,

the set

P (A) =

{
B
∣∣∣ B ∈ ( [n]

δ + 1

)
, B ⊂ A

}
is called the packet of A. The set P (A) is naturally ordered by the lexicographic order,
where P (A) \ ai < P (A) \ aj if and only if j < i.

An ordering α of
(

[n]
δ+1

)
is admissible if the elements of any packet appear in either

lexicographic or reverse-lexicographic order under α. Two orderings α and α′ of
(

[n]
δ+1

)
are

equivalent if they differ by a sequence of interchanges of pairs of adjacent elements that
do not lie in a common packet. Note that these interchanges preserve admissibility. We
use [α] to denote the equivalence class of α.

The inversion set inv(α) of an admissible order α is the set of all (δ + 2)-subsets of
[n] whose packets appear in reverse-lexicographic order in α. Note that inversion sets are
well-defined on equivalence classes of admissible orders.

The higher Bruhat poset B(n, δ + 1) is the partial order on equivalence classes of
admissible orders of

(
[n]
δ+1

)
where [α]l [α′] if inv(α′) = inv(α)∪{A} for A ∈

(
[n]
δ+2

)
\ inv(α).

One can explain the bijection between cubillages of Z(n, δ + 1) and admissible orders
on
(

[n]
δ+1

)
. Let Q be a cubillage of Z(n, δ + 1) corresponding to an equivalence class [α] of

admissible orders on
(

[n]
δ+1

)
. It follows from [74] that the cubes of Q are in bijection with
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the elements of
(

[n]
δ+1

)
via sending a cube to its set of generating vectors. A packet which

can be inverted corresponds to a set of lower facets of πn,δ+2(Γ), where Γ is a (δ+ 2)-face
Γ of Z(n, n). Inverting the packet corresponds to an increasing flip: exchanging the lower
facets of πn,δ+2(Γ) for its upper facets.

Hence, a cubillage Q of Z(n, δ + 1) is determined once, for every element of
(

[n]
δ+1

)
,

one knows the initial vertex of the cube with that set of generating vectors. Let α be an
admissible order of

(
[n]
δ+1

)
corresponding to a cubillage Q of Z(n, δ + 1) and let ∆ be the

cube of Q with set of generating vectors I and initial vertex ξE. Then, given e ∈ [n] \ I,
we have that e ∈ E if and only if either

• I ∪ {e} /∈ inv(α) and e is an odd gap in I, or

• I ∪ {e} ∈ inv(α) and e is an even gap in I.

This follows from [74, Theorem 2.1] if one swaps the sign convention for δ + 1 odd. This
makes the statement simpler and reveals connections with the paper [23], as we explain
in Section 4.3. An analogous statement was shown for more general zonotopes in [33,
Lemma 5.13].

Conversely, given a cubillage Q of Z(n, δ+ 1), one can determine an equivalence class
of admissible orders of

(
[n]
δ+1

)
. Define a partial order on the cubes of the cubillage Q

by ∆ l ∆′ if πn,δ+1(∆) ∩ πn,δ+1(∆′) is an upper facet of πn,δ+1(∆) and a lower facet of
πn,δ+1(∆′). The linear extensions of this partial order then comprise the admissible orders
in the equivalence class [α] corresponding to Q, by [80, Lemma 2.2] and [50, 74].

3.2 Higher Stasheff–Tamari orders

In this section we give the definition of the first higher Stasheff–Tamari orders. These
were originally defined by Kapranov and Voevodsky under the name the higher Stasheff
orders in the context of higher category theory [40, Definition 3.3]. This was built upon by
Edelman and Reiner, who introduced the first and second higher Stasheff–Tamari orders
in [26]. Thomas later proved that the first higher Stasheff–Tamari orders were the same
as the higher Stasheff orders of Kapranov and Voevodsky [74, Proposition 3.3]. A good
survey of the higher Stasheff–Tamari orders can be found in [61]. The definition of the
first higher Stasheff–Tamari orders is similar in style to the geometric definition of the
higher Bruhat orders using cubillages.

The moment curve is defined by pt = (t, t2, . . . , tδ) ⊆ Rδ for t ∈ R. Choose t1, . . . , tn ∈
R such that t1 < t2 < · · · < tn and n > δ + 1. The cyclic polytope C(n, δ) is defined to
be the convex polytope conv(pt1 , . . . , ptn). The properties of the cyclic polytope do not
depend on the exact choice of {t1, . . . , tn} ⊂ R. Hence, for ease we set ti = i.

We consider a triangulation of the cyclic polytope C(n, δ) to be a subcomplex T of
C(n, n− 1) such that πn−1,δ : T → C(n, δ) is a bijection. Note here that C(n, n− 1) is an
(n − 1)-simplex. After [40, 74], we define the first higher Stasheff–Tamari poset S(n, δ)
as follows. The elements of S(n, δ) are triangulations of C(n, δ). The covering relations
of S(n, δ) are given by pairs of triangulations T l T ′ where there is a (δ + 1)-face Σ
of C(n, n − 1) such that T \ Σ = T ′ \ Σ and πn−1,δ+1(T ) contains the lower facets of
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πn−1,δ+1(Σ), whereas πn−1,δ+1(T ′) contains the upper facets of πn−1,δ+1(Σ). Here we say
that T ′ is an increasing flip of T .

The cyclic polytope C(n, δ) possesses two canonical triangulations, one given by the
subcomplex Tl of C(n, n−1) such that πn−1,δ+1(Tl) consists of the lower facets of C(n, δ+1),
known as the lower triangulation, and the other given by the subcomplex Tu of C(n, n−1)
such that πn−1,δ+1(T ′) consists of the upper facets of C(n, δ + 1), known as the upper
triangulation. The lower triangulation of C(n, δ) gives the unique minimum of the poset
S(n, δ) and the upper triangulation gives the unique maximum.

Given a subset A ⊆ [n] with #A = k + 1, we write |A| := conv(pa0 , . . . , pak) for
its geometric realisation as a simplex in Rn−1. One may combinatorially describe the
lower facets and upper facets of C(n, δ), and hence the lower and upper triangulations of
C(n, δ − 1). Gale’s Evenness Criterion [34, Theorem 3][26, Lemma 2.3] states that, for
F ⊆ [n] with #F = δ, we have that πn−1,δ|F | is an upper facet of C(n, δ) if and only if F
is an odd subset, and that πn−1,δ|F | is a lower facet of C(n, δ) if and only if F is an even
subset. We remove excess brackets, so that here πn−1,δ|F | = πn−1,δ(|F |).

We call a bδ/2c-simplex |A| ⊂ Rn−1 internal in C(n, δ) if πn−1,δ|A| does not lie within
a facet of C(n, δ). A bδ/2c-simplex |A| of a triangulation T ⊂ Rn−1 of C(n, δ) is an
internal bδ/2c-simplex if it is internal in C(n, δ). It is clear that a triangulation of a
convex polygon is determined by the arcs of the triangulation; similarly, a triangulation
of C(n, δ) is determined by the internal bδ/2c-simplices of the triangulation, by a theorem
of Dey [22]. Hence, for a triangulation T of C(n, δ) we denote by

e̊(T ) :=

{
A ∈

(
[n]

bδ/2c+ 1

) ∣∣∣ |A| is an internal bδ/2c-simplex of T
}
.

By [56, Lemma 2.1] and [78, Lemma 4.2], given A ∈
(

[n]
bδ/2c+1

)
, we have that |A| is an

internal bδ/2c-simplex in C(n, δ) if

• δ = 2d and A is a cyclic (d+ 1)-ple interval, or

• δ = 2d+ 1 and A is a (d+ 1)-ple interval containing neither 1 nor n.

Observation 3. Given A ∈
(

[n]
bδ/2c+1

)
, we have that |A| is an internal bδ/2c-simplex in

C(n, δ) if and only if ξA is an internal point in Z(n, δ + 1).

A circuit of a cyclic polytope C(n, δ) is a pair of disjoint subsets X, Y ⊆ [n] which
are inclusion-minimal with the property that πn−1,δ|X| ∩ πn−1,δ|Y | 6= ∅. If A,B ⊆ [n]
are such that A ⊇ X and B ⊇ Y where (X, Y ) is a circuit of C(n, δ), then we say that
πn−1,δ|A| and πn−1,δ|B| intersect transversely in C(n, δ). By [10], the circuits of C(n, δ)
are the pairs (X, Y ) and (Y,X) such that #X = bδ/2c + 1, #Y = dδ/2e + 1, and X
δ-interweaves Y . This also follows from the description of the oriented matroid given by
a cyclic polytope [9, 72, 15]. We will later use the fact that if |A| and |B| are simplices in
the same triangulation, then there is no circuit (X, Y ) such that A ⊇ X and B ⊇ Y [60,
Proposition 2.2].
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4 Interpretations

In this section we study the map

g : B(n, δ + 1)→ S(n, δ).

We give three different interpretations of this map, corresponding to the three different
ways of defining the higher Bruhat orders.

4.1 Cubillages

Here we give our principal definition of the map g. This definition is geometric and
uses the interpretation of B(n, δ + 1) in terms of cubillages. This was how the map was
considered in [16, Appendix B], where Lemma 4 and Proposition 6 were both noted.

Lemma 4. If Q is a cubillage of Z(n, δ + 1), then the vertex figure of Q at ξ∅ gives a
triangulation of C(n, δ).

Proof. Let Hk denote the affine hyperplane

Hk := {(x1, . . . , xk) ∈ Rk | x1 = 1}.

The vertex figure of the zonotope Z(n, k) at the vertex ξ∅ can be given by the intersection
Z(n, k)∩Hk. It is clear from the definitions of Z(n, k) and C(n, k) that this intersection is
the cyclic polytope C(n, k). The vertex figure of the cubillage Q of Z(n, δ+ 1) at ξ∅ then
induces a subcomplex T = Q∩Hn of C(n, n−1). This subcomplex T is a triangulation of
C(n, δ) because we have that πn,δ+1 : Q → Z(n, δ + 1) is a bijection, which then restricts
to a bijection from Q∩Hn = T to Z(n, δ + 1) ∩Hδ+1 = C(n, δ).

Hence we define the map

g : B(n, δ + 1)→ S(n, δ)

Q 7→ Q ∩Hn.

For the purposes of this paper, this is the definition of the map g, and the characterisations
in Section 4.2 and Section 4.3 are simply other interpretations.

Remark 5. The intersections of cubillages with the hyperplanes given by x1 = l for
l ∈ [n−1] have been the objects of significant study in the literature. For three-dimensional
zonotopes, such cross-sections are dual to plabic graphs [31], which arise in the combina-
torics associated to Grassmannians [58, 59]. When the cubillage is regular, such graphs
arise in the study of KP solitons [37, 42, 33], and it is this connection that lies behind
the definition of the higher Tamari orders in [23]. The paper [55] studies hypersimplicial
subdivisions and shows that, in general, only a subset of these come from cross-sections
of subdivisions of zonotopes. This means that the analogues of the map g for other cross-
sections of cubillages are not generally surjective. In [19, 20, 21], rather than studying the
intersection of a cubillage with these hyperplanes, the fragmentation of a cubillage into
different pieces cut by these hyperplanes is studied.
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We identify the hyperplane Hn with the space Rn−1, so that we can consider C(n, n−1)
sitting inside it as usual. In particular, we abuse notation by using πn−1,δ+1 to denote the
restriction πn,δ+2|Hn : Hn → Hδ+2. This convention is illustrated in the following proof, in
which we examine how g interacts with increasing flips.

Proposition 6. If Q,Q′ are cubillages of Z(n, δ + 1) such that Q l Q′, then either
g(Q) = g(Q′) or g(Q) l g(Q′).

Proof. LetQ andQ′ be two cubillages such thatQlQ′. Let Γ be the (δ+2)-face of Z(n, n)
which induces the increasing flip, and let the initial vertex of Γ be ξE = (x1, . . . , xn). Then
Q and Q′ differ only in that πn,δ+2(Q) contains the lower facets of πn,δ+2(Γ) and πn,δ+2(Q′)
contains the upper facets of πn,δ+2(Γ).

The intersection Γ ∩ Hn consists of more than a single point if and only if E = ∅.
This is because, given (y1, . . . , yn) ∈ Γ, we have y1 > x1 = #E. Hence if #E > 1, then
Γ ∩Hn = ∅; and if #E = 1, then Γ ∩Hn = ξE. Thus if E 6= ∅, then Q and Q′ both have
the same intersection with the hyperplane Hn, so that g(Q) = g(Q′).

If E = ∅, then πn,δ+2(Γ) ∩ Hδ+2 is the (δ + 1)-simplex πn−1,δ+1|A|, where A is the
generating set of Γ. We then have that g(Q) and g(Q′) differ only in that πn−1,δ+1(g(Q))
contains the lower facets of πn−1,δ+1|A|, whereas πn−1,δ+1(g(Q′)) contains the upper facets
of πn−1,δ+1|A|. Hence g(Q) l g(Q′).

Recall that if (X,6) and (Y,6) are posets, and f : X → Y is map such that we have
f(x) 6 f(x′) whenever x 6 x′, then f is called order-preserving.

Corollary 7. The map g : B(n, δ + 1)→ S(n, δ) is order-preserving.

Example 8. We now give two examples of taking the vertex figure of a cubillage of
Z(n, δ + 1) at ξ∅.

First, consider the cubillage Q1 of Z(4, 2) shown in Figure 3. As we did above, we can
find the vertex figure of Q1 at ξ∅ by intersecting with the hyperplane H4, as shown. We
thus obtain the triangulation g(Q1) = T1 of C(4, 1) shown in Figure 2.

Secondly, consider the cubillage Q2 of Z(4, 3) illustrated in Figure 4. This cubillage
possesses four cubes, two of which share the face highlighted in blue. The hyperplane H4

is shown here in red. The intersection gives the triangulation g(Q2) = T2 of C(4, 2) shown
in Figure 5.

Remark 9. There is a dual version of the map g, given by

g : B(n, δ + 1)→ S(n, δ)

Q 7→ Q ∩Hn,

where Hn = {(x1, . . . , xn) ∈ Rn | x1 = n − 1}. Given a cubillage Q of Z(n, δ + 1), the
triangulation g(Q) is induced by taking the vertex figure of Z(n, n) at the vertex ξ[n].
This map was considered in [74, Proposition 7.1]. The dual of Proposition 11 gives that
if QlQ′, then either g(Q) = g(Q′) or g(Q)m g(Q′). Hence g is order-reversing. That is,
if Q 6 Q′, then g(Q) > g(Q′).
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Figure 2: The triangulation g(Q1) = T1 of C(4, 1).
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4

Figure 3: The cubillage Q1 of Z(4, 2) intersected with H4.

4.2 Separated collections

Our second definition of the map uses the characterisation of cubillages in terms of sep-
arated collections and the combinatorial framework for triangulations of cyclic polytopes
from [56, 78]. This is the framework we use to prove that g is a quotient map of posets
in Section 6 and Section 7.

Given a triangulation T of C(n, δ), let

Σ(T ) := {A ⊆ [n] | |A| is a simplex of T }.

This can be viewed as the abstract simplicial complex corresponding to T . The following
lemma tells us how the value of g(Q) is determined by Sp(Q).

Lemma 10. Let Q be a cubillage of Z(n, δ+1) and T be a triangulation of C(n, δ). Then
g(Q) = T if and only if Sp(Q) ⊇ Σ(T ).

Proof. Suppose that g(Q) = T . Let |A| be a δ-simplex of T . Then there is a cube ∆ of
Q such that |A| = ∆∩Hn. We must have that the initial vertex of ∆ is ξ∅ and the set of
generating vectors is A. Thus if |B| is a face of |A|, then ξB is a vertex of ∆, and hence
B ∈ Sp(Q). Since every simplex of the triangulation T is a face of a δ-simplex, we have
that Sp(Q) ⊇ Σ(T ).
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Figure 4: The cubillage Q2 of Z(4, 3).
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Figure 5: The triangulation g(Q2) = T2 of C(4, 2).

Conversely, suppose that Sp(Q) ⊇ Σ(T ). Let |A| be a δ-simplex of T . Then 2A ⊆
Σ(T ) ⊆ Sp(Q). By [18, (2.5)], the cube ∆ with initial vertex ∅ and generating vectors A
is therefore a cube of Q. This means that |A| is a δ-simplex of g(Q), since |A| = ∆∩Hn.
Since this is true for any δ-simplex of T , we must have g(Q) = T .

In fact, as the following proposition shows, we need only consider ISp(Q) ∩
(

[n]
bδ/2c+1

)
to know the value of g(Q).
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Proposition 11. Given a cubillage Q ∈ B(n, δ + 1), we have that e̊(g(Q)) = ISp(Q) ∩(
[n]

bδ/2c+1

)
.

Proof. It follows immediately from Lemma 10 that e̊(g(Q)) ⊆ ISp(Q) ∩
(

[n]
bδ/2c+1

)
, since if

#A = bδ/2c + 1, then |A| is an internal bδ/2c-simplex in C(n, δ) if and only if ξA is an
internal point in Z(n, δ + 1), by Observation 3.

To show that e̊(g(Q)) ⊇ ISp(Q) ∩
(

[n]
bδ/2c+1

)
, suppose that we have

A ∈
(

ISp(Q) ∩
(

[n]

bδ/2c+ 1

))
\ e̊(g(Q)).

Then note that |A| must be an internal bδ/2c-simplex in C(n, δ), since ξA is an internal
point in Z(n, δ + 1). However, |A| is not a bδ/2c-simplex of T , so πn−1,δ|A| intersects a
dδ/2e-simplex πn−1,δ|B| of πn−1,δ(T ) transversely. This implies that (A,B) is a circuit,
and so A and B are δ-interweaving. But this is a contradiction, since B ∈ Sp(Q) by
Lemma 10.

Proposition 11 gives an interpretation of the map g in terms of separated collections.
We know that a cubillage Q of Z(n, δ + 1) is determined by ISp(Q), and likewise a
triangulation T of C(n, δ) is determined by e̊(T ). Hence one could also define g(Q) to be
the triangulation T such that e̊(T ) = ISp(Q) ∩

(
[n]

bδ/2c+1

)
.

Example 12. We illustrate how to apply the interpretation of g from Proposition 11 to
the cubillages from Example 8.

Consider the internal spectrum of Q1, as shown in Figure 3. We have ISp(Q1) =
{3, 13, 23}, so ISp(Q1) ∩

(
[4]
1

)
= {3}. This implies that {3} = e̊(g(Q1)) = e̊(T1), which is

indeed the case. Note that having e̊(T1) = {3} defines T1.
Next, consider the internal spectrum of Q2, as shown in Figure 4. We have ISp(Q2) =

{13}, so ISp(Q2) ∩
(

[4]
2

)
= {13}. This implies that {13} = e̊(g(Q2)) = e̊(T2), which is

indeed the case. Note that having e̊(T2) = {13} defines T2.

Remark 13. The interpretation of g for separated collections is as follows. We have that
g(Q) is the triangulation T such that

e̊(T ) =

{
[n] \ A

∣∣∣ A ∈ C ∩ ( [n]

n− bδ/2c − 1

)}
.

4.3 Admissible orders

In this section we give a way of defining the map g while interpreting the elements of the
higher Bruhat orders as equivalence classes of admissible orders. We use the following
notions, which were used in [23] to define the higher Tamari orders.

Let α be an admissible order of
(

[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Given e ∈ [n] \ I, we say that I

is invisible in P (I ∪ {e}) if either

• I ∪ {e} /∈ inv(α) and e is an odd gap in I, or
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• I ∪ {e} ∈ inv(α) and e is an even gap in I.

Otherwise, we say that I is coinvisible in P (I ∪ {e}). (We note that I being invisible
in P (I ∪ {e}) is equivalent to e being externally semi-active with respect to I, in the
terminology of [33], which applies to more general matroids.)

Then:

• We say that I is invisible in α if there is a e ∈ [n] \ I such that I is invisible in
P (I ∪ {e}).

• We say that I is coinvisible in α if there is a e ∈ [n] \ I such that I is coinvisible in
P (I ∪ {e}).

• We say that I is visible in α if there is no e ∈ [n] \ I such that I is invisible in
P (I ∪{e}). (Note that this is not the same notion of visibility as in [16, Section 9].)

• We say that I is covisible in α if there is no e ∈ [n] \ I such that I is coinvisible in
P (I ∪ {e}).

Given an admissible order α of
(

[n]
δ+1

)
, we use V (α) to denote the elements of

(
[n]
δ+1

)
which are visible in α and V (α) to denote the elements of

(
[n]
δ+1

)
which are covisible in α.

(In [24], visible elements are labelled in blue; covisible elements are labelled in red; and
elements which are neither visible nor covisible are labelled in green.)

Given an admissible order α of
(

[n]
δ+1

)
, we write Qα for the corresponding cubillage of

Z(n, δ + 1).

Proposition 14. Let α be an admissible order of
(

[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then the cube in

Qα with generating set I has initial vertex ξE, where

E = {e ∈ [n] \ I | I is invisible in P (I ∪ {e})}.

Proof. This follows immediately from the correspondence between admissible orders and
cubillages in [74], as described in Section 3.1.

The following result was noted in [16, Appendix B].

Corollary 15. Let α be an admissible order of
(

[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then I ∈ V (α) if

and only if the cube in Qα with generating set I has initial vertex ξ∅.

This gives us yet another interpretation of the map g.

Corollary 16. Given [α] ∈ B(n, δ + 1), we have that g(Qα) is the triangulation with

{|A| | A ∈ V (α)}

as its set of δ-simplices.
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Example 17. We continue from Example 8 and Example 12 and illustrate how the map
g can also be characterised using visibility.

We consider Q1 first. By labelling the cubes of Q1 with the elements of
(

[4]
2

)
, as shown

in Figure 6, it can be seen that the admissible order corresponding to Q1 is

α1 = {23 < 13 < 12 < 14 < 24 < 34}.

We compute that inv(α1) = {123}.

∅
13

34

23

12

24

14

Figure 6: Q1 with its cubes labelled.

We can then analyse which elements of
(

[4]
2

)
are visible in α1:

• 23: invisible because 123 ∈ inv(α1) and 1 is an even gap in 23;

• 13: visible;

• 12: invisible because 123 ∈ inv(α1) and 3 is an even gap in 12;

• 14: invisible because 124 /∈ inv(α1) and 2 is an odd gap in 14;

• 24: invisible because 234 /∈ inv(α1) and 3 is an odd gap in 24;

• 34: visible.

Note that, as Corollary 15 shows, 13 and 34 are precisely the cubes with ξ∅ as their
initial vertex. Furthermore, as Corollary 16 shows, g(Q1) = T1 is the triangulation with
1-simplices |13| and |34|.

We now conduct the same analysis of Q2. The admissible order corresponding to Q2

is
α2 = {123 < 124 < 134 < 234}.

It is easy to see that inv(α2) = ∅. Hence the visible elements of
(

[4]
3

)
in α2 are as follows:
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• 123: visible;

• 124: invisible because 1234 /∈ inv(α2) and 3 is an odd gap in 124;

• 134: visible;

• 234: invisible because 1234 /∈ inv(α2) and 1 is an odd gap in 234.

Again, it can be seen in Figure 4 that 123 and 134 are precisely the cubes with ξ∅ as their
initial vertex, as shown by Corollary 15. Moreover, as Corollary 16 shows, g(Q2) = T2 is
the triangulation with 2-simplices |123| and |134|.

The dual statements to Proposition 14, Corollary 15, and Corollay 16 are as follows.

Proposition 18. Let α be an admissible order of
(

[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then the cube in

Qα with generating set I has final vertex ξF where

F = [n] \ {e ∈ [n] \ I | I is coinvisible in P (I ∪ {e})}.

Corollary 19. Let α be an admissible order of
(

[n]
δ+1

)
and I ∈

(
[n]
δ+1

)
. Then I ∈ V (α) if

and only if the cube in Qα with generating set I has final vertex ξ[n].

Corollary 20. Given [α] ∈ B(n, δ + 1), we have that g(Qα) is the triangulation with

{|A| | A ∈ V (α)}

as its set of δ-simplices.

5 Quotient maps of posets

Dimakis and Müller-Hoissen use the definition of the map g from Section 4.3 to define the
higher Tamari orders. We restate their definition in the framework of quotient posets. In
this section, we explain our approach to this notion.

Given a poset (X,6) subject to an equivalence relation ∼, the quotient (X/∼, R) is
defined to be the set of ∼-equivalence classes [x] of X, with the binary relation R defined
by [x]R[y] if and only if there exist x′ ∈ [x] and y′ ∈ [y] such that x′ 6 y′. The quotient of
a poset is in general only a reflexive binary relation, not a partial order, since the relation
R is not necessarily transitive or anti-symmetric.

Previous authors have considered various different conditions on the equivalence re-
lation ∼ which are sufficient to guarantee that the quotient X/∼ is a poset. Stanley
considers the case where ∼ is given by the orbits of a group of automorphisms [68, 69].
Two similar notions of congruence which also preserve lattice-theoretic properties are con-
sidered by Chajda and Snášel, and Reading [12, 63]. Most recently, Hallam and Sagan
[36, 35] consider homogeneous quotients in order to study the characteristic polynomials
of lattices.

Whilst these conditions are sufficient to guarantee that the quotient poset is well-
defined, none of them are necessary. In this paper we are interested only in the minimal
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conditions which provide that the quotient poset is well-defined, and not in whether the
quotient also preserves other properties. These necessary and sufficient conditions are as
follows.

Proposition 21. The quotient X/∼ is a poset if and only if

1. if there exist x1 ∼ x and y1 ∼ y such that x1 6 y1, and x2 ∼ x and y2 ∼ y such that
x2 > y2, then x ∼ y, and

2. given x, y, z ∈ X such that there exist x1 ∼ x and y1 ∼ y such that x1 6 y1, and
y2 ∼ y and z2 ∼ z such that y2 6 z2, then there exist x3 ∼ x and z3 ∼ z such that
x3 6 z3.

Proof. Condition (1) is equivalent to the relation R being anti-symmetric. Condition (2)
is equivalent to the relation R being transitive.

If both condition (1) and condition (2) hold, then we write 6 instead of R, to ac-
knowledge that the relation gives us a partial order. In this case, we say that ∼ is a weak
order congruence on the poset X. Note that, in particular, order congruences [63, 12]
and the equivalence relations which give homogeneous quotients [36, 35] are weak order
congruences.

If ∼ is a weak order congruence, so that X/∼ is a poset, then we have a canonical
order-preserving map

X → X/∼
x 7→ [x].

Indeed, for any order-preserving map of posets f : X → Y , one can consider the equiv-
alence relation on X defined by x ∼ x′ if and only if f(x) = f(x′). We then define the
image of f to be the quotient f(X) = X/∼. We identify the ∼-equivalence class [x] of
X with the element f(x) ∈ Y , so that f(X) ⊆ Y and the quotient relation on f(X) is a
subrelation of the partial order on Y . If the equivalence relation ∼ on X is a weak order
congruence, so that the image f(X) is a well-defined poset, then we say that the map f
is photogenic.

We say that a map f : X → Y is full if whenever f(x1) 6 f(x2) in Y , there exist
x′1, x

′
2 ∈ X such that x′1 6 x′2, with f(x′1) = f(x1) and f(x′2) = f(x2). (In [12], maps

which are full and order-preserving are called strong.) For an example of a poset which
is surjective but not full, let X = {x1, x2} be the two-element poset with no non-trivial
relations, and let Y = {y1 < y2}. Then x1 7→ y1 and x2 7→ y2 defines an order-preserving
map which is surjective but not full.

Proposition 22. Let X and Y be posets with f : X → Y an order-preserving map. Then
the relation on f(X) is anti-symmetric. Furthermore, if f is full, then the relation on
f(X) is transitive, and so f is photogenic. Finally, f(X) = Y as posets if and only if f
is surjective and full.
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Proof. Suppose that x1, x2 ∈ X are such that [x1]R[x2] and [x2]R[x1]. Since f is order-
preserving, this implies that f(x1) 6 f(x2) and f(x2) 6 f(x1). Hence f(x1) = f(x2) and
so x1 ∼ x2. Thus R is anti-symmetric.

Now suppose that f is full. Let x1, x2, x3 ∈ X be such that [x1]R[x2] and [x2]R[x3].
This implies that f(x1) 6 f(x2) and f(x2) 6 f(x3), since f is order-preserving. Hence
f(x1) 6 f(x3). Since f is full, there exist x′1, x

′
3 ∈ X such that x′1 6 x′3, with f(x′1) = f(x1)

and f(x′3) = f(x3). Hence [x1]R[x3], and so R is transitive.
Finally, it is clear that f(X) = Y as sets if and only if f is surjective. Then f

being full and order-preserving is equivalent to having [x1] 6 [x2] in f(X) if and only if
f(x1) 6 f(x2) in Y .

Therefore, every quotient of a poset by a weak order congruence gives an order-
preserving map which is surjective and full, and, conversely, every order-preserving map
which is surjective and full gives a quotient by a weak order congruence. Hence, if an
order-preserving map f is surjective and full, then we say that f is a quotient map of
posets.

With this technical framework in mind, the higher Tamari order T (n, δ + 1) [23] is
defined to be the image of the map g : B(n, δ + 1) → S(n, δ), or, explicitly, the quotient
of B(n, δ + 1) by the relation defined by Q ∼ Q′ if and only if g(Q) = g(Q′). That this
is equivalent to [23, Definition 4.7] follows from Corollary 16. Note that it is not evident
that T (n, δ+ 1) is a well-defined poset, since it is not clear that the map g is photogenic.
However, in Section 7 we shall prove that g is full, which implies that g is photogenic
by Proposition 22, since we already know that g is order-preserving by Corollary 7. In
Section 6, we give a new proof of the fact that g is surjective, originally known from [62,
Theorem 3.5]. Therefore, the results of the two subsequent sections entail the following
theorem.

Theorem 23. The map g : B(n, δ + 1)→ S(n, δ) is a quotient map of posets.

Hence, we obtain by Proposition 22 that the higher Tamari orders are indeed the same
posets as the first higher Stasheff–Tamari orders.

Corollary 24. T (n, δ + 1) ∼= S(n, δ).

6 Surjectivity

We now give a new construction showing that the map g is a surjection. Our strategy is
to explicitly show that g is a surjection when δ is even, and then to use this to deduce the
case where δ is odd. Given a triangulation T of C(n, 2d), we will construct a cubillage
QT of Z(n, 2d + 1) such that g(QT ) = T . We will define QT by specifying its internal
spectrum.

Convention 25. In this section and in Section 7, we will frequently be using arithmetic
modulo n. In particular, given a set S ∈

(
[n]

2d+2

)
, we have s0 − s2d+1 ≡ s0 − s2d+1 + n

(mod n), which is an element of [n].
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For I ⊆ [n], we write I = J t J ′ if I = J ∪ J ′ and there are no j ∈ J, j′ ∈ J ′ such that
j, j′ are cyclically consecutive. Given a cyclic l-ple interval I = [i0, i

′
0] t · · · t [il−1, i

′
l−1],

we use the notation Î := {i0, . . . , il−1} from [51]. We claim that the collection of subsets

U(T ) =
{
I ⊆ [n] | |Î| is a d′-simplex of T for d′ > d

}
defines the internal spectrum of a cubillage on Z(n, 2d + 1). This is similar to the con-
struction in [51, Theorem 3.8]. In order to show that U(T ) is the internal spectrum of a
cubillage, we must show that it is 2d-separated and that #U(T ) =

(
n−1
2d+1

)
, as explained

in Section 3.1.2. We begin by showing that U(T ) is 2d-separated, for which we need the
following lemma. This generalises one direction of [51, Lemma 3.7], although the proof in
op. cit. requires only minor changes.

Lemma 26. Let I, J ⊆ [n]. Then I δ-interweaves J only if there exist subsets X ⊆ Î

and Y ⊆ Ĵ such that #X = bδ/2c and #Y = dδ/2e, and X δ-interweaves Y .

Proof. We let δ = 2d, since the case δ = 2d+ 1 behaves similarly.
Let I = [i0, i

′
0]t· · ·t[ir, i

′
r] and J = [j0, j

′
0]t· · ·t[js, j

′
s]. Suppose that I 2d-interweaves

J , and let A ⊆ I \ J and B ⊆ J \ I witness this. For any 0 6 p < q 6 d we cannot have
both ap ∈ [it, i

′
t] and aq ∈ [it, i

′
t], since this implies that bp, . . . , bq−1 ∈ [it, i

′
t] ⊆ I, which

contradicts B ∩ I = ∅. Hence, for all 0 6 k 6 d, let tk be such that ak ∈ [itk , i
′
tk

] and let
uk be such that bk ∈ [juk , j

′
uk

]. Moreover, since B ∩ I = ∅, we have bk ∈ (i′tk , itk+1
), and

similarly ak ∈ (j′uk−1
, juk) for k ∈ Z/(d+ 1)Z. Then

it0 6 a0 < ju0 6 b0 < it1 6 a1 < · · · < itd 6 ad < jud 6 bd,

and so
it0 < ju0 < it1 < · · · < itd < jud .

Letting X = {it0 , . . . , itd} and Y = {ju0 , . . . , jud} gives us the desired result.

Lemma 27. The collection U(T ) is 2d-separated.

Proof. Suppose that there exist I, J ∈ U(T ) such that I and J are 2d-interweaving. By

Lemma 26, we have X ⊆ Î and Y ⊆ Ĵ such that X and Y are δ-interweaving. But
this implies that Î and Ĵ each contain one half of a circuit (X, Y ) for C(n, 2d). This

is a contradiction, since, by construction of U(T ), |Î| and |Ĵ | are both simplices of the
triangulation T of C(n, 2d).

We must now show that #U(T ) =
(
n−1
2d+1

)
. We use induction for this, showing that the

size of U(T ) is preserved by increasing flips of T , which requires the following lemma.

Lemma 28. Let |S| be a (2d + 1)-simplex inducing an increasing flip of a triangulation
T of C(n, 2d) and denote Sl = {s0, s2, . . . , s2d} and Su = {s1, s3, . . . , s2d+1}. Then the
following two sets have the same cardinality:

Il(S, n) =
{
I ⊆ [n] | Sl ⊆ Î ⊂ S

}
,

Iu(S, n) =
{
I ⊆ [n] | Su ⊆ Î ⊂ S

}
.
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Here we use the symbol ‘⊂’ to denote proper subsets.

Proof. Note that we may instead consider

I ′l(S, n) :=
{
I ⊆ [n] | Sl ⊆ Î ⊆ S

}
,

I ′u(S, n) :=
{
I ⊆ [n] | Su ⊆ Î ⊆ S

}
.

This is because

I ′l(S, n) \ Il(S, n) = I ′u(S, n) \ Iu(S, n) =
{
I ⊆ [n] | Î = S

}
.

Hence if #I ′l(S, n) = #I ′u(S, n), then #Il(S, n) = #Iu(S, n).
We prove the claim by explicit enumeration. Let

I = [s0, s
′
0] ∪ [s1, s

′
1] ∪ [s2, s

′
2] ∪ · · · ∪ [s2d, s

′
2d] ∪ [s2d+1, s

′
2d+1].

Then I ∈ I ′l(S, n) if and only if, for all i ∈ Z/(d+ 1)Z,

s′2i ∈ [s2i, s2i+1 − 1] and s′2i+1 ∈ [s2i+1 − 1, s2i+2 − 2].

Recall that our convention here is that if s′j = sj − 1, then [sj, s
′
j] = ∅. Similarly,

I ∈ I ′u(S, n) if and only if, for all i ∈ Z/(d+ 1)Z,

s′2i ∈ [s2i − 1, s2i+1 − 2] and s′2i+1 ∈ [s2i+1, s2i+2 − 1].

Therefore,

#I ′l(S, n) = #I ′u(S, n) =
∏

i∈Z/(d+1)Z

(s2i+1 − s2i)(s2i+2 − s2i+2)

=
∏

j∈Z/(2d+2)Z

(sj+1 − sj).

This allows us to prove that our 2d-separated collection U(T ) is the right size to be
the internal spectrum of a cubillage.

Lemma 29. Given a triangulation T of C(n, 2d), we have that #U(T ) =
(
n−1
2d+1

)
.

Proof. We prove the claim by induction on increasing flips of the triangulation. This
is valid since every triangulation of a cyclic polytope can be reached via a sequence of
increasing flips from the lower triangulation by [60, Theorem 1.1(i)].

For the base case, let Tl be the lower triangulation of C(n, 2d). By Gale’s Evenness
Criterion, the 2d-simplices of Tl are given by 1 together with d disjoint pairs of consecutive
numbers. Therefore, the only d′-simplices of Tl with d′ > d which have no cyclically
consecutive entries are the internal d-simplices. Hence if I ∈ U(Tl), then |Î| is an internal
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d-simplex of Tl. Moreover, the internal d-simplices of Tl are given by (d+1)-subsets which
are cyclic (d+ 1)-ple intervals and contain 1.

By [18, (4.2)(ii)], the internal spectrum of the lower cubillage of Z(n, 2d+ 1) consists
of all cyclic (d + 1)-ple intervals which contain 1. It is then straightforward to see that
U(T ) is indeed the internal spectrum of the lower cubillage of Z(n, 2d+ 1) when T is the
lower triangulation of C(n, 2d). Therefore, we have in this case that #U(T ) =

(
n−1
2d+1

)
.

For the inductive step, we suppose that we have a triangulation T ′ obtained by per-
forming an increasing flip induced by a (2d + 1)-simplex |S| on a triangulation T for
which the induction hypothesis holds. Then Il(S, n) contains precisely the subsets I such

that πn−1,2d+1|Î| is contained in a lower facet of πn−1,2d+1|S| but not any upper facets, by
Gale’s Evenness Criterion. Similarly, Iu(S, n) contains precisely the subsets I such that

πn−1,2d+1|Î| is contained in an upper facet of πn−1,2d+1|S| but not any lower facets. Hence

U(T ′) = (U(T ) \ Il(S, n)) ∪ Iu(S, n),

and so #U(T ) = #U(T ′) by Lemma 28. The result then follows by induction.

Hence we obtain that g is a surjection in even dimensions.

Theorem 30. The map g : B(n, δ + 1)→ S(n, δ) is a surjection for even δ.

Proof. Let δ = 2d and let T be a triangulation of C(n, 2d). By Lemma 27, Lemma 29, and
the correspondence between cubillages and separated collections from [32], we have that
the collection U(T ) is the internal spectrum of a cubillage QT of Z(n, 2d+ 1). Moreover,
g(QT ) = T by Proposition 11, since if #A = d + 1, then A ∈ U(T ) if and only if |A| is
an internal d-simplex of T .

Example 31. We give an example of the construction used to prove Theorem 30. Con-
sider the triangulation T of the hexagon C(6, 2) which has arcs e̊(T ) = {13, 15, 35}.

Then we have

U(T ) = {13, 15, 35,

134, 125, 356, 135,

1345, 1235, 1356}.

Note the presence of 135 ∈ U(T ), since |135| is a 2-simplex of T . One can check that
U(T ) is 2-separated. Furthermore, #U(T ) = 10 =

(
5
3

)
=
(

6−1
2+1

)
, as desired.

We thus obtain the cubillage QT which is defined by ISp(QT ) = U(T ). It then follows
from Proposition 11 that g(QT ) = T ; compare Example 12. Hence T has a pre-image
under g.

We now use this result to show that the map g must be a surjection for odd δ. Following
many authors, given a set S of subsets of [n], we denote by S ∗ (n+ 1) the set

S ∗ (n+ 1) = {A ∪ {n+ 1} | A ∈ S}.
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Theorem 32. The map g : B(n, δ + 1)→ S(n, δ) is a surjection for odd δ.

Proof. Let δ = 2d+1. Let T be a triangulation of C(n, 2d+1). We show that there exists
a cubillage QT of Z(n, 2d + 2) such that Sp(QT ) ⊇ Σ(T ). Consider the triangulation T̂
of C(n+ 1, 2d+ 2) defined in [60, Definition 4.1]. By Theorem 30, there is a cubillage Q′
of Z(n+ 1, 2d+ 3) such that g(Q′) = T̂ . By definition of T̂ , we have that Σ(T )∪Σ(T ) ∗
(n + 1) ⊆ Σ(T̂ ) ⊆ Sp(Q′). By [18, Lemma 5.2], if we take the (n + 1)-contraction of Q′
then we get a membrane M in Q′/(n + 1) as the image of the (n + 1)-pie, and we have
that Sp(M) ⊇ Σ(T ). We therefore define QT = M, recalling that M is a cubillage of
Z(n, 2d+ 2). By Lemma 10, we must have that g(QT ) = T .

Corollary 33. The map g : B(n, δ + 1)→ S(n, δ) is a surjection.

Remark 34. In [40, Theorem 4.10], Kapranov and Voevodsky gave a map f : B(n, δ) →
S(n + 2, δ + 1) which they stated was a surjection. A proof of this statement remains
unfound. It was shown in [74, Proposition 7.1] that there is a factorisation

B(n, δ) S(n, δ − 1),

S(n+ 2, δ + 1)

f

g

where g is the dual map to g from Remark 9 and the dotted map is a surjection by [60,
Corollary 4.3].

The map f should not only be a surjection, but also a quotient map of posets, as
we show is true of the map g in this paper. This was shown for δ = 1 by Reading [64],
drawing upon [8]. However, note that f cannot in general realise S(n + 2, δ + 1) as a
quotient of B(n, δ) by an order congruence in the sense used in [64]. This is because the
equivalence classes of an order congruence must be intervals, but [74, Section 6] shows
that the fibres of the map f are not always intervals. Hence f can only be a quotient map
of posets in a more general sense, such as that considered in this paper.

7 Fullness

We now show that the map g is full, and hence is a quotient map of posets. To do this,
we must show that if T 6 T ′ for triangulations T , T ′ of C(n, δ), then there are cubillages
Q,Q′ of Z(n, δ+1) such that g(Q) = T , g(Q′) = T ′, and Q 6 Q′. We follow the approach
of Section 6, whereby we work explicitly for even-dimensional triangulations, and then
use this to show the result for odd dimensions. Indeed, we show that for triangulations
T , T ′ of C(n, 2d) with T 6 T ′, we have QT 6 QT ′ . For this, it suffices to show that if
T l T ′, then QT < QT ′ . To do this, we find a sequence of increasing flips from QT to
QT ′ .

We wish to continue working in the framework of separated collections, as in Section 6.
Hence, we must show what the covering relations of the higher Bruhat orders are in this
framework.

the electronic journal of combinatorics 30(1) (2023), #P1.29 24



Theorem 35. Given cubillages Q,Q′ of Z(n, δ + 1) we have that Q lQ′ if and only if
Sp(Q′) = (Sp(Q)\{A})∪{B}, where A δ-interweaves B. Moreover, in this case A tightly
δ-interweaves B.

Proof. The forwards direction follows from [16, Proposition 8.1]. Namely, if the increasing
flip from Q to Q′ is induced by the face Γ of Z(n, n), then Γ has a vertex ξA and a vertex
ξB such that A tightly δ-interweaves B, πn,δ+2(ξA) is only contained in the lower facets of
πn,δ+2(Γ), πn,δ+2(ξB) is only contained in the upper facets of πn,δ+2(Γ), and every other
vertex of πn,δ+2(Γ) is contained in at least one lower facet and at least one upper facet.
Hence, Sp(Q′) = (Sp(Q) \ {A}) ∪ {B}, where A tightly δ-interweaves B.

We now prove the backwards direction, supposing that Sp(Q′) = (Sp(Q)\{A})∪{B},
where A δ-interweaves B. Let A′ ⊆ A \ B and B′ ⊆ B \ A witness the fact that A
δ-interweaves B.

We consider first the case where δ = 2d. We begin by proving that A′ = A \ B and
B′ = B \ A, so that A tightly 2d-interweaves B. The vertex ξA must be an internal
vertex in the cubillage Q, since subsets corresponding to boundary vertices are contained
in every 2d-separated collection. Therefore, ξA must be a vertex of at least two cubes in
Q, and so must have at least 2d + 2 edges emanating from it. The subsets at the other
end of each of these edges must be 2d-separated from B, so the edges must either add
elements of B′ or remove elements of A′. Since #A′ ∪ B′ = 2d + 2, the edges emanating
from ξA in Q must be precisely the edges which remove elements of A′ and add elements
of B′. Now suppose that there exists a ∈ A \ (A′ ∪ B). Then a ∈ (b′i−1, b

′
i) for some

i ∈ Z/(d+ 1)Z. But this implies that A\{a′i} δ-interweaves B, which contradicts the fact
that the edge from ξA to ξA\{a′i} is in the cubillage Q. Hence A′ = A \ B. The argument
that B′ = B \ A is similar.

Therefore ξA is incident to 2d+ 2 edges in the cubillage, where d+ 1 of the edges add
elements of B′ and d + 1 of the edges remove elements of A′. The cubes with ξA as a
vertex are generated by a choice of 2d + 1 of these edges. If P is the union of cubes in
Q with ξA as a vertex, then P is a set of facets of a (2d+ 2)-face Γ of Z(n, n) which has
initial vertex ξA∩B and which is generated by A′ ∪B′. By [16, Proposition 8.1], πn,δ+2(P)
gives the lower facets of πn,δ+2(Γ), since πn,δ+2(P) consists of all the facets of πn,δ+2(Γ)
which contain πn,δ+2(ξA). Since, likewise, the upper facets of πn,δ+2(Γ) are precisely those
containing πn,δ+2(ξB), we obtain that Q′ is an increasing flip of Q.

For δ = 2d+1, the argument is similar. We deduce that ξA has 2d+3 edges emanating
from it in Q, d + 1 of which remove elements of A′ and d + 2 of which add elements of
B′. To show that A′ = A \ B and B′ = B \ A, the only extra thing to consider is the
possibility that we have a ∈ A \ (A′ ∪ B) such that a < b′0 or a > b′d+1. But in the first
instance here, we have that B δ-interweaves A ∪ {b′d+1}, since

a < b′0 < a′0 < b′1 < · · · < b′d < a′d.

But this is a contradiction, since we know that the edge from ξA to ξA∪{b′d+1} is in Q. In

the second instance, we have that B δ-interweaves A∪{b′0}, when we know that the edge
from ξA to ξA∪{b′0} is in Q. The remainder of the case where δ = 2d− 1 is similar.
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In the setting of the above theorem, we say that (A,B) is the exchange pair of the
flip and that we exchange A for B. Using this characterisation of increasing flips, it can
be seen that, in order to show that QT 6 QT ′ , we must show that we can gradually
exchange the elements of Sp(QT )\Sp(QT ′) for the elements of Sp(QT ′)\Sp(QT ). If |S| is
the simplex inducing the increasing flip from T to T ′, then Sp(QT ) \ Sp(QT ′) = Il(S, n)
and Sp(QT ′) \ Sp(QT ) = Iu(S, n), as in Lemma 29. Hence, we will define a sequence of
exchanges which replaces Il(S, n) with Iu(S, n). To show that our sequence of exchanges
works, we will need the following lemma.

Lemma 36. Let

I = [s0, s
i
0] ∪ [s1, s

i
1] ∪ · · · ∪ [s2d, s

i
2d] ∪ [s2d+1, s

i
2d+1]

and
J = [s0, s

j
0] ∪ [s1, s

j
1] ∪ · · · ∪ [s2d, s

j
2d] ∪ [s2d+1, s

j
2d+1].

Then I 2d-interweaves J if and only if, for all r,

sj2r < si2r and si2r+1 < sj2r+1.

Proof. If we have that, for all r, sj2r < si2r and si2r+1 < sj2r+1, then we have that

{si0, si2, . . . , si2d} ⊆ I \ J and {sj1, s
j
3, . . . , s

j
2d+1} ⊆ J \ I with

si0 < sj1 < si2 < sj3 < · · · < si2d < sj2d+1.

Hence I 2d-interweaves J .
Conversely, suppose that I 2d-interweaves J , and let X ⊆ I \J and Y ⊆ J \ I witness

this. We cannot have both xp, xq ∈ [st, s
i
t] for p 6= q, since this implies that yr ∈ [st, s

i
t]

for p 6 r < q. Furthermore, we cannot have both xp ∈ [st, s
i
t] and yp ∈ [st, s

j
t ], since we

must have either [st, s
i
t] ⊆ [st, s

j
t ] or [st, s

j
t ] ⊆ [st, s

i
t]. By the pigeonhole principle and the

fact that x0 < y0, we deduce that xr ∈ [s2r, s
i
2r] and yr ∈ [s2r+1, s

j
2r+1] for all r. But this

implies that sj2r < si2r and si2r+1 < sj2r+1 for all r.

It is now useful for us to obtain an explicit map for the bijection from Lemma 28. This
allows us to construct the sequence of exchanges which replaces Il(S, n) with Iu(S, n).

Construction 37. Given S ∈
(

[n]
2d+2

)
, we define

I(S, n) = Il(S, n) ∪ Iu(S, n),

I ′(S, n) = I ′l(S, n) ∪ I ′u(S, n).

In order to get a convenient parametrisation of these sets, we define a map

φ :
∏

i∈Z/(2d+2)Z

[0, si+1 − si]→ 2[n]

(n0, n1, . . . , n2d+1) 7→
⋃

i∈Z/(2d+2)Z

[si, si + ni − 1].

We abbreviate n = (n0, n1, . . . , n2d+1). Then
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• φ(n) ∈ I ′l(S, n) if and only if n2i−1 < s2i − s2i−1 and n2i > 0 for all i ∈ Z/(d+ 1)Z;

• φ(n) ∈ I ′u(S, n) if and only if n2i < s2i+1 − s2i and n2i+1 > 0 for all i ∈ Z/(d+ 1)Z;

• φ(n) ∈ Il(S, n) if and only if n2i−1 < s2i − s2i−1 and n2i > 0 for all i ∈ Z/(d+ 1)Z,
and there exists a j ∈ Z/(d+ 1)Z such that either n2j+1 = 0 or n2j = s2j+1 − s2j;

• φ(n) ∈ Iu(S, n) if and only if n2i < s2i+1 − s2i and n2i+1 > 0 for all i ∈ Z/(d+ 1)Z,
and there exists a j ∈ Z/(d+ 1)Z such that either n2j = 0, or n2j−1 = s2j − s2j−1.

We then obtain an explicit bijection by defining a map

ψ : Il(S, n)→ Iu(S, n)

as follows. Let I ∈ Il(S, n) such that I = φ(n) and let t = (−1, 1,−1, 1, . . . ,−1, 1).
Further, define

λI = max

λ ∈ Z>0

∣∣∣ n + λt ∈
∏

i∈Z/(2d+2)Z

[0, si+1 − si]

 .

By construction,
φ(n + λIt) ∈ Iu(S, n),

since we must either have some j ∈ Z/(d + 1)Z such that s2j − λI = 0, or some j ∈
Z/(d + 1)Z such that s2j−1 + λI = s2j − s2j−1, otherwise λI would not be maximal.
Therefore define

ψ(I) = φ(n + λIt).

It can be seen that the map ψ is a bijection because one may define its inverse as
follows. Let J ∈ Iu(S, n) such that J = φ(n). Then let

µJ = max

µ ∈ Z>0

∣∣∣ n− µt ∈
∏

i∈Z/(2d+2)Z

[0, si+1 − si]

 .

By construction,
φ(n− µJt) ∈ Il(S, n),

since we must either have some j ∈ Z/(d + 1)Z such that n2j+1 − µJ = 0, or some
j ∈ Z/(d+ 1)Z such that n2j + µJ = s2j+1 − s2j. It is then clear that

ψ−1(J) = φ(n− µJt).

Theorem 38. Given triangulations T , T ′ of C(n, 2d) such that T l T ′, there exist cubil-
lages Q0, . . . ,Qr of Z(n, 2d+ 1) such that Q0 = QT , Qr = QT ′ and

Q0 lQ1 l · · ·lQr,

so that QT 6 QT ′.
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Proof. Suppose that the increasing flip of T which gives T ′ is induced by the (2d+1)-face
|S| of C(n, n−1). Then ISp(QT )\ISp(QT ′) = Il(S, n) and ISp(QT ′)\ISp(QT ) = Iu(S, n).
Let R = ISp(QT ) \ Il(S, n) = ISp(QT ′) \ Iu(S, n). Hence we must find a sequence of flips
starting at QT which gradually replaces Il(S, n) with Iu(S, n).

The flips of cubillages we wish to perform are as follows. Given φ(n) ∈ Il(S, n), we
make the sequence of exchanges

φ(n) ; φ(n + t) ; · · ·; φ(n + (λφ(n) − 1)t) ; φ(n + λφ(n)t),

where φ(n) ; φ(n + t) means that we remove φ(n) and replace it with φ(n + t). Hence
the set of exchange pairs in our sequence of flips from QT to QT ′ is

{(φ(n + rt), φ(n + (r + 1)t) | φ(n) ∈ Il(S, n), 0 6 r < λφ(n)}.

We must show that there is an order in which we can make these exchanges such that
after each exchange we still have a 2d-separated collection. Here each exchange gives an
increasing flip by Theorem 35. Note further that φ(n+ rt) and φ(n+ (r+ 1)t) are tightly
2d-interweaving, as we know must be the case from Theorem 35.

Our exchanges give a bijection

I ′(S, n) \ Iu(S, n)→ I ′(S, n) \ Il(S, n)

φ(n) 7→ φ(n + t).

Hence, we have one exchange per element of I ′(S, n) \ Iu(S, n). By Construction 37, we
have that φ is a bijection between [1, s1 − s0] × [0, s2 − s1 − 1] × · · · × [1, s2d+1 − s2d] ×
[0, s0 − s2d+1 − 1 + n] and I ′(S, n) \ Iu(S, n). The set [1, s1 − s0]× [0, s2 − s1 − 1]× · · · ×
[1, s2d+1 − s2d]× [0, s0 − s2d+1 − 1 + n] is a lattice under the order given by

(n0, n1, . . . , n2d+1) 6 (n′0, n
′
1, . . . , n

′
2d+1)

if and only if for all j
n′2j 6 n2j and n2j+1 6 n′2j+1,

since this is just the usual product order, but reversed on coordinates with even index.
We claim that any linear extension n1 < · · · < nr of this lattice gives an order on

I ′(S, n) \Iu(S, n) such that if C0 := Sp(QT ) and Ci := (Ci−1 \ {φ(ni)})∪{φ(ni + t)}, then
Ci is 2d-separated for all i. Note first that we always must have φ(ni) ∈ Ci−1. This is
because either φ(ni) ∈ Il(S, n) or φ(ni−t) ∈ I ′(S, n)\Iu(S, n). Hence, either φ(ni) ∈ C0,
or φ(ni) is the result of an earlier exchange, since ni − t < ni in our order.

Now suppose that Ci is not 2d-separated for some i. We may choose the minimal i for
which this is the case. We first show that no element of I ′(S, n) is 2d-interweaving with
any element of R. Suppose, on the contrary, that there exist I ∈ I ′(S, n) and J ∈ R such

that I and J are 2d-interweaving. Then, by Lemma 26, we have X ⊆ Î and Y ⊆ Ĵ such
that #X = #Y = d + 1 and X and Y are 2d-interweaving. We have that X ⊆ Î ⊆ S,
and since #X = d+ 1, we must have either X 6⊇ Su, or X 6⊇ Sl. If X 6⊇ Su, then X ⊆ F
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for a 2d-simplex |F | of T , by Gale’s Evenness Criterion. This gives a contradiction, since

|F | and |Ĵ | are both simplices of T and (X, Y ) is a circuit. One can derive a similar
contradiction using T ′ when X 6⊇ Sl.

Therefore, if Ci is not 2d-separated, it must be because φ(ni + t) is 2d-interweaving
with an element I ∈ I(S, n) ∩ Ci. By Lemma 36, we must have

I = [s0, s
′
0] ∪ [s1, s

′
1] ∪ · · · ∪ [s2d+1, s

′
2d+1] ∈ Ci \ {φ(ni + t)} = Ci−1 \ {φ(ni)}

such that either s2j + (ni2j − 1)− 1 < s′2j and s′2j+1 < s2j+1 + (ni2j+1 + 1)− 1 for all j, or
s′2j < s2j + (ni2j − 1)− 1 and s2j+1 + (ni2j+1 + 1)− 1 < s′2j+1 for all j. In the latter case,
we also have that s′2j < s2j + ni2j − 1 and s2j+1 + ni2j+1 − 1 < s′2j+1, so that φ(ni) also
2d-interweaves I, which means that Ci−1 is not 2d-separated. This contradicts i being the
minimal index such that this was the case. In the former case, we have that I precedes
φ(ni) in our chosen order on I ′(S, n) \ Iu(S, n). This means that I must have already
been exchanged, which is also a contradiction.

Therefore, we have cubillages Q0, . . . ,Qr such that Ci = Sp(Qi) for each i. By Theo-
rem 35, we have

Q0 lQ1 l · · ·lQr.

By construction, we have that Q0 = QT and Qr = QT ′ .

Example 39. We give an example of the construction used to prove Theorem 38.

1. Consider the triangulation T of the heptagon C(7, 2) given by
e̊(T ) = {13, 16, 35, 36}. We perform the increasing flip on this triangulation induced
by the simplex |1236|, thereby obtaining the triangulation T ′ of C(7, 2) with e̊(T ′) =
{16, 26, 35, 36}.

We have

ISp(QT ) = {13, 16, 35, 36,

126, 134, 136, 346, 356, 367,

1236, 1345, 1346, 1367, 3467, 3567,

12346, 13456, 13467, 13567}

and

ISp(QT ′) = {16, 26, 35, 36

126, 236, 267, 346, 356, 367,

1236, 1367, 2346, 2367, 3467, 3567,

12346, 13467, 13567, 23467}.

Moreover,

ISp(QT ) \ ISp(QT ′) = Il(1236, 7) = {13, 134, 136, 1345, 1346, 13456}
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and
ISp(QT ′) \ ISp(QT ) = Iu(1236, 7) = {26, 236, 267, 2346, 2367, 23467}.

We illustrate how we can gradually replace elements of Il(1236, 7) in ISp(QT ) with the
elements of Iu(1236, 7), whilst ensuring that the collection remains 2-separated.

The coordinate parameterisation of I ′(1236, 7) by φ gives

φ(1, 0, 1, 0) = 13,

φ(1, 0, 2, 0) = 134,

φ(1, 0, 1, 1) = 136,

φ(1, 0, 3, 0) = 1345,

φ(1, 0, 2, 1) = 1346,

φ(1, 0, 3, 1) = 13456,

φ(0, 1, 0, 1) = 26,

φ(0, 1, 1, 1) = 236,

φ(0, 1, 0, 2) = 267,

φ(0, 1, 2, 1) = 2346,

φ(0, 1, 1, 2) = 2367,

φ(0, 1, 2, 2) = 23467.

The bijection ψ : Il(1236, 7)→ Iu(1236, 7) in this case gives

13 = φ(1, 0, 1, 0) 7→ φ(0, 1, 0, 1) = 26,
134 = φ(1, 0, 2, 0) 7→ φ(0, 1, 1, 1) = 236,
136 = φ(1, 0, 1, 1) 7→ φ(0, 1, 0, 2) = 267,

1345 = φ(1, 0, 3, 0) 7→ φ(0, 1, 2, 1) = 2346,
1346 = φ(1, 0, 2, 1) 7→ φ(0, 1, 1, 2) = 2367,

13456 = φ(1, 0, 3, 1) 7→ φ(0, 1, 2, 2) = 23467.

Note that in this example, we have that I ′l(1236, 7) = Il(1236, 7) and I ′u(1236, 7) =

Iu(1236, 7), since we cannot have Î = 1236 for any subset I. Thus we consider the lattice
on I ′(1237, 6) \ Iu(1237, 6) = Il(1236, 7) given by

(1, 0, 1, 1)

(1, 0, 1, 0) (1, 0, 2, 1)

(1, 0, 2, 0) (1, 0, 3, 1)

(1, 0, 3, 0),
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which is
136

13 1346

134 13456

1345.

Note here that we place minimal element of the lattice at the bottom. Therefore, by
Theorem 38, we may perform the exchanges replacing φ(n) by φ(n + t) in an order given
by any linear extension of

136 ; 267

13 ; 26 1346 ; 2367

134 ; 236 13456 ; 23467

1345 ; 2346.

Note here that we first make the exchange at the bottom of the lattice, and then move
up.

2. We now give an example where we do not have I(S, n) = I ′(S, n). This example is
somewhat larger than the previous example, so we do not go through it in the same level
of detail.

Indeed, we do not consider full triangulations, but only the set Il(1357, 8), which we
wish to replace with the set Iu(1357, 8). Here we have I ′l(1357, 8) = Il(1357, 8) ∪ {1357}
and I ′u(1357, 8) = Iu(1357, 8) ∪ {1357}. The sequence of exchanges from Il(1357, 8) to
Iu(1357, 8) is given by the bijection φ(n) 7→ φ(n + t) from I ′(1357, 8) \ Iu(1357, 8) to
I ′(1357, 8) \ Il(1357, 8).

Any sequence of exchanges done in the order of any linear extension of the following
lattice will preserve 2-separatedness. One can check that this is the lattice from the proof
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of Theorem 38.

1256 ; 1357

156 ; 357 12356 ; 13457 125 ; 137 12567 ; 13578

15 ; 37 1356 ; 3457 1567 ; 3578 1235 ; 1347 1257 ; 1378 123567 ; 134578

135 ; 347 157 ; 378 13567 ; 34578 12357 ; 13478

1357 ; 3478

Note that here, since 1357 ∈ I ′(1357, 8) \ Il(1357, 8), but 1357 /∈ Iu(1357, 8), we have
that 1256 ; 1357 ; 3478. That is, 1357 is only an intermediate subset in the sequence
of exchanges from Il(1357, 8) to Iu(1357, 8).

We now show the result for odd dimensions.

Theorem 40. Given triangulations T , T ′ of C(n, 2d + 1) such that T l T ′, there exist
cubillages Q0, . . . ,Qr of Z(n, 2d+ 2) such that Q0 = QT , Qr = QT ′ and

Q0 lQ1 l · · ·lQr,

so that QT 6 QT ′.

Proof. We start, as in the proof of Theorem 32, by considering the triangulations T̂ , T̂ ′
of C(n + 1, 2d + 2). By [60, Proposition 5.14(i)], we have that T̂ ′ < T̂ . By Theorem 38,
there exist cubillages Q′sl · · ·lQ′0 of Z(n+ 1, 2d+ 3) such that Q′s = QT̂ ′ and Q′0 = QT̂ .

As in the proof of [18, Lemma 5.2], we have that the (n + 1)-contraction of Q′i gives
a membraneMi, which is a cubillage of Z(n, 2d+ 2). As in the proof of Theorem 32, we
have thatMs = QT ′ andM0 = QT . We claim that for each i we either haveMi =Mi+1

or Mi lMi+1.
Consider the increasing flip which takes Q′i+1 to Q′i. Suppose this increasing flip is

induced by a (2d + 4)-face Γ of Z(n + 1, n + 1) which has A as its set of generating
vectors. If n + 1 /∈ A, then the increasing flip does not affect the (n + 1)-pie, so that
Mi =Mi+1. Hence, suppose instead that n+ 1 ∈ A. Let the lower facets of πn+1,2d+4(Γ)
consist of the cubes πn+1,2d+4(∆j), where ∆j is generated by A\{aj}, noting that we must
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have a2d+3 = n + 1. Similarly, let the upper facets of πn+1,2d+4(Γ) consist of the cubes
πn+1,2d+4(∆′j), where ∆′j is generated by A \ {aj}.

Then, it is well-known that for j < k the cubes πn+1,2d+4(∆j) and πn+1,2d+4(∆k)
intersect in an upper facet of πn+1,2d+4(∆k) and a lower facet of πn+1,2d+4(∆j), while the
cubes πn+1,2d+4(∆′j) and πn+1,2d+4(∆′k) intersect in an upper facet of πn+1,2d+4(∆′j) and a
lower facet of πn+1,2d+4(∆′k). This is because the increasing flip corresponds to inverting
the packet of A: the cubes ∆j and ∆′j correspond to the sets A \ {aj}; these must be
ordered lexicographically for ∆j and reverse-lexicographically for ∆′j.

Contracting the (n + 1)-pie of Q′i+1 sends the cubes ∆j for j < 2d + 3 to their facet
generated by A \ {aj, n+ 1}, which is precisely the intersection ∆j ∩∆2d+3. By the above
paragraph, this projects to an upper facet of πn+1,2d+4(∆2d+3). Hence the part of Mi+1

which lies within Γ/(n+ 1) consists of the upper facets of πn+1,2d+4(∆2d+3/(n+ 1)). Here
we use Γ/(n + 1) to denote the image of Γ/(n + 1) under the (n + 1)-contraction, and
so forth. Similarly, we have that the part of Mi which lies within Γ/(n + 1) consists of
the lower facets of πn+1,2d+4(∆′2d+3/(n+ 1)). We then have that Γ/(n+ 1) = ∆2d+3/(n+
1) = ∆′2d+3/(n + 1), and so Mi lMi+1. This is since Mi and Mi+1 only differ within
Γ/(n + 1), because Q′i+1 and Q′i only differ within Γ. Moreover, πn,2d+3(Mi+1) contains
the upper facets of πn,2d+3(Γ/(n + 1)), whereas πn,2d+3(Mi) contains the lower facets of
πn,2d+3(Γ/(n+ 1)). This argument is illustrated in Figure 7; compare [16, Figure 7].

This gives a chain of cubillages QT =M0 = Q0 l · · ·lQr =Ms = QT ′ by applying
the result of the above paragraph to the chainQ′sl· · ·lQ′0. Here the cubillagesQ0, . . . ,Qr
are the cubillages M0, . . . ,Ms with the duplicates removed, corresponding to the cases
above where Mi =Mi+1.
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1234

234
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Qi ∅

1

12

123

3

13

23Mi

Figure 7: An illustration of the argument of Theorem 40.
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By putting together Theorem 30, Theorem 32, Theorem 38, and Theorem 40, this
finally establishes Theorem 23, and hence also Corollary 24.
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Appl. Algebra, 190(1-3):1–21, 2004.
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