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Abstract

For a given positive integer k we say that a family of subsets of [n] is k-antichain
saturated if it does not contain k pairwise incomparable sets, but whenever we
add to it a new set, we do find k such sets. The size of the smallest such family is
denoted by sat∗(n,Ak). Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan
conjectured that sat∗(n,Ak) = (k− 1)n(1+ o(1)), and proved this for k 6 4. In this
paper we prove this conjecture for k = 5 and k = 6. Moreover, we give the exact
value for sat∗(n,A5) and sat∗(n,A6). We also give some open problems inspired by
our analysis.
Mathematics Subject Classifications: 06A07, 05D05

1 Introduction

For a positive integer k we say that a family F of subsets of [n] = {1, . . . , n} is k-antichain
saturated if F does not contain k pairwise incomparable sets, but for every set X /∈ F ,
the family F ∪ {X} does contain k incomparable sets. We denote by sat∗(n,Ak) the
size of the smallest k-antichain saturated family. Equivalently (by Dilworth’s theorem),
sat∗(n,Ak) is the size of the smallest family that is maximal subject to being the union
of k − 1 chains.

To see an example of a k-saturated family, let us call a chain of subsets of [n] full if it
has size n + 1. Then it is easy to see that a collection of k − 1 full chains that intersect
only at ∅ and [n] is a k-antichain saturated family. Thus for n large enough we certainly
have sat∗(n,Ak) 6 (k − 1)(n− 1) + 2.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [1] improved this upper
bound slightly, showing that for n > k > 4, we have sat∗(n,Ak) 6 (n−1)(k−1)−(1

2
log2 k+

1
2
log2 log2 k + c), for some absolute constant c. In the other direction, they also showed
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that sat∗(n,Ak) > 3n−1 for n > k > 4. This immediately implies that for n > 4 we have
sat∗(n,A4) = 3n − 1. They also showed that sat∗(n,A2) = n + 1 and sat∗(n,A3) = 2n,
and conjectured that sat∗(n,Ak) = (k − 1)n(1 + o(1)). Here o(1) denotes a function that
tends to 0 as n tends to infinity for each fixed k, in other words we are thinking of k as
fixed and n growing. Later on, Martin, Smith and Walker [5] improved the lower bound
by showing that for k > 4 and n large enough sat∗(n,Ak) > (1− 1

log2(k−1)
) (k−1)n
log2(k−1)

.
We mention that this problem is part of a growing area in combinatorics, induced and

non-induced poset saturation. We refer the reader to Gerbner, Keszegh, Lemons, Palmer,
Pálvölgyi and Patkós [2], and Gerbner and Patkós [3] for nice introductions to the area,
as well as to the paper of Keszegh, Lemons, Martin, Pálvölgyi and Patkós [4] for recent
results on a variety of posets.

In this paper we determine the exact value for k = 5 and k = 6. We show that for
n > 5 we have sat∗(n,A5) = 4n − 2, and for n > 6 we have sat∗(n,A6) = 5n − 5. Our
starting strategy in each proof is to cover the saturated family with full chains and look
at the number of sets on each level. If the number is too small, then we try to ‘deflect’
a chain to add a set not in the family in such a way that everything is still covered by
the initial number of chains, which will contradict the saturation property. We believe
that this approach, combined with more structural knowledge of the family might lead to
improvements in the lower bound for general k.

To end the Introduction, we record two immediate observations that we will use several
times. The first is that any k-antichain saturated family must contain ∅ and [n]. The
second is the following.

Lemma 1. If F is an induced k-antichain saturated family, then F is the union of k− 1
full chains.

Proof. By Dilworth’s theorem, we may partition F into k−1 chains, and so F is certainly
contained in the union of some k− 1 full chains, say D1, . . . ,Dk−1. But D1 ∪ · · · ∪Dk−1 is
a k-antichain saturated family, so by maximality of F we must have that F = D1 ∪ · · · ∪
Dk−1.

2 5-Antichain saturation

Theorem 2. For any positive integer n > 5 we have sat∗(n,A5) = 4n− 2.

Proof. Let F be an induced 5-antichain saturated family. By Lemma 1 we can cover F
with 4 full chains D1, . . . ,D4. For each i ∈ {1, . . . , n − 1} let Fi be the collection of sets
in F of size i, and xi = |Fi|. We will now examine the following 4 cases:

Case 1. There exists i ∈ {1, . . . , n− 1} such that xi = 1.
Let A be the unique set in F of size i. Since each of the chains D1, . . .D4 is a full chain,
it follows that all of them must contain A. Consider the sets of size i − 1 and i + 1 in
D1. They must be of the form A \ {x} and A ∪ {y} respectively, for some x ∈ A and
y ∈ [n] \ A. Let A′ = A \ {x} ∪ {y}. Since A′ 6= A and |A′| = i, A′ /∈ F . On the other
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hand, by setting D′1 = D1 \ {A} ∪ {A′}, we observe that the chains D′1,D2,D3,D4 cover
F ∪ {A′} (note that A is still covered by D2). This implies that F ∪ {A′} is 5-antichain
free, contradicting the fact that F is 5-antichain saturated.

Case 2. There is no j such that xj = 1, but there exists i such that xi = 2.
Since sat∗(n,A5) > 3n − 1 we get that |F| > 3n − 1, thus there must be some l ∈
{1, . . . , n − 1} for which xl > 3. Combining this with the fact that there exist i such
that xi = 2 and xm 6= 1 for all 1 6 m 6 n − 1, we deduce that there exists some index
1 6 j 6 n − 1 such that xj = 2 and xj+1 > 3, or xj = 2 and xj−1 > 3. Since a family is
antichain-saturated if and only if the family of the complements of its sets is antichain-
saturated, we can assume without loss of generality that there exists j such that xj = 2
and xj+1 > 3. Let A1 and A2 be the two sets of size j. Since the 4 chains D1, . . . ,D4

that cover F are full, they have to go through A1 and A2 as well as cover the sets of size
j +1. This implies that at least two chains with different sets of size j +1 have the same
element of size j. Thus we can assume without loss of generality that these chains are
D1 and D2, and A1 ∈ D1,D2. Let also B1 and B2 be the two (distinct) sets of size j + 1
in these two chains respectively. Let B3 be another set of size j + 1 and assume without
loss of generality that it is part of D3. We either have A2 ∈ D3, or A1 ∈ D3 which implies
A2 ∈ D4. As D4 must contain an element of size j + 1, we can assume, after relabelling
if necessary, that A1 ⊂ B1, B2, and A2 ⊂ B3, and A1, B1 ∈ D1, and A1, B2 ∈ D2, and
A2, B3 ∈ D3. Moreover, since j 6= 0, there exist sets C1, C2 ⊆ A1 of size j − 1 that are
part of the chains D1 and D2 respectively. Note that C1 may be equal to C2. Hence we
can write

C1 ∪ {c1} = A1 = B1 \ {b1} and C2 ∪ {c2} = A1 = B2 \ {b2},

where b1 6= b2 ∈ [n]\A1 and c1, c2 ∈ A1. Let A′ = A1\{c1}∪{b1} and A′′ = A1\{c2}∪{b2}.
If A′ /∈ F , then by modifying D1 by replacing A1 with A′ we obtain a cover of F ∪ {A′}
with 4 chains, contradicting the fact that F is 5-antichain saturated. Thus A′ ∈ F , and
similarly, A′′ ∈ F too. Moreover, by construction, |A′| = |A′′| = j and A′ 6= A1 6= A′′.
Because F contains exactly 2 sets of size j, we must have that A′ = A2 = A′′. However
A′ contains b1, while A′′ does not, a contradiction.

The picture below summarises the above analysis.

A1

B1 = A1 ∪ {b1} B2 = A1 ∪ {b2}

C1 = A1 \ {c1} C2 = A1 \ {c2}

D1 D2

A2

B3

A′ = A1 \ {c1} ∪ {b1}
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Case 3. For all i ∈ {1, . . . , n− 1}, xi = 3.
We will show that this implies that F can be covered by 3 chains, contradicting the
5-saturation property of F .

We start with the 4 full chains D1, . . . ,D4 that cover F . By modifying them if neces-
sary, we can choose them in such a way that two of them coincide. Equivalently, we prove
that for each i ∈ {0, . . . , n}, two of these chains can be chosen to coincide on sets of size
less than or equal to i. We proceed by induction on i.

Clearly for i = 0 all of Dj start with the empty set, so they all coincide on sets of size
at most 0. For i = 1 we have three different options for the sets of size 1 and 4 chains, so
two chains must coincide on sets of size at most 1.

Let now i > 1 and assume that we can cover F by 4 full chains, Di
1,Di

2,Di
3,Di

4, two of
which coincide on sets of size less than i. Without loss of generality, Di

1 and Di
2 coincide

on sets of size less than i. If they coincide on sets of size i, we are done. Thus we now
assume that they do not, and let A1 be the set of size i in Di

1 and A2 the set of size i in
Di

2. Let also A3 be the third set of size i.
If Di

3 contains A1, then by replacing the sets of size not more than i in the chain Di
1

with the sets of size not more than i in Di
3, we obtain a cover of F by 4 chains, two of

which coincide on all sets of size less than or equal to i, so we are done. Similarly we
are done if any of A2 ∈ Di

3, A1 ∈ Di
4 or A2 ∈ Di

4 holds. Therefore we may assume that
A3 ∈ Di

3,Di
4.

Let B be the set of size i − 1 in chains Di
1 and Di

2. Then A1 must be of the form
B ∪ {x} for some x ∈ [n] \ B. Similarly, A2 = B ∪ {y} for some y ∈ [n] \ B. We observe
that x 6= y as A1 6= A2. For any b ∈ B, let Xb = B ∪ {x} \ {b} and Yb = B ∪ {y} \ {b}.
We observe that the family S = {Xb, Yb : b ∈ B} has size 2|B| = 2(i − 1) since the X’s
are pairwise distinct, the Y ’s are pairwise distinct, and Xb 6= Yb′ for any b, b′ ∈ B (as one
set contains x, but the other does not). Moreover, all sets in S have size i− 1 and B /∈ S.

If i > 3, then 2(i−1) > 4 > 2, and since there are exactly 2 sets of size i−1 in F that
are not equal to B, at least one of the sets in S is not in F . Without loss of generality,
assume Xb /∈ F for some b ∈ B. However, by removing all sets of size less than i from Di

1

and adding Xb to it, we obtain a 4-chain cover of F ∪ {Xb}, which contradicts the fact
that F is 5-antichain saturated.

If i = 2, then B = {b} for some b ∈ [n], and so A1 = {b, x}, A2 = {b, y}, Xb = {x} and
Yb = {y}. As in the above case, if {x} /∈ F or {y} /∈ F we obtain a contradiction. Thus
we must have {x}, {y} ∈ F . Without loss of generality we can assume that {x} ∈ D3 and
{y} ∈ D4. As argued previously, we must have A3 ∈ D2

3,D2
4, which immediately implies

that A3 = {x, y}. Now we modify the chains as follows: we set D3
1 = D2

1, D3
3 = D2

3,
D3

2 = D2
2 \ {{b}} ∪ {{y}} and D3

4 = D2
4 \ {{y}} ∪ {{x}}. This forms a cover of F by 4

full chains such that D3
3 and D3

4 coincide on all sets of size not greater than 2. Thus the
induction induction step is complete.

Case 4. There exist j, t ∈ {1, . . . , n− 1} such that xj = 3 and xt = 4.
We know that no xi is equal to 1 or 2 for i ∈ {1, . . . n− 1}, thus there must exist an index
l such that xl = 3 and xl+1 = 4, or xl = 3 and xl−1 = 4. As in previous cases, we can
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assume without loss of generality that there exists l such that xl = 3 and xl+1 = 4. Let
A, B and C be the sets of size l in F . Since F is covered by the 4 full chains D1, . . . ,D4,
these 4 chains have to go through the 4 distinct sets of size l + 1 in F . Moreover, since
there are exactly 3 sets of size l, we must have that two chains go through the same set
of size l, while the other two chains go through the remaining sets of size l. Putting
this together, we can assume without loss of generality that A ∈ D1,D2, B ∈ D3 and
C ∈ D4. Furthermore, the sets of size l+1 are of the form A∪{a1} ∈ D1, A∪{a2} ∈ D2,
B ∪ {b} ∈ D3 and C ∪ {c} ∈ D4, where a1, a2 ∈ [n] \ A and a1 6= a2, b ∈ [n] \ B and
c ∈ [n] \ C.

We now consider the sets of size l− 1 corresponding to these chains. They must be of
the form A\{a′1} ∈ D1, A\{a′2} ∈ D2, B \{b′} ∈ D3 and C \{c′} ∈ D4, where a′1, a′2 ∈ A,
b′ ∈ B and c′ ∈ C. We note that these sets need not be distinct.

Let A′ = A \ {a′1} ∪ {a1} and A′′ = A \ {a′2} ∪ {a2}. It is clear that A 6= A′, A 6= A′′

and A′ 6= A′′, thus A,A′, A′′ are 3 distinct sets of size l. If A′ /∈ F , then by replacing A
with A′ in the chain D1 we obtain a cover of F ∪ {A′} by 4 chains, which contradicts the
fact that F is 5-antichain saturated. Thus we must have A′ ∈ F , and since it has size
l, A′ = B or A′ = C. Similarly we get that A′′ ∈ F . Therefore, the 3 sets of size l in
our family are A, A′ and A′′, and we assume without loss of generality that B = A′ and
C = A′′.

Let B′ = B \ {a1} ∪ {b}. It is clear that B 6= B′. If B′ /∈ F , then by leaving the
chains D2 and D4 unchanged, swapping the sets of size less than l between the chains D1

and D3, then replacing A with B′ in chain D3, and A with B in chain D1, we obtain a
cover of F ∪ {B′} with 4 full chains. This implies that F ∪ {B′} is still 5-antichain free,
a contradiction. Hence B′ ∈ F and thus it has to be equal to either A or A′′.

The picture below illustrates the cover of F by the modified 4 chains: D′1,D2,D′3,D4.

A

A ∪ {a1}

D1

A \ {a′1}

A ∪ {a2}

D2

A \ {a′2}

C ∪ {c}

D4

C \ {c′}

C = A ∪ {a2} \ {a′2}

B ∪ {b}

D3

B \ {b′}

D′1

B′ = B ∪ {b} \ {a1} B = A ∪ {a1} \ {a′1}

D′3

We now examine the two cases:

(a) If B′ = A, then A = (A \ {a′1} ∪ {a1}) \ {a1} ∪ {b} = A \ {a′1} ∪ {b}, which implies
that a′1 = b. It then follows that B ∪ {b} = (A \ {a′1} ∪ {a1}) ∪ {a′1} = A ∪ {a1}.
This contradicts the original assumption that these 4 sets of size l + 1 are distinct.

(b) If B′ = C, let C ′ = C \ {a2} ∪ {c}. By the same reasoning as above C ′ ∈ F and
C ′ 6= A, thus we must have C ′ = B.
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From B′ = C we get that (A \ {a′1} ∪ {a1}) \ {a1} ∪ {b} = A \ {a′2} ∪ {a2}, which
implies that b = a2 and a′1 = a′2. Similarly, from C ′ = B we get that c = a1. This
implies that B∪{b} = (A\{a′1}∪{a1})∪{a2} = (A\{a′1}∪{a2})∪{a1} = C ∪{c},
which contradicts the assumption that there are 4 sets of size l + 1.

We conclude that none of the 4 cases analysed above is possible, thus we deduce that
xi = 4 for all i ∈ {1, . . . , n− 1}. We already know that x0 = xn = 1, thus |F| > 4n− 2.
This implies that sat∗(n,A5) > 4n − 2 for n > 5. On the other hand, a family of 4 full
chains that only intersect at ∅ and [n] is 5-antichain saturated and has size 4n− 2, thus
sat∗(n,A5) 6 4n− 2, which finishes the proof.

3 6-Antichain saturation

The proof presented in this section is very similar to the proof of Theorem 2. We therefore
focus only on the parts that are specific to the 6-antichain and, where necessary, direct
the reader to the analogous parts in the previous proof.

Theorem 3. For every positive integer n > 6 we have sat∗(n,A6) = 5n− 5.

Proof. Let F be an induced 6-antichain saturated family of subsets of [n]. By Lemma 1,
we can cover F with 5 full chains D1, . . . ,D5. Let x0, . . . , xn be the numbers of sets of
sizes 0, . . . , n respectively in F . In the same way as in the proof of Theorem 2, we deduce
that we cannot have xi ∈ {1, 2, 3} for any i ∈ {1, . . . , n− 1}.

The case when xi = 4 for all i ∈ {1, . . . , n − 1} is completely analogous to Case 3 in
the proof of Theorem 2, except for the base case i = 2 of the induction. More precisely,
we need to show that if the 5 full chains cover F and two of them agree on sets of size
at most 1, then we can modify them in such a way that they still cover F (and are full
chains) and two of them coincide on sets of size at most 2. The figures below are the two
situations where we need to modify the chains. The colour coded figures are enough to
show that this is possible. For the left figure we note that it is easy to show, and the same
argument has been done in the previous section, that {x} and {y} are in F , thus one of
them is in D3 or D4. Without loss of generality we assume {x} ∈ D3.

{a, x} {a, y} {b, c} {d, e}

{a} {b} = {x} {c} {d}

∅

D1 D2 D3 D4 D5

D′
1 D′

3

{a, x}

D1

{a.y}

D2 D3 D4 D5

{a}

∅

D′
2
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Finally, suppose that there exist an index i such that xi = 4 and an index j such that
xj = 5. Since all xk are either 4 or 5 for 0 < k < n, there exists some l ∈ {1, . . . , n − 1}
such that xl = 4 and xl+1 = 5, or xl = 4 and xl−1 = 5. As before, we can assume without
loss of generality that there exists l such that xl = 4 and xl+1 = 5. Let A, B, C and D
be the sets of size l in F . Since there are 4 sets of size l and all 5 chains must go through
them and also cover them, it follows that exactly two chains have the same element of
size l. On the other hand there are 5 elements of size l + 1, thus each of them belongs
to exactly one of the 5 full chains. Putting this together we can assume without loss
of generality that A ∈ D1,D2, and B, C and D are part of the chains D3, D4 and D5

respectively. Let A ∪ {a1}, A ∪ {a2}, B ∪ {b}, C ∪ {c} and D ∪ {d} be the 5 elements of
size l + 1 in the chains D1, . . . ,D5 respectively, where a1 6= a2.

We define the sets A′ and A′′ as in Case 4 of Theorem 2 and deduce by the same exact
argument that they both belong to F . Thus, we may assume without loss of generality
that B = A′ and C = A′′. We also define B′ and C ′ as in the previous section and deduce
in the same way that both B′ and C ′ belong to F . The sets of size l are A,A′, A′′ and D,
two of which have to be B′ and C ′. By the analogue of the subcases (a) and (b) of Case 4
in the previous section, we have that B′ 6= A, B′ 6= B = A′, C ′ 6= A, C ′ 6= C, and B′ = C
and C ′ = B cannot both hold. Thus we deduce that either B′ = D or C ′ = D. Without
loss of generality assume C ′ = D. Moreover, we either have B′ = C or B′ = D = C ′. It
is an easy exercise to see that both cases imply that a′1 = a′2, and either b = a2 or b = c.

Let W = A \ {a′1} ∈ F . We observe that the 4 sets of size l are W ∪ {w1}, W ∪ {w2},
W ∪{w3} and W ∪{w4}, where w1, . . . , w4 are a1, a2, a′1 and c in some order. We note that
each of these sets has at least two supersets of size l+1 in F – for example W ∪{c} = C ′

is comparable to both C ∪ {c} and D ∪ {d}. This immediately tells us that for every
i we can can easily construct full chains C1, . . . , C5 that cover F such that two of these
chains go through the set W ∪ {wi}. On the other hand, we have that a′1 = a′2, which
tells us that the two chains that coincide on level l must also coincide on level l − 1 and,
more importantly, their common set of size l − 1 has to be a subset of all 4 sets of size
l. Combining everything we see that this implies that we must have only one set of size
l − 1 in our family, thus l = 1. In the analogue case where xl = 4 and xl−1 = 5, we
get l = n − 1. To summarise, xi = 5 for all i ∈ {2, . . . , n − 2}, x1 > 4, xn−1 > 4 and
x0 = xn = 1. Therefore we have that |F| > 5n− 5.

We are left to show that this bound is achieved for every n > 6. Let F be the following
family:

F = {∅, {1}, {2}, {3}, {4}, [n] \ {1}, [n] \ {2}, [n] \ {3}, [n] \ {4},

{1, 2}, {1, 2, 5}, {1, 2, 5, 6}, . . . , [n] \ {3, 4},

{1, 3}, {1, 3, 5}, {1, 3, 5, 6}, . . . , [n] \ {2, 4},

{2, 3}, {2, 3, 5}, {2, 3, 5, 6}, . . . , [n] \ {1, 4},

{4, 3}, {4, 3, 5}, {4, 3, 5, 6}, . . . , [n] \ {1, 2},

{4, 2}, {4, 2, 5}, {4, 2, 5, 6}, . . . , [n] \ {1, 3}}.

This family is pictured below.
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∅

{1} {2} {3} {4}

{1, 3} {1, 2} {2, 3} {3, 4} {2, 4}

{1, 3, 5} {1, 2, 5} {2, 3, 5} {3, 4, 5} {2, 4, 5}

{1, 3, 5, 6}{1, 2, 5, 6}{2, 3, 5, 6}{3, 4, 5, 6}{2, 4, 5, 6}

[n] \ {2, 4}[n] \ {3, 4}[n] \ {1, 4}[n] \ {1, 2}[n] \ {1, 3}

[n] \ {1} [n] \ {2} [n] \ {3} [n] \ {4}

[n]

It is easy to see that F is 6-antichain free as it is covered by 5 full chains, and that it
has size 1 + 4 + 1 + 4 + 5(n− 3) = 5n− 5. We now prove that whenever we add a set to
F we create a 6-antichain.

Let X /∈ F . If |X| ∈ {2, . . . , n − 2}, then X will form a 6-antichain with the 5 sets
in F that have the same size as X. If X = {k} for k /∈ {1, 2, 3, 4}, then X will form a
6-antichain with the sets of size 2 in F . Similarly, if X is the complement of a singleton,
it will form a 6-antichain with the sets of size n− 2 in F .

This proves that F is 6-antichain saturated. Thus sat∗(n,A6) = 5n − 5 for all n >
6.

4 Further work

Although the saturation number for the k-antichain is known to be roughly between
(k− 1)n and ((k− 1)/ log2 (k − 1))n, the exact coefficient of n is not known for general k.
We believe that the following conjecture is true, strengthening the conjecture in [1] that
sat∗(n,Ak) = (k − 1)n(1 + o(1)).

Conjecture 4. For each fixed positive integers k we have sat∗(n,Ak) = n(k− 1)−O(1).
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The results in this paper prove the conjecture for k = 5 and k = 6, but in addition,
the proofs hint at a more general behaviour of antichain-saturated families. In both cases
we have seen that almost all levels of the antichain-saturated family have to have the
maximal size possible, namely k− 1, and based on this we make the following conjecture.

Conjecture 5. For each fixed k > 1 there exists l with the following property. For n
sufficiently large, any k-antichain saturated family F of subsets of [n] has exactly k − 1
sets of size i for all l 6 i 6 n− l.

Using the techniques in this paper, the main obstacle in proving the above conjecture
for k > 6 comes from the increased number of choices the chains we are analysing have
when traversing between 2 or 3 consecutive levels of the family. A first step in proving
this conjecture would be to answer the following simple yet elusive question.

Conjecture 6. Let F be a k-antichain saturated family and let xi be the number of sets
of size i in F for 0 6 i 6 n. Then there exist an i such that xi = k − 1.

Note added in proof. Recently Bastide, Groenland, Jacob and Johnston showed in
the paper ‘Exact antichain saturation numbers via a generalisation of a result of Lehman-
Ron’ (arXiv:2207.07391) that all our conjectures are true, thus solving the general
saturation problem for the antichain.
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