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Abstract

Let N =
(︁
n
2

)︁
and s ⩾ 2. Let ei,j , i = 1, 2, . . . , N, j = 1, 2, . . . , s be s independent

permutations of the edges E(Kn) of the complete graph Kn. A MultiTree is a set
I ⊆ [N ] such that the edge sets EI,j induce spanning trees for j = 1, 2, . . . , s. In
this paper we study the following question: what is the smallest m = m(n) such
that w.h.p. [m] contains a MultiTree. We prove a hitting time result for s = 2 and
an O(n log n) bound for s ⩾ 3.

Mathematics Subject Classifications: 05C80,05C05

1 Introduction

Let N =
(︁
n
2

)︁
and s ⩾ 2. Let ei,j, i = 1, 2, . . . , N, j = 1, 2, . . . , s be s independent

permutations of the edges E(Kn) of the complete graph Kn. Let ei = (ei,1, ei,2, . . . , ei,s)
and for I ⊆ [N ] let EI,j = {ei,j : i ∈ I} for j = 1, 2, . . . , s. A MultiForest is a set I ⊆ [N ]
such that the edge sets EI,j induce forests for j = 1, 2, . . . , s. A MultiTree is a MultiForest
in which each forest is a spanning tree. In this paper we study the following question:
what is the smallest m = m(n) such that w.h.p. [m] contains a MultiTree.

This is a particular case of the following more general question: given matroids
M1,M2, . . . ,Ms over a common ground set E = {e1, e2, . . . , eM} let

Ik =

{︃
I ∈

(︃
[M ]

k

)︃
: {ei, i ∈ I} is independent in Mj, j = 1, 2, . . . , s

}︃
.

Then let k∗ = max {k : Ik ̸= ∅}. Then we can ask what is the smallest m = m(n) such
that w.h.p. [m] contains a member of Ik∗ . In general this is a rather challenging question,
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mainly because the structure of randomly chosen matroids is not as well understood as
the structure of random graphs.

There is at least one instance where we already have a precise answer to the above
matroid question. We let M = N and let M1 be the graphic matroid of Kn. For
M2 we randomly color each edge e ∈ E(Kn) uniformly with c(e) ∈ C, |C| ⩾ n − 1
and M2 is the partition matroid where a set I ⊆ E(Kn) is independent if e1, e2 ∈ I
implies that c(e1) ̸= c(e2). In more familiar terminology, I is rainbow colored. This
problem was solved in Frieze and McKay [5] where it was shown that w.h.p. m∗ is the
smallest integer m such that the graph induced by e1, e2, . . . , em is (i) connected and (ii)
| {c(ei) : i = 1, 2, . . . ,m} | ⩾ n− 1.

Going back to MultiTree’s, we prove two theorems. Now m∗ is the hitting time for
the existence of a MultiTree.

Theorem 1. We have w.h.p. that m∗ = O(n log n), where the hidden constant depends
on s.

When s = 2 we can use Edmond’s theorem [2] to prove the following: let Γj,m =
([n], E[m],j).

Theorem 2. W.h.p. m∗ = max {m1,m2} where mj = min {m : Γj,m is connected} for
j = 1, 2.

There is no actual need to restrict attention to matroid intersection. For example
let I be a Multimatching if the sets EI,j, j = 1, 2, . . . , s induce matchings and let I be a
MultiPerfectMatching if |I| = ⌊n/2⌋ i.e. if the associated matchings are (near) perfect.

Theorem 3. W.h.p. [m] contains a MultiPerfectMatching if m ⩾ Kn log n for some
absolute constant K.

One thing missing from this paper is what might be called MultiHamiltonCycle, where
the edge sets EI,j, j = 1, 2, . . . , s induce Hamilton cycles. We have no results on this at
present, but we conjecture that m ⩾ Kn log n should be enough for the existence of such
a structure, w.h.p.

2 Proof of Theorem 1

Phase 1: In this phase we greedily add s-tuples until we have a MultiForest of linear
size. Consider the following construction: let I0 = ∅ and k0 = 0. After t steps we will
have a MultiForest It = {k1 = 1, k2, . . . , kt}. Given It we say that an s-tuple ek is addable
to It if It ∪ {k} is a MultiForest. Let kt+1 = min{k > kt : ek is addable to It}. We let
Ft,j denote the forest induced by {eki,j : i = 1, . . . , t}. We stop this greedy process after
we have constructed Im0 where m0 is defined below.

To analyse this process, we need to understand the component structure of the forests
Ft,j. Consider the ordinary graph process Γi, i = 1, 2, . . . , N . For r ⩾ 1, let aℓ =
min {r : Γr has n− ℓ components}. The distribution of component sizes in Fℓ,j will be
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the same as the distribution of component sizes in Γaℓ . This follows by induction on ℓ. In
all cases, we merge two components with probability proportional to the product of their
sizes.

Recall next that if c > 1 is a constant then w.h.p. the random graph Γcn/2 has ≈ κ(c)n
components and a unique giant component of size ≈ ng(c)1 where κ(c), g(c) are known
functions of c. For a proof of this, see for example Frieze and Karoński [4], Chapter 2.

Suppose now that we let c0 = g−1(1/2). Thus w.h.p. Gn,c0n/2 contains a unique
giant component of size ≈ n/2. With regard to our greedy process, after examining some
number of s-tuples we will w.h.p. have constructed a multi-forest Im0 on m0 ≈ n(1−κ(c0))
s-tuples, where each individual forest Fm0,j (i) contains a giant tree Tj of size ≈ n/2 and
(ii) has n0 = n−m0 − 1 small components. The vertices of forest Fm0,j not in Tj form a
collection Sj of small trees T1,j, T2,j . . . , Tn0,j, each of size O(log n).

We next consider as to how long we have to run this part of the process altogether.
We first consider the time taken to get giant trees of size ≈ n/2. We know that w.h.p.
up until we have added c0n s-tuples the probability that an s-tuple f can be added to our
forest is at least γ ≈ (3/4)s. This is because (i) as we add edges to a forest, the probability
that adding a random edge creates a cycle increases and (ii) unless a random edge has
both vertices in the giant, it is unlikely to create a cycle. The probability of a random
edge having both endpoints in the giant is at most ≈ 3/4 and w.h.p. each non-giant
component is of size O(log n), in which case the the probability of choosing an edge with

both vertices in the same small component is O(n×
(︁
logn
n

)︁2
). Thus w.h.p. it requires at

most 2c0n
γ

iterations to produce a giant tree of size n/2. Indeed, the probability that the
process requires this number of iterations is less than the probability that the binomial

Bin
(︂

2c0n
γ

, γ
)︂

is at most c0n. The Chernoff bounds imply that this probability is o(1).

Phase 2: We now discuss how we can complete Im0 to a multi-tree. An s-tuple eu
will be acceptable if for each j ∈ [s], the edge eu,j has one vertex xu,j ∈ Aj = [n] \ V (Tj)
and the other yu,j ∈ Tj. An acceptable s-tuple defines an edge in a random s-uniform
multi-partite hypergraph H with edges in A1 × A2 × · · · × As. The vertices of H are
A1 ⊔ A2 ⊔ · · · ⊔ As.

We continue the process of adding acceptable s-tuples until H contains a set of edges
(xt,1, xt,2 . . . , xt,s), t ∈ K for some set K of size n0 that satisfies the following property

PK : if Xj = {xt,j : t ∈ K} then |Xj ∩ V (Tl,j)| = 1 for all 1 ⩽ j ⩽ s.

This ensures that for each j and each non-giant tree T of Fm0,j that exactly one of the
n0 edges added to the jth forest joins T and the giant Tj, thus creating a MultiTree. We
call such matchings MultiTree inducing.

We next consider the number of random s-tuples we need to generate before we have
a MultiTreeinducing matching in H w.h.p. Suppose now that Ti,j has ti,j vertices for
i = 1, 2, . . . , n0, j = 1, 2, . . . , s. We consider the hypergraph H with vertex set X equal to
the edges of the complete s-partite hypergraph As on A1 × A2 × · · · × As. A collection
et = (xt,1, xti,2, . . . , xt,s), t = 1, 2, . . . , n0 is an edge of H if and only if it satisfies P[n0]. We

1Here we say an ≈ bn if an = (1 + o(1))bn as n → ∞.
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will argue that w.h.p. O(n log n) randomly chosen vertices of H contain an edge of H. To
do this we will use a recent breakthrough result of Frankston, Kahn, Narayanan and Park
[3]. For this we need a definition. For a set S ⊆ X = V (H) we let ⟨S⟩ = {T : S ⊆ T ⊆ X}
denote the subsets of X that contain S. We say that H is κ-spread if

|H ∩ ⟨S⟩| ⩽ |H|
κ|S| , ∀S ⊆ X.

The following theorem is from [3]:

Theorem 4. Let K be an r-uniform, κ-spread hypergraph and let X = V (K). There is
an absolute constant C > 0 such that if

m ⩾
(C log r)|X|

κ
(1)

then w.h.p. Xm contains an edge of K. Here w.h.p. assumes that r → ∞.

To apply the lemma we prove

Lemma 5. W.h.p., H is κ-spread, where κ = (n0/3)s−1.

Proof. To be clear. In our application of [3] the vertex set X = A1 × A2 × · · · × As and
an edge of H is a set of vertices e1, e2, . . . , en0 that satisfy P[n0]. We begin with the claim
that

|H| = n0!
s−1

n0∏︂
i=1

s∏︂
j=1

ti,j. (2)

We justify (2) as follows: if we fix a j then there are
∏︁n0

i=1 ti,j ways of choosing a single
vertex from each Ti,j. After this, there are n0! ways of ordering these choices giving
τj = n0!

∏︁n0

i=1 ti,j choices altogether. We then multiply the τj together to get the number
choices for an edge ordered MultiTree inducing matching. We divide by n0! to remove the
overcount due to ordering.

Suppose now that S ⊆ X and |S| = k and H ∩ ⟨S⟩ ≠ ∅. Each element of S is an
s-tuple. Let Sj denote the jth component of the tuples of S. Then

|H ∩ ⟨S⟩| = (n0 − k)!s−1
∏︂
i/∈Sj

s∏︂
j=1

ti,j

So, if k < n0 then

|H ∩ ⟨S⟩|
|H|

⩽

(︃
(n0 − k)!

n0!

)︃s−1

⩽

(︃
2 · (n0 − k)n0−ken0(2πn0)

1/2

nn0
0 en0−k(2π(n0 − k))1/2

)︃s−1

<

⎛⎝21/k exp
{︂

1
2(n0−k)

+ k
n0

}︂
n0

⎞⎠k(s−1)

,

and the lemma follows.
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In the application of Theorem 4 we have r = sn0 and |X| ≈ (n/2)s. Applying the
theorem we see that C1n log n acceptable s-tuples suffice to contain a MultiTree-inducing
matching w.h.p. (Here we can take C1 = (3ν0)

s−12−sC where ν0 = n/n0 = O(1) w.h.p.)
An s-tuple is acceptable with probability ≈ 2−2s. It follows that the probability that
we need more than 2c0n/γ + 2s+1C1n log n s-tuples before we we obtain a MultiTree is
less than o(1) plus the probability that the binomial Bin (2s+1C1n log n, 2−s) is at most
C1n log n. The Chernoff bounds imply that the latter probability is o(1). This completes
the proof of Theorem 1.

3 Proof of Theorem 2

For the special case of k = 2, we can use Edmonds’ matroid intersection theorem [2].
Edmonds proved the following: let M1,M2 be two matroids on the same ground set E,
with rank function r1, r2 respectively. Let I1, I2 be the set of independent sets of the two
matroids.

Theorem 6 (Edmonds).

max {|I| : I ∈ I1 ∩ I2} = min {r1(S) + r2(E \ S) : S ⊆ E} .

Let Xm = {(ei, fi) : i = 1, 2, . . . ,m} be the set of pairs of random edges selected and
let Γ1,m,Γ2,m be the two copies of Gn,m induced by Xm. For A ⊆ Xm let Γ1,m(A) be the
subgraph of Γ1,m induced by the set of edges ei, i ∈ A. Define Γ2,m(A) similarly. To apply
Theorem 6 we let Mi, i = 1, 2 denote the cycle matroid of Γi,m. We note that the rank
of a set of edges S in the cycle matroid of an n-vertex graph G is equal to n minus the
number of components in the subgraph induced by S. We therefore have to show that
w.h.p. that for all A ⊆ Xm, we have

κ(A) = κ1(A) + κ2(Xm \ A) ⩽ n + 1. (3)

Here κi(A), i = 1, 2 denotes number of components in the graph Γi,m(A).
Throughout this section: N =

(︁
n
2

)︁
and

m = 1
2
n(log n + O(log log n)) and p =

m

N
.

For I ⊆ [m], we let e(I) = {ei : i ∈ I} and f(I) = {fi : i ∈ I} (with respect to
Xm = {(ei, fi) : i = 1, . . . ,m}).

In the context of Gn,p, given a set of edges A, we let Vm(A), Vp(A) be the set of vertices
of Gn,m, Gn,p induced by A and we let vm(A) = |Vm(A)| and vp(A) = |Vp(A)|. Conversely,
for a set of vertices S ⊆ [n] let Em(S), Ep(S) denote the set of edges of Gn,m, Gn,p induced
by S and let em(S) = |Em(S)|, ep(S) = |Ep(S)|. For a set of vertices S let bm(S) =
em(S)/|S|, bp(S) = ep(S)/|S|. Also let em(S : S̄) = | {{x, y} ∈ E(Gn,m) : x ∈ S, y /∈ S} |.
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Universal Parameters

ω = log2/5 n; ε =
1

ω
; θ0 =

5 log log n

log n
; σ0 =

10ω2 log log n

log n
; amax =

m

2n log n
≈ 1

4
; s1 =

log n

10 log log n
. (4)

Define σ(a) by

an log n = (1 + ε)

(︃
σ(a)n

2

)︃
p = (1 + ε)

(︃
σ(a)n

2

)︃
m

N
,

so that this is roughly the order of a subgraph expected to have an log n edges. Then,

σ(a) =

(︃
2a(1 + θ)

1 + ε

)︃1/2

where |θ| ⩽ θ0. (5)

We now bound κ(A) = κ1(A) + κ2(Xm \ A) for A ⊆ X with various ranges for

|A| = an log n ⩽ |Xm \ A|.

We begin each case analysis with a structural lemma. Let

Iconn = [m−,m+] where m− = 1
2
n(log n− log log n), m+ = 1

2
n(log n + log log n).

We consider the graph process G = (Gm,m = 0, 1, . . . , N) where as usual Gm+1 is
obtained from Gm by adding a random edge. We say that G holds property P strongly if
w.h.p. Gm ∈ P simultaneously for all m ∈ Iconn. We note that Gm is distributed as Gn,m

and when we refer to Gp we mean Gn,p for p = m/N , for some m ∈ Iconn.

3.1 First Structural Lemmas

We will assume from now on that A induces components C1, C2, . . . , Cℓ in Γ1,m, where

1 = |C1| = · · · = |Ck| < |Ck+1| ⩽ · · · ⩽ |Cℓ|.

Lemma 7. The following hold strongly in G: in the statements, p = m/N and m ∈ Iconn.

(a) If |S| ⩾ σ0n then em(S) ∈ (1 ± ε)
(︁
s
2

)︁
p.

(b) If |S| ⩽ n0 = n
log3 n

then bm(S) ⩽ 2.

(c) Let i0 = max {i : |Ci| ⩽ n0}. Then |ℓ− i0| ⩽ log3 n.

(d) e1,m(C1) + · · · + e1,m(Ci0) ⩽ 2(|C1| + · · · + |Ci0|) ⩽ 2n.

As with most of the structural lemmas, the proof of Lemma 7 is deferred to an ap-
pendix.

We break the possible range for a into 3 intervals, where |A| = an log n. The arguments
for (9) rely on different structural properties and hence are different for each interval. We
show for each individual range that the assumption κ(A) > n + 1 leads w.h.p. to a
contradiction.
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3.2 Case 1: a1 = 10−3 ⩽ a ⩽ amax

Lemma 8. The following hold strongly in G: in the statements, p = m/N and m ∈ Iconn
and a1 ⩽ a ⩽ amax.

(a) If |A| = an log n then vm(A) ⩾ σ(a)n.

(b) |Ck+1| + · · · + |Cℓ| ⩾
(︂

2a(1−θ0)
1+ε

)︂1/2
n.

(c) i0 ⩽
(︂

1 − (2a−3θ0)1/2

1+ε

)︂
n.

If |A| = an log n where a1 ⩽ a ⩽ amax and using that m ∈ Iconn,

|Xm \ A| = m− an log n =

(︃
1

2
− a + O

(︃
log log n

log n

)︃)︃
n log n.

Applying Lemma 7(c) and Lemma 8(c) we see that

κ(A) ⩽

(︃(︃
1 − (2a− 3θ0)

1/2

1 + ε

)︃
+

(︃
1 − (1 − 2a− 3θ0)

1/2

1 + ε

)︃)︃
n + 2 log3 n. (6)

Using that

(2a− 3θ0)
1/2 = (2a)1/2

(︃
1 − 3θ0

2a

)︃1/2

⩾ (2a)1/2
(︃

1 − 3θ0
4a

)︃
⩾ (2a)1/2 − 2θ0

a1/2
,

we have then that

κ(A) ⩽ 2 log3 n +

(︃
2 +

2θ0
a1/2

+
2θ0

(1 − 2a)1/2
− (2a)1/2 + (1 − 2a)1/2

1 + ε

)︃
n.

But if x = 2a < 1 then the concavity of x1/2 implies that

x1/2 + (1 − x)1/2 ⩾ 1 +
x1/2

2
.

(We just need to check the claimed inequality at x = 0 and x = 1/2.)
So,

κ(A) ⩽ 2 log3 n +

(︃
2 +

2θ0
a1/2

+
2θ0

(1 − 2a)1/2
− 1 + a1/2

1 + ε

)︃
n

⩽ 2 log3 n +

(︃
1 +

2θ0
a1/2

+
2θ0

(1 − 2a)1/2
+

ε− a1/2

1 + ε

)︃
n ⩽ n.

since a1/2 ⩾ a
1/2
1 ≫ max

{︂
ε, log

3 n
n

}︂
and a1 ≫ θ0.

End of Case 1
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3.3 Another structural lemma

A bridge in a graph is an edge whose deletion increases the number of connected compo-
nents.

Lemma 9. The following hold strongly in G: in the statements, p = m/N .

(a) If S induces a bridgeless subgraph which is not an induced cycle, then |S| ⩾ s1 =
logn

10 log logn
.

(b) There are at most n1/2 cycles of length at most s1.

In what follows, we will assume that A maximises κ(A) subject to |A| ⩽ a1n log n.
Suppose also that |A| is as small as possible subject to this maximisation.

Remark 1. If Ci is not an isolated vertex, then we can assume that Ci has no bridges. If
ei, i ∈ A is a bridge of Γ1,m(A) then replacing A by A \ {i} does not decrease κ(A) and
decreases |A|.

We can therefore assume that

1 = |C1| = · · · = |Ck| < 3 ⩽ |Ck+1| ⩽ · · · ⩽ |Cℓ|, (7)

where Ck+1, . . . , Cℓ are bridgeless.

Lemma 10. The following hold strongly in G: if a2 := 3n−4/25 ⩽ a ⩽ a1 then em(S :
S̄) ⩾ 2an log n for all S, |S| ∈ [10an, n− 10an].

Remark 2. It follows from Lemma 10 that if a2 ⩽ a ⩽ a1 then w.h.p. Γ2,m(Xm \ A)
contains a component with n− 10an vertices.

3.4 Case 2: a2 = 3n−4/25 ⩽ a < a1 = 10−3

Lemma 11. The following hold strongly in G: if a2 ⩽ a ⩽ a1 and |S| ⩽ 12an then
bm(S) < logn

12
.

It follows from Lemma 9(a)(b) and Remark 2 that if a ⩾ a2 then with k as in (7),

κ(A) ⩽ k +
n− k

s1
+ n1/2 + 10an + 1 ⩽

(︃
n− (n− k)

(︃
1 − 10 log log n

log n

)︃)︃
+ 11an. (8)

Explanation: In Γ1,m there are k isolated vertices plus at most (n − k)/s1 bridgeless
non-cycle components/large cycles plus at most n1/2 small cycles. In Γ2,m there is one
giant component plus at most 10an vertices on small components.

Equation (8) implies that if κ(A) ⩾ n then n − k ⩽ 12an. Lemma 11 gives us a
contradiction in that w.h.p. 12an vertices do not induce an log n edges.
End of Case 2

Lemma 12. The following holds strongly in G1 and G2 where we consider the two processes
defined by ei, fi, i = 1, 2, . . . , N :
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(a) Γ2,m contains at most log12 n vertices of degree at most 10.

(b) The vertices of degree at most 10 in Γ2,m are at distance at least 3 from each other.

(c) If fi, i ∈ I, |I| ⩽ 10 log12 n are incident with vertices of degree at most 10 in Γ2,m

then {ei, i ∈ I} is not contained in any set of at most s1|I| vertices that induce a
2-edge-connected subgraph of Γ1,m.

3.5 Case 3: 0 < a < a2

Lemma 13. The following holds strongly in G: if |S| ⩽ n9/10 then bm(S) ⩽ 1 + o(1).

Let S∗ =
⋃︁ℓ

j=k+1Cj and s∗ = |S∗| and observe that ˆ︁m := |A| = e1,m(S∗). We are

left to consider the situation where we delete ˆ︁m ⩽ m1 = a2n log n = 3n21/25 log n edges
from Γ2,m(Xm). Suppose that ρ(ˆ︁m) is the maximum number of components obtainable
by deleting ˆ︁m edges from Γ2,m. Since we can assume there are no bridges in Γ1,m(A), any
component in Γ1,m(A) which is not an isolated vertex, has size at least 3 and we have
that

κ(A) ⩽ k +
n− k

3
+ ρ(ˆ︁m). (9)

(We remind the reader that k is the number of isolated vertices in Γ1,m(A).)
And ˆ︁m ≈ n− k. (10)

This is because w.h.p. the number of edges in a bridgeless component of size 3 ⩽ s ⩽ n9/10

lies in [s, (1+o(1))s] edges. The lower bound is true for all such sets and the upper bound
follows from Lemma 13.

Suppose that after removing ˆ︁m edges from Γ2,m we have components
K1, K2, . . . , Kρ, ρ = ρ(ˆ︁m) where |K1| ⩽ |K2| ⩽ · · · ⩽ |Kρ|. We then know from Remark 2
that |Kρ| ⩾ n−10a2n. We have from Lemma 13 that e2,m(Ki) ≈ |Ki| for 1 ⩽ i ⩽ ρ−1. Let
deg2(v) denote the degree of vertex v in Γ2,m and deg2(X) =

∑︁
x∈X deg2(x). For a fixed

i ∈ [ρ−1], the set fj, j ∈ A must contain deg2(Ki)−2e2,m(Ki) ⩾ deg2(Ki)−(2+o(1))|Ki|
edges with exactly one end in Ki. Thus, if there are ρ1 single vertex components then

ˆ︁m ⩾
1

2

ρ−1∑︂
i=1

(deg2(Ki) − (2 + o(1))|Ki|)

=
1

2

ρ1∑︂
i=1

deg2(Ki) +
1

2

ρ−1∑︂
i=ρ1+1

(deg2(Ki) − (2 + o(1))|Ki|).

Define ρ0 ⩽ ρ1 such that, among the single-vertex components, we have deg2(Ki) ⩽ 10
for 1 ⩽ i ⩽ ρ0 and deg2(K1) ⩾ 11 for ρ0 + 1 ⩽ i ⩽ ρ1. It follows from Lemma 12(b) that
at least half of the vertices in any non-trivial Ki, i > ρ1 have degree at least 11. This
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is because the neighborhoods of the low degree vertices are disjoint and non-empty. So,
deg2(Ki) ⩾ 8|Ki|/2 for all i > ρ0. Thus,

ˆ︁m ⩾
1

2

(︃
ρ0 +

8(ρ− 1 − ρ0)

2

)︃
=

8(ρ− 1)

4
− 8ρ0

4
.

The initial factor of 1
2

arises because the same edge might be counted twice, once for each
of the Ki that it is incident with.

It follows from Lemma 12(c) and (7) that ρ0 ⩽ ˆ︁m/s1. (The edges deleted from Γ2,m

correspond to edges of bridgeless components in Γ1,m. And then Lemma 12(c) implies
that each edge that was deleted in Γ2,m to create Ki, i ⩽ ρ0 can be “charged” to s1 distinct
edges of Γ1,m.) So, ρ− 1 ⩽ (4 + o(1))ˆ︁m/8. In which case (9) and (10) imply that

κ(A) ⩽ k + (n− k)

(︃
1

s1
+

1

3
+

4 + o(1)

8

)︃
+ 1 ⩽ n + 1.

End of Case 3
When a = 0 we rely on the connectivity of both Γ1,m,Γ2,m.

3.6 Hitting time

The essence of the above argument is that if Γ1,m,Γ2,m are both connected and satisfy the
conditions of Lemmas 7 – 13 then there is a MultiTree. It is well known that the hitting
time mc for connectivity and minimum degree at least one satisfies mc ∈ [m−,m+] w.h.p.
Thus to verify the claim for a hitting time, we only have to show that Lemmas 7 – 13 are
valid for Gn,m,m ∈ [m−,m+]. The reader will observe that we have been careful to do
precisely this.

4 Proof of Theorem 3

We first consider a multi-partite version where the edges ei,s are drawn from disjoint copies
of the edges of the complete bipartite graph Kn,n. In this case, MultiPerfectMatchings are
in 1-1 correspondence with perfect matchings in the complete 2s-uniform multi-partite
hypergraph with edges set [n]2s. As such it is known that a random set of Kn log n edges
is sufficient for a perfect matching w.h.p. It is tempting to take K = 1 and refer to Kahn
[7], [8]. On the other hand, one can legitimately cite [6] or [1] and get some constant K.

With the above case in hand, one gets Theorem 3 by partitioning [2sn] randomly into
2s parts V1, V2, . . . , V2s of size n. Then we only consider those ei = (x1, x2, . . . , x2s) and
appeal to the above multi-partite version.

If we want to assume that n is even and consider s perfect matchings in Kn then we
can partition [n] into two sets A,B of size n/2 and only consider those ei where all the
ei,j have one end in A and the other in B. We then have to inflate the K of the first
paragraph by at most 2s. This idea can be extended to deal with tree factors as in Luczak
and Ruciński [9].
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5 Final Remarks

We have proved some threshold results for the intersections of cycle matroids. It would be
of interest to extend this to other classes of matroid, e.g. binary matroids. There is also
the analogous problem with respect to Hamilton cycles. This seems to be more difficult.
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A Proof of Structural Lemmas

Universal Parameters

ω = log2/5 n; ε =
1

ω
; θ0 =

5 log log n

log n
; σ0 =

10ω2 log log n

log n
; amax =

m

2n log n
≈ 1

4
.

Lemma 7 The following hold strongly in G: in the statements, p = m/N and m ∈ Iconn.

(a) If |S| ⩾ σ0n then em(S) ∈ (1 ± ε)
(︁
s
2

)︁
p.

(b) If |S| ⩽ n0 = n
log3 n

then bm(S) ⩽ 2.

(c) Let i0 = max {i : |Ci| ⩽ n0}. Then |ℓ− i0| ⩽ log3 n.

(d) e1,m(C1) + · · · + e1,m(Ci0) ⩽ 2(|C1| + · · · + |Ci0|) ⩽ 2n.

Proof. (a) It follows from the Chernoff bounds that in Gn,p

P
(︃
∃S, |S| = s ⩾ σ0n : ep(S) /∈ (1 ± ε)

(︃
s

2

)︃
p

)︃
⩽ 2

n∑︂
s=σ0n

(︃
n

s

)︃
exp

{︃
−ε2s(s− 1)p

6

}︃
⩽

2
n∑︂

s=σ0n

(︃
ne

s
· exp

{︃
−ε2s log n

7n

}︃)︃s

= 2
n∑︂

s=σ0n

(︃
ne

s
· exp

{︃
−s log n

7ω2n

}︃)︃s

= o(n−3). (11)

Now for any graph property P we have

P(Gn,m ∈ P) ⩽ 10m1/2P(Gn,p ∈ P). (12)

There are many possible references for this result, see for example Lemma 1.2 of [4]. We
will generally use [4] for references.

The claim for all m ∈ Iconn then follows directly from (11) and (12). The probability
there exists an S being O(n−3 × (n log n)1/2 × n log log n).

(b)

P (∃S, |S| = s : bp(S) ⩾ b) ⩽

(︃
n

s

)︃(︃(︁s
2

)︁
bs

)︃
pbs ⩽

(︄
ne

s
·
(︃
s2e1+o(1) log n

2bsn

)︃b
)︄s

=

(︄
ne

s

(︃
se1+o(1) log n

2bn

)︃b
)︄s

=

(︄(︃
se1+o(1) log n

2bn

)︃b−1

· e
2+o(1) log n

2b

)︄s

. (13)

It follows that

P (∃S, |S| = s ⩽ n0 : bp(S) ⩾ 2) ⩽
n0∑︂
s=5

(︃
e3+o(1)

8 log n

)︃s

= o(1). (14)
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Now the event {∃S, |S| = s ⩽ n0 : bp(S) ⩾ 2} is monotone increasing. For monotone in-
creasing events P , (12) can be strengthened to

P(Gn,m ∈ P) ⩽ 3P(Gn,p ∈ P). (15)

See for example Lemma 1.3 of [4]. Note also that we need only to prove this for m = m+.
In which case, (14) also implies (b).

(c) This is obvious.
(d) This follows from (b).

Lemma 8 The following hold strongly in G: in the statements, p = m/N and m ∈ Iconn
and a1 = 10−3 ⩽ a ⩽ amax ≈ 1

4
.

(a) If |A| = an log n then vm(A) ⩾ σ(a)n.

(b) |Ck+1| + · · · + |Cℓ| ⩾
(︂

2a(1−θ0)
1+ε

)︂1/2
n.

(c) i0 ⩽
(︂

1 − (2a−3θ0)1/2

1+ε

)︂
n.

Proof. (a) Since a ⩾ a1 we have that σ(a) ⩾ σ(a1). We claim next that w.h.p. Vm(A)
is not the union of components. If s = vm(A) < σ(a)n then in Gn,p we can bound this
probability by(︃

n

s

)︃(︃ (︁
s
2

)︁
an log n

)︃
pan logn(1 − p)s(n−s) =

(︃
n

s

)︃(︃ (︁
s
2

)︁
(1 + ε)

(︁
σ(a)n

2

)︁
p

)︃
pan logn(1 − p)s(n−s) ⩽

(︂ne
s

)︂s(︃ s2

(1 + ε)(σ(a)n)2

)︃an logn

e−snp(1−σ(a)) ⩽

(︃
enσ(a)

s

)︃s

(1 + ε)−a1n logn ⩽ e−n.

We can add vertices to create B ⊇ Vm(A) with |B| = σ(a)n. Because Vm(a) is not
the union of components, we can assume that em(B) > |A|. We then see that w.h.p.
|A| < em(B) ⩽ an log n, contradiction. (The second inequality follows from Lemma 7(a)
and the definition of σ.)

(b) This follows from (5) and (a). We remind the reader that |A| = an log n and
a ⩾ a1 in this case and that |Ck+1| + · · · + |Cℓ| is the number of vertices in the subgraph
of Γ1,m induced by A.

(c) It follows from Lemma 7(a) that

|Ci0+1| + · · · + |Cℓ| ⩾ σ

(︃
an log n− 2i0

n log n

)︃
⩾ σ

(︃
a− 2

log n

)︃
⩾

(︃
2a− 3θ0

1 + ε

)︃1/2

n.

So,

i0 ⩽ |C1| + · · · + |Ci0| ⩽
(︃

1 − (2a− 3θ0)
1/2

1 + ε

)︃
n. (16)
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Lemma 9 The following hold strongly in G: in the statements, p = m/N .

(a) If S induces a bridgeless subgraph which is not an induced cycle, then |S| ⩾ s1 =
logn

10 log logn
.

(b) There are at most n1/2 cycles of length at most s1.

Proof. (a) A bridgeless graph is either a cycle or has s vertices and at least s + 1 edges.
But then, in Gn,p,

P(∃S : |S| ⩽ 2s1, ep(S) ⩾ |S| + 1) ⩽
2s1∑︂
s=4

(︃
n

s

)︃(︃ (︁s
2

)︁
s + 1

)︃(︃
eo(1) log n

n

)︃s+1

⩽

2s1∑︂
s=4

(︂ne
s

)︂s (︂se
2

)︂s+1
(︃
eo(1) log n

n

)︃s+1

=

2s1∑︂
s=4

2 log n

n

(︃
e2+o(1) log n

2

)︃s

= o(1). (17)

Having such a set S is a monotone increasing property and so we obtain the needed result
from (15). Again, we only need verify the property from m = m+. (We use 2s1 in place
of s1 for use in (b).)

(b) If two small cycles share a vertex then there is a set S of size at most 2s1 that
contains at least |S| + 1 edges. This was ruled out in the analysis of (b). So, we can
count selfish small cycles, i.e. those that do not share vertices with other small cycles.
Let ν0 = n1/2 and let s be a positive integer. Then

P(Z ⩾ ν0) = P
(︃(︃

Z

s

)︃
⩾

(︃
ν0
s

)︃)︃
⩽

E
(︁(︁

Z
s

)︁)︁(︁
ν0
s

)︁ (18)

Now

E
(︃(︃

Z

s

)︃)︃
=

∑︂
3⩽ℓ1,ℓ2,...,ℓs⩽s1

(︃
n

ℓ1, ℓ2, . . . , ℓs, n− ℓ1 − · · · − ℓs

)︃ s∏︂
i=1

(ℓi − 1)!

2
pℓi

⩽
∑︂

3⩽ℓ1,ℓ2,...,ℓs⩽s1

s∏︂
i=1

eo(1) log n

2ℓi
⩽

(︄ ∑︂
3⩽ℓ⩽s1

eo(1) log n

2ℓ

)︄s

⩽ ns/9.

Going back to (18) we see that

P(Z ⩾ ν0) ⩽
ns/9ss

νs
0

= o(n−3)

if we take s = 30. Thus the probability the claim fails for any m ∈ Iconn is at most
O(m log log n×m1/2 × n−3) = o(1).
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Lemma 10 The following hold strongly in G: if 3n−4/25 = a2 ⩽ a ⩽ a1 = 10−3 then
em(S : S̄) ⩾ 2an log n for all S, |S| ∈ [10an, n− 10an].

Proof. We only have to prove this for m = m−. First observe that if 10an ⩽ s ⩽ n/2
then

s(n− s)p

an log n
=

eo(1)s(n− s)

an2
⩾

eo(1)s

2an
⩾ 5 − o(1).

It follows from Chernoff bounds, that in Gn,p we have

P(∃S, |S| ∈ [10an, n− 10an] : ep(S, S̄) ⩽ 2an log n)

⩽ 2

n/2∑︂
s=10an

(︃
n

s

)︃
e−s((3−o(1))/5)2 logn/2

⩽ 2

n/2∑︂
s=10an

(︃
ne1−4 logn/25

s

)︃s

⩽ 2

n/2∑︂
s=10an

(︂e
3

)︂s
= o(n−2).

Now use (15).

Lemma 11 The following hold strongly in G: if a2 ⩽ a ⩽ a1 and |S| ⩽ 12an then
bm(S) ⩽ logn

12
.

Proof. We only have to prove this for m = m+. Applying (13), we have that in Gn,p,

P
(︃
∃S, |S| = s ⩽ 12an : bp(S) ⩾

log n

12

)︃
⩽

12an∑︂
s=5

(︄(︃
12e1+o(1)a log n

2 log n/12

)︃logn/12−1

· 12e1+o(1) log n

2 log n

)︄s

⩽
12an∑︂
s=5

(︁
(73ea)logn/12−1 · 20

)︁s
= o(n−2).

The property in question is monotone decreasing. We can use (15).

Lemma 12 The following holds strongly in G1 and G2 where we consider the two pro-
cesses defined by ei, fi, i = 1, 2, . . . , N :

(a) G2,m contains at most log12 n vertices of degree at most 10.

(b) The vertices of degree at most 10 in Γ2,m are at distance at least 3 from each other.

(c) If fi, i ∈ I, |I| ⩽ 10 log12 n are incident with vertices of degree at most 10 in Γ2,m then
{ei, i ∈ I} is not contained in any set of at most s1|I| vertices that induce a bridge
free connected subgraph of Γ1,m.
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Proof. (a) We only have to prove this for m = m−. Let S denote the set of vertices of
degree at most 10 in Gm− . If p = p− = m−/N then in Gn,p the expected size of S can be
bounded by

n
10∑︂
i=0

(︃
n

i

)︃
pi(1 − p)n−i ⩽ 2n

10∑︂
i=0

logi n× log n

n
.

The bound on the size of S now follows from the Markov inequality. A bound on the size
of S is a monotone increasing property and so we can translate this error bound to Gn,m−

via (15).
(b) Let S denote the set of vertices of degree at most 10 in Gn,p, p = p−. The probability

that there is a path of length at most two between two vertices in S is at most(︃
n

2

)︃
(p + np2)

(︄
10∑︂
i=0

(︃
n− 3

i

)︃
pi(1 − p)n−3−i

)︄2

= O

(︃
log12 n

n1−o(1)

)︃
.

Given (a), the probability that the m+−m− additional edges in Gm+ −Gm− add an edge
between two vertices in S can be bounded by O

(︁
n log log n× log24 n/

(︁
n
2

)︁)︁
= o(1).

Given (a), the probability that the m+ −m− additional edges add an edge between S
and a neighbor of S can be bounded by O

(︁
n log log n× log12 n/

(︁
n
2

)︁)︁
= o(1).

Given (a), the probability that the m+−m− additional edges join a pair of vertices in

S to a Gm− non-neighbor can be bounded by O
(︂

(n log log n)2 × log24 n× n/
(︁
n
2

)︁2)︂
= o(1).

(c) Given the bound on the number of low degree vertices in (a), the probability that
there exists a cycle of length s in Γ1,m,m = m+ containing t edges ei for which fi is
incident with a vertex of degree at most 10 in Γ2,m− is at most

ns

(︃
s

t

)︃(︁N−s
m−s

)︁(︁
N
m

)︁ (︃10 log12 n

n

)︃t

⩽ (2 log n)s
(︃

10 log12 n

n

)︃t

. (19)

We must sum the RHS of (19) for 1 ⩽ t ⩽ 10 log12 n and 3 ⩽ s ⩽ s1t. Observing that
logs1+10 n = n1/10+o(1), we see that this sum is o(1). (Recall that s1 = logn

10 log logn
.) If there

is a cycle that contradicts (c) in the process then this cycle will occur in Gm+ and the
offending fi will be incident with low degree vertices in Gm− .

Now consider bridge free connected sets. The probability that there is a set of size s
with t edges ei of the required sort can be bounded by(︃

n

s

)︃(︃ (︁s
2

)︁
s + 1

)︃(︁N−s−1
m−s−1

)︁(︁
N
m

)︁ (︃
s + 1

t

)︃(︃
10 log12 n

n

)︃t

⩽
se

n

(︂ne
s

· se
2

· m
N

· 2
)︂s+1

(︃
10 log12 n

n

)︃t

⩽ (e2+o(1) log n)s
(︃

10 log12 n

n

)︃t

.

We finish the argument as we did for cycles.
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Lemma 13 The following holds strongly in G: if |S| ⩽ n9/10 then b(S) ⩽ 1 + 10θ0.

Proof. We only have to prove this for m = m+. Applying (13), we have that in Gn,p,

P
(︃
∃S, |S| = s ⩽ n9/10 : bp(S) ⩾ 1 +

50 log log n

log n

)︃
⩽

n9/10∑︂
s=4

(︄(︃
e1+o(1) log n

2n1/10

)︃50 log logn/ logn

· e2+o(1) log n

)︄s

⩽
n9/10∑︂
s=4

(︃
e5

log3 n

)︃s

= o(1).

The property in question is monotone increasing and so we can apply (15).

the electronic journal of combinatorics 30(1) (2023), #P1.30 17


	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	First Structural Lemmas
	Case 1: a1=10-3≤a≤amax
	Another structural lemma
	Case 2: a2=3n-4/25≤a< a1=10-3
	Case 3: 0<a< a2
	Hitting time

	Proof of Theorem 3
	Final Remarks
	Proof of Structural Lemmas

