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Abstract

We investigate the existence of Boolean degree d functions on the Grassmann
graph of k-spaces in the vector space Fnq . For d = 1 several non-existence and
classification results are known, and no non-trivial examples are known for n > 5.
This paper focusses on providing a list of examples on the case d = 2 in general
dimension and in particular for (n, k) = (6, 3) and (n, k) = (8, 4).

We also discuss connections to the analysis of Boolean functions, regular
sets/equitable bipartitions/perfect 2-colorings in graphs, q-analogs of designs, and
permutation groups. In particular, this represents a natural generalization of
Cameron-Liebler line classes.

Mathematics Subject Classifications: 05B25

1 Introduction

The research presented here is motivated by a variety of open problems in only loosely
related areas such as finite geometry, Boolean function analysis, association schemes and
design theory. Since it seems reasonable to assume that most readers are not familiar with
concepts and conventions in all of these areas, we provide a relatively long introduction.
We refer to [26] for a more detailed discussion of degree 1 functions.
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More technical details and definitions are omitted from the the introduction and can
be found in Section 2.

1.1 Low Degree Boolean Functions

It is a well-known fact that one can write any 0, 1-valued (Boolean) function on the
hypercube {0, 1}n as a real, multilinear polynomial of degree at most n. The study of
such functions which we can write as a polynomial of some bounded degree d has been
very fruitful. For instance, it has been observed countless times that a Boolean degree
one function on the hypercube is of the form 0, 1, xi, or 1− xi for some i ∈ {1, . . . , n}:

Theorem 1 (Folklore). A Boolean degree 1 function on the hypercube depends on at most
one coordinate.

One of the fundamental results in Boolean function analysis (see [40] for a detailed
introduction) is a characterization by Nisan and Szegedy of Boolean degree d functions
in [39].

Theorem 2 (Nisan, Szegedy (1994)). A Boolean degree d function on the hypercube
depends on at most d2d−1 coordinates.

Let γ(d) denote the optimal upper bound for given d, that is there exists a Boolean
degree d function depending on γ(d) coordinates, but not depending on γ(d) + 1 coor-
dinates. Nisan and Szegedy showed that γ(d) 6 d2d−1. They also described a Boolean
degree d function with 2d− 1 relevant variables. Recently, better upper and lower bounds
of magnitude O(2d) were found, see [11] and subsequent work. The better lower bound
was, in a different context, first observed in [12].

In the last few years, there has been interest in comparable results on domains different
from the hypercube. For instance see [13] or [26] and the references therein. One example
is the Johnson graph J(n, k), also known as slice of the hypercube, which consists of all
k-subsets of {1, . . . , n}, two subsets adjacent when their intersection has size k − 1. For
instance, a classification of Boolean degree 1 functions on the Johnson graph has been
obtained several times independently, see [24] and [36]. Note that k and n− k have to be
at least 2 as otherwise all functions have degree 1.

Theorem 3. Let n−k, k > 2. A Boolean degree 1 function on the Johnson graph J(n, k)
depends on at most one coordinate.

Filmus and the third author generalized the result by Nisan and Szegedy to the John-
son graph [27].

Theorem 4 (Filmus et al. (2019)). There exists a constant C such that the following
holds. If Cd 6 k 6 n− Cd and f :

({1,...,n}
k

)
→ {0, 1} has degree d, then f depends on at

most γ(d) coordinates.
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As before, bounds on k are necessary here, but Cd 6 k 6 n−Cd seems overly generous.
Our (very) limited investigation here suggests that for d = 2, we only need to exclude
(n, k) = (6, 3) and k < 2d, see Section 3. In fact, recently Filmus showed in [25] that if we
do not insist on the upper bound γ(d) derived from the hypercube, but just some upper
bound in O(1), then 2d 6 k 6 n− 2d suffices.

Recently, Theorem 4 has been extended to several other structures, for instance the
multislice [28] by Filmus, O’Donnell and Wu, and to the perfect matching scheme by
Dafni, Filmus, Lifshitz, Lindzey, and Vinayls [13].

1.2 Cameron-Liebler Line Classes and Boolean Functions on the Grassmann
Graph

Our main focus are low degree Boolean functions on the Grassmann graph Jq(n, k) which
consists of all k-subspaces of an n-dimensional vector space over the finite field of order
q, two subspaces adjacent when their meet has dimension k − 1. Let F be a family of
k-spaces of V := Fnq . We read F as a Boolean function over the reals, that is we identify
it with the function f from all k-spaces of V to the reals, where f(S) = 1 if S ∈ F and
f(S) = 0 otherwise. Let T be a subspace of V . Let xT denote the family of all k-spaces
which are incident with T . We say that a (not necessarily: Boolean) function f has degree
d if we can write f as a linear combination (over the reals) of all xT with dim(T ) = d.

The study of Boolean degree 1 functions, limited to k = 2, under the name of Cameron-
Liebler line classes is actually older than most of the aforementioned results. In the
Grassmann graph, 1-spaces (in projective notation: points) or, equivalently, (n−1)-spaces
(hyperplanes) are a natural choice for variables, see §2.2 for details. It was conjectured by
Cameron and Liebler in [9] that, as for the hypercube and the Johnson graph, all degree
1 examples are the trivial ones:

Conjecture 5 (Cameron, Liebler (1982)). Let n > 4 and k = 2. If f is a Boolean degree
1 function on the Grassmann graph Jq(n, k), then f depends on at most one point and
one hyperplane.

More explicitly, the conjecture suggests that f is one of 0, xP , xH , xP + xH , 1, 1 −
xP , 1−xH , 1−xP −xH for some 1-space P and some (n−1)-space H with P * H. In the
terminology of finite geometry, they suggested that an example either consists of none of
the lines (2-spaces), a point-pencil, a dual point-pencil, the union of a point-pencil and a
dual point-pencil or the complement of any of these examples. In a breakthrough result,
Drudge showed in his PhD thesis [19] that this conjecture fails for (n, k, q) = (4, 2, 3).
Nowadays many counterexamples to the Conjecture of Cameron and Liebler are known if
(n, k) = (4, 2) and q > 3; see [8, 14, 22, 23, 31, 33]. The general case of k > 2 has been
investigated more recently, for instance see [4, 15, 16, 26, 35, 41]. Indeed, it has been
shown in [26] that Conjecture 5 holds for k > 2 and q ∈ {2, 3, 4, 5} if we exclude the case
(n, k) = (4, 2).

In analogy to Theorem 4, it seems natural to assume that when n− k and k are large
enough, that is n− k, k > C(d) for some C(d) independent of n and k, then all degree d
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functions on the Grassmann graph Jq(n, k) only depend on very few coordinates xP and
xH , that is on the intersection with very few points and hyperplanes. Our results here
give an indication of what C(d) could be.

In Section 5.1 and in Section 5.2 we construct Boolean degree 2 functions which depend
on many coordinates. For this, we use finite symplectic and orthogonal geometries.

1.3 Equitable Bipartitions

A regular set or equitable bipartition of a k-regular graph Γ is a subset S of vertices of Γ
such that there exists constants a and b such that a vertex in S has precisely a neighbors
in S and such that a vertex not in S has precisely b neighbors in S. The eigenvalues of
the quotient matrix (

a k − a
b k − b

)
are also eigenvalues of the adjacency matrix of Γ [32, Lemma 9.3.1]. Equitable bipartitions
are known under various other names, for instance perfect 2-colorings, completely regular
codes, or intriguing sets, see also [26] and the references therein.

Boolean degree 1 functions in some classical lattices, in particular Johnson and Grass-
mann graphs, are equitable bipartitions (for instance, this follows from our discussion in
§2.4). More generally, equitable bipartitions correspond to Boolean degree d functions
which (in the terminology of Boolean function analysis) have no weights on degrees in
{1, . . . , d− 1}. Regular sets on the hypercube are well-investigated, primarly due to Fon-
der-Flaass [29]. There has been recent work on the Johnson graph, most notably the
equitable bipartitions of the Johnson graph J(n, 3) have been classified for n odd, see
[30]. Recently, this attracted much research: regular sets of degree 2 have been classified
in the Johnson graph by Vorob’ev in [44]; Metsch and De Winter investigated small equi-
table bipartitions in the the Grassmann graph of planes Jq(n, 3) [17]; Mogilnykh surveyed
equitable bipartitions in J2(6, 3) and Jq(n, 2) [37].

2 Preliminaries

2.1 Projective Geometry

Using projective notation, in Fnq we denote 1-space as points, 2-spaces as lines, 3-spaces as
planes, 4-spaces as solids, (n−2)-spaces as colines, and (n−1)-spaces as hyperplanes. For
a vector space V , let

[
V
k

]
denote its k-dimensional subspaces. We denote the q-binomial

(or: Gaussian) coefficient by
[
n
k

]
q

:= |
[
V
k

]
| for V = Fnq . We write [n]q :=

[
n
1

]
q

= qn−1
q−1 .

Usually, we do not put the q and write
[
n
k

]
and [n]. Note that[

n

k

]
=

k−1∏
i=0

[n− i]
[k − i]

.

Several of our constructions use well-known finite simple groups, namely the sym-
plectic group Sp(n, q) and orthogonal group Oε(n, q). We try to keep this reasonably
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self-contained by providing explicit equations, but we refer to standard literature on finite
geometry and the classical finite simple groups for more details, see [42].

2.2 Analysis of Boolean Functions

Recall the concept of a Booleean degree d function in Fnq on k-spaces from §1.2. We say
that a Boolean function f is a j-junta if there is a set J of points and hyperplanes with
|J | = j such that we can write f as a polynomial in xR, R ∈ J . A rather trivial example
of a 2-junta is the set f of k-spaces inside a fixed hyperplane π or trough a fixed point
p 6∈ π. As we can write f = xp + α

∑
r∈[π1]

xr + β
∑

r∈[V1 ]\[
π
1]
xr for suitable real constants

α and β, this is a Boolean degree 1 function. It only depends on xp and xπ, thus it is a
2-junta.

We summarize easy, well-known facts in the following lemma. It shows that for fixed
degree d, induction on n and k is feasible. Therefore it motivates our study of small n
and k to establish an inductive basis.

Lemma 6. Let n − d > k > d > 1. Let f, g be Boolean degree d functions on Jq(n, k)
with d > 1. Let P be a 1-space and H a hyperplane of V := Fnq . Then all of the following
have degree d:

(a) The (not necessarily Boolean) functions 0, 1, f + g, f − g, and 1− f .

(b) The set {S ∈
[
H
k

]
: f(S) = 1}.

(c) The set {S/P ∈
[
V/P
k−1

]
: f(S) = 1}.

Proof. Clearly, any linear combination of two degree d functions has degree d. This shows
(a).

For (b): Write f as

f =
∑
T∈[Vd ]

cTxT .

For a k-space S ⊆ H, we have that f(S) = 1 if and only if h(S) = 1, where

h :=
∑
T∈[Hd ]

cTxT .

So h has degree d and is the characteristic function of the set.
The statements (b) and (c) are dual.

We will show in Lemma 8 that there exists a relatively easy upper bound which shows
that in the Grassmann graph any function depends on at most Cn,kq

n−k coordinates.

Lemma 7. Let n > 2k > 2. Then there exists a q0 such that for all q > q0 there exists a
family H of (n− k + 1)-spaces in Fnq with |H| = k2(n− k + 1) such that for each k-space
S we have that 〈S ∩

⋃
H∈HH〉 = S.
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Proof. For a k-space S and (n − k + 1)-spaces H1, . . . , Hm with m 6 k2(n − k) put
Tm(S) = 〈S ∩

⋃m
i=1Hi〉. Consider the property (P) that dim(Tm(S)) < m. First we

calculate the probability pm that random H1, . . . , Hm have property (P). We claim that
pm < (1 + o(1))qm−k−1 (as q →∞) and our proof proceeds by induction on m.

Clearly, p1 = 0 as H1 intersects S nontrivially. For m > 1, the probability that
H1, . . . , Hm−1 satisfy (P) is pm−1. Suppose that dim(Tm−1(S)) > m−1. If dim(Tm−1(S)) >
m− 1, then dim(Tm(S)) > m, so property (P) is not satisfied. If dim(Tm−1(S)) = m− 1,
then there are [k]− [m− 1] = qm−1[k−m+ 1] points in S \Tm−1(S) and [m− 1] points in

Tm−1(S). Hence, the probability that Hm meets S only in Tm−1(S) is at most [m−1]
[k]

(as Hm

meets S nontrivially and this is the probability of a point of S being in Tm−1(S)). Hence,
by the union bound for the two cases dim(Tm−1(S)) < m− 1 and dim(Tm−1(S)) > m− 1,

pm < pm−1 +
[m− 1]

[k]
< (1 + o(1))qm−k−1.

This completes the proof of the claim.
Now let us pick k2(n− k + 1) random (n− k + 1)-spaces. Let X denote the random

variable which counts the number of k-spaces S with dim(Td(S)) < k. Recall that
[
n
k

]
<

(1 + o(1))qk(n−k). Then

E(X) =

[
n

k

]
· pk(n−k+1)

k < (1 + o(1))qk(n−k) · q−k(n−k+1) < 1.

Hence, by linearity of expectation, there exists a choice of k2(n−k+ 1) (n−k+ 1)-spaces
with Tm(S) = S for all k-spaces S.

Lemma 8. Let 1 < k < n − 1. Then there exists a q0 such that for all q > q0 we have

that any Boolean function on Jq(n, k) is a k2(n− k + 1) q
n−k+1−1
q−1 -junta.

Proof. By duality, we assume that k 6 n/2. Put V = Fnq . By Lemma 7, we can find a
set H of k2(n− k+ 1) subspaces of dimension n− k+ 1 such that any k-space T contains
at least k points in

⋃
H∈HH which span T . For each T , let us denote k such points by

P(T ). Then

f =
∑

f(T )=1

∏
P∈P(T )

xP .

Hence, we see that f depends on at most k2(n− k + 1) · qn−k+1−1
q−1 points.

2.3 The Spectra of Johnson and Grassmann Graphs

Let n > 2k. Consider the eigenvalues of the adjacency matrices of the Johnson graph
J(n, k) and the Grassmann graph Jq(n, k). These are well-understood objects, for instance
see Chapter 9 in [7]. Both graphs have k + 1 eigenspaces V0, V1, . . . , Vk with a natural
ordering: the eigenspace Vd has dimension

[
n
d

]
−
[
n
d−1

]
(where we read

[
n
d

]
=
(
n
d

)
for the

Johnson graph). Corollary 3.2.3 in [43] implies
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Lemma 9. Let n > 2k and consider Jq(n, k), then we have for every 0 6 d 6 k that
V0 + · · ·+ Vd = 〈xD : dimD = d〉.

In particular, the first eigenspace is spanned by the all-ones vector (or, as we identify
vectors and functions here, f = 1). Note that the eigenvalue of Jq(n, k) corresponding to
the eigenspace Vj is

qj+1[k − j][n− k − j]− [j].

Asking for an equitable bipartitions is the same as asking for a set with characteristic
function in V0 + Vd for some d, see [32, §9.3].

2.4 Some Equivalent Definitions

The next result emphasizes the (well-known) fact that there are three ways of looking
at degree d functions: We can see them as degree d polynomials, we can see them as
functions in certain eigenspaces, or we can see them as a certain type of functions in
posets. We include some minor variants which we consider useful. We assume that d 6 k.

The d-space-to-k-space incidence matrix A = (aij) of Jq(n, k) is the (
[
n
d

]
×
[
n
k

]
)-matrix

indexed by d-spaces and k-spaces of Fnq where aij = 1 if the i-th d-space lies in the j-th
k-space and aij = 0 otherwise.

Proposition 10. Let n > 2k. For f a real function on Jq(n, k) the following are equiva-
lent:

(a) The function f has degree d.

(b) The function f lies in V0 + · · ·+ Vd.

(c) The function f is orthogonal to Vd+1 + · · ·+ Vn.

(d) There exists a weighting wt :
[
V
d

]
→ R such that for all S ∈

[
V
k

]
we have

f(S) =
∑
D∈[Sd]

wt(D).

(e) The function f lies in the image of the d-space-to-k-space incidence matrix.

Proof. Lemma 9 shows the equivalence of (a) and (b). The equivalence of (b) and (c)
follows from the fact that the common eigenspaces of the association scheme Jq(n, k) are
pairwise orthogonal (as its adjacency matrices are symmetric). Further, (a) and (d) are
equivalent: If (a) holds, then we can write f as

f =
∑
D∈[Vd ]

cDxD.

Take wt(D) = cD to obtain (d). Conversely, if (d) holds, then take cD = wt(D) to see
that f has degree d. Note that D ∈

[
V
d

]
lies on some S ∈

[
V
k

]
. Let A denote the d-space-

to-k-space incidence matrix. Then (d) states that f = AT ·wt. Here we see wt as a vector
of weights. Hence, (d) and (e) are equivalent.
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2.5 Boolean Functions and Designs

Classical designs live in the Johnson graph. Let n > 2k > 2d > 0. A (classical) d-(n, k, λ)
design in the Johnson graph J(n, k) is a family D of k-sets such that each d-set lies in
exactly λ elements of D. A d-(n, k, λ) design in the Grassmann graph Jq(n, k) is a family
D of k-spaces such that each d-space lies in exactly λ elements of D. The existence of these
q-analogs of classical designs was settled (at least in some weak sense) asymptotically by
Fazeli, Lovett, and Vardy in 2014 [21], but for small parameters deciding existence is
notoriosly hard. Maybe most prominently, a classical 2-(7, 3, 1) design is well-known as
the Fano plane. The existence of a 2-(7, 3, 1) design in Jq(7, 3), the so-called q-analog, is
a long-standing open problem.

Let D be a d-(n, k, λ) design of the Grassmann graph Jq(n, k). By a standard double
counting argument, |D| = λ

[
n
d

]
/
[
k
d

]
. For any family F such that the characteristic function

f of F has degree d, then |D∩F| only depends on |D| and |F|. Indeed, Boolean degree d
functions are precisely the objects with this property. It is a case of what Delsarte called
design-orthogonality, see also [18].

Corollary 11. Let n > 2k. Consider a d-(n, k, λ) design D of Jq(n, k) with characteristic
function g. If F is a degree d subset of Jq(n, k), then |F ∩ D| = |F| · |D|/

[
n
k

]
. If also

〈gγ : γ ∈ PΓL(n, q)〉 = V0 + Vd+1 + · · ·+ Vk, then the converse holds too.

Hence, if F has degree d, then |D| · |F|/
[
n
k

]
is an integer. This is a well-known

generalization of the fact that if k divides n, then the size of a Boolean degree 1 function
is divisible by

[
n−1
k−1

]
(using 1-(n, k, λ) designs, that is spreads). We list the divisibility

conditions which derive from the known designs in §B.

3 Degree 2 in Hypercube and Johnson Scheme

Consider the hypercube {0, 1}n. Nisan and Szegedy (Theorem 2) showed that a Boolean
degree d function on the hypercube depends on at most d2d−1 variables, so a Boolean
degree 2 functions depends on at most 4 variables. Hence, one can obtain a complete list
by considering the first four input variable x, y, z, w: Up to permutation and negation of
the input, Boolean degree 2 functions are

0, x, x AND y = xy, x XOR y = x+ y − xy, xy + (1− x)z,

Ind(x=y=z) = xy + xz + yx− x− y − z + 1,

Ind(x6y6z6w OR x>y>z>w).

Here Ind(B) is the indicator of B. This list was first obtained by Camion, Carlet, Charpin,
and Sendrier in [10]. For d = 3 a Boolean degree 2 function depends on at most 10
variables, see [45]. Note that 3 · 22 = 12 > 10.

Now consider the Johnson graph J(n, k) with n > 2k. For k = 3 there are countless
examples for degree 2 functions which depends on an arbitrary amount of coordinates,
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see [25, 27] for more details and conjectures. All equitable bipartitions of degree 2 are
classified for k = 3 [20, 30]. For n divisible by d and k 6 2d− 1, we can find a partition
L of {1, . . . , n} into d-sets. Then

f(x) =
∑
S∈L

∏
i∈S

xi

has degree d. This function corresponds to the family of k-sets containing one of the
d-sets of L. This is a very special case of what Martin calls groupwise complete design,
see [34].

For J(8, 4) we found an example that depends on 5 variables. Identify J(8, 4) as a
subset of {0, 1}8 and take all vertices which start with one of

11000, 01100, 00110, 00011, 10001,

11100, 01110, 00111, 10011, 11001.

For an alternative description, let Z be the cyclic group of order 5 with its natural action
on {1, . . . , 5}. Then we can take any 4-set which intersects {1, . . . , 5} in one of the orbits
{1, 2}Z or {1, 2, 3}Z . It is an equitable bipartition with quotient matrix(

8 8
6 10

)
.

Recall that Boolean degree 2 function on the hypercube depends on at most 4 coordi-
nates. Thus, the behavior of the Johnson graph is notably different from the hypercube.

4 Examples for General Degree

4.1 Trivial Examples

Let 2d 6 2k 6 n and let ⊥ be some polarity of Fnq . For a d-space T , let xT,i denote all k-
spaces S with dim(S∩T ) = d−i, and xT⊥,i denote all k-spaces S with dim(S∩T⊥) = d−i.
We call these examples trivial. We also call all examples trivial which one can obtain from
these examples by taking unions, differences, and complements.

For our main interest, d = 2, there are three examples to emphasize.

Example 12. (a) The set of all k-spaces through a fixed 2-space L: xL = xPxQ. Here
P and Q are points which span L.

(b) The set of all k-spaces in a fixed (n − 2)-space C: xC = xHxK . Here H and K are
hyperplanes which intersect in C.

(c) The set of all k-spaces through a fixed 1-space P in a fixed (n − 1)-space H: xPxH .
Here P ⊆ H.
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Note that the last example is particularly interesting. Let C be an (n− 2)-space. Let
H be the set of q + 1 hyperplanes through C. For each hyperplane H ∈ H, pick a point
PH ⊆ H outside of C. Then

f =
∑
H∈H

xHxPH

is a Boolean degree 2 function of size (q + 1)
[
n−1
k−1

]
. It is a 2(q + 1)-junta.

4.2 A (Partial) Spread

Here we describe a union of trivial examples which we consider noteworthy. Let S be
a family of d-spaces of Fnq which are pairwise disjoint. Such a family is called a partial
spread. Clearly, |S| 6 [n]/[d]. In case of equality S is called a spread. Indeed, spreads
exist if and only if d divides n, see [2]. The maximal size of S when d does not divide n
was determined recently in [38]. Clearly,

f =
∑
S∈S

xS

is a Boolean degree d function for k-spaces if k 6 2d − 1. It shows that any type of
Nisan-Szegedy theorem (for which we assume q fixed and n → ∞) needs to exclude the
case k 6 2d− 1.

4.3 Free Constructions from the Hypercube

Let h : {0, 1}m → {0, 1} be a Boolean degree d function on the hypercube. Further, take
a linear independent set B = {b1, . . . , bm} in Fnq (here n > m). Define a Boolean degree
d function f on the subspaces S of Fnq by putting

f(S) = h((x〈bi〉(S))i∈{1,...,m}).

In [11] a Boolean degree d function is described which depends on m = `(d) := 3 ·2d−1−2
variables. Hence, a Boolean degree d function on Jq(n, k) can depend on `(d) variables.
If B is not linear independent, then f depends on less than `(d) variables.

For q fixed and d sufficiently large, this is the best construction for low degree Boolean
functions on Jq(n, k) which we are aware of.

For (n, k) = (8, 4) we describe a Boolean degree 2 function in §5.2 which seems to
depend on more than C(q4 + q3 + q2 + q+ 1) variables (we can only show that it depends
on at least q3 + q2 + q + 1 variables).

5 Global Degree 2 Examples from Polar Spaces

The most famous example for a nontrivial Boolean degree 1 function exists in Jq(4, 2)
(for q odd) and is closely related to the elliptic quadric O−(4, q). For degree 2 we went
through all polar spaces in small dimensions.
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5.1 Examples for Planes

We consider examples on planes, that is k = 3.

5.1.1 Symplectic Spaces

Let n > 6. Consider a (possibly degenerate) symplectic form σ on Fnq . If n is even, then
σ(x, y) = x1y2−x2y1 + · · ·+xn−1yn−xnyn−1 is a nondegenerate choice for σ. We say that
x, y are orthogonal if σ(x, y) = 0. Let S be a subspace. We write S⊥ for the subspace
of vectors orthogonal to S. The radical of S is S ∩ S⊥. We say that S is isotropic if its
radical is S, and that S is nondegenerate if its radical is trivial.

There are two types of 2-spaces with respect to σ: Let L1 denote the set of isotropic
2-space, and let L2 denote the set of nonisotropic 2-spaces.

There are also two types of 3-spaces with respect to σ: Let Π1 denote the set of
isotropic planes, and let Π2 denote the set of planes with a point as a radical.

We claim that Πi has degree 2 for i ∈ {1, 2}: Put

f =
1

q2 + q + 1

∑
L∈L1

xL −
q + 1

q2(q2 + q + 1)

∑
L∈L2

xL.

Clearly, f has degree 2 and corresponds to the set Π1. It remains to see that f is Boolean.
All q2 + q + 1 lines in an isotropic plane Π are isotropic, so f(Π) = 1. A plane Π with a
point as radical has q + 1 isotropic lines and q2 nondegenerate lines, so then f(Π) = 0.

Now assume that n is even and that σ is nondegenerate.

The symmetry group of this example is Sp(n, q). The number of line orbits equals the
number of plane orbits as there are precisely two types of each. Thus, this is an example
for equality in Block’s lemma, Lemma 17. The group Sp(n, q) acts transitive on points,
hence the example is a 1-design and therefore an equitable bipartition. For n = 6, this
was already observed in [17]. The quotient matrix is(

q[3][n− 5] qn−4[2][3]
[2][n− 4] [3]q[n− 3]− [2][n− 4]

)
.

Remark 13. A similar construction works for even degree d and k = d+ 1.

5.1.2 Quadrics

Let n > 6. Consider a quadratic form Q on Fnq , for instance Q(x) = x21+x2x3+· · ·+xn−1xn
for n odd. Let Q denote the singular points 〈x〉 (so Q(x) = 0). We say that a subspace
of Fnq is totally singular if all its points are singular.

Let Li denote the family of lines which intersect Q in i points. As Q is quadratic,
Li is empty unless i ∈ {0, 1, 2, q + 1}. A line in one of these sets is called exterior line,
tangent, secant, or totally singular line, respectively. There are five types of planes with
respect to Q. In bracket we provide the explicit isomorphy type in F3

q.
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Let Π1 denote the family of totally singular planes (isomorphic to the quadratic form
Q′(x) = 0).

Let Π2 denote the family of planes of double line type (isomorphic to Q′(x) = x21).

Let Π3 denote the family of planes with exactly one singular point (isomorphic to Q′(x) =
x21 + αx1x2 + βx22 such that x21 + αx1x2 + βx22 is irreducible over Fq).
Let Π4 denote the family of planes with exactly two totally singular lines (isomorphic to
Q′(x) = x1x2).

Let Π5 denote the family of conic planes (isomorphic to Q′(x) = x21 + x1x2).

Let A = (aji) denote the 5× 4 matrix such that aji denotes the number of lines of Li
in a plane of Πj. Then

A =


0 0 0 q2 + q + 1
0 q2 + q 0 1
q2 q + 1 0 0
0 q − 1 q2 2(
q
2

)
q + 1

(
q+1
2

)
0

 .

Then

A

(
− q + 1

q4 + q3 + q2
,

1

q2 + q + 1
,− q + 1

q4 + q3 + q2
,

1

q2 + q + 1

)T
= (1, 1, 0, 0, 0)T ,

so Π1 ∪ Π2 has degree 2. We can write the characteristic function of it as

f1 = − q + 1

q4 + q3 + q2

∑
L∈L0∪L2

xL +
1

q2 + q + 1

∑
L∈L1∪Lq+1

xL.

If n and q are even, and Q is of hyperbolic type, then this example is isomorphic to
the symplectic example in Section 5.1.1, but not when q is odd. Its quotient matrix is
identical to the symplectic example.

For q = 2, we also find the following example which corresponds to Π1 ∪ Π3:

f2 =
15

64

∑
L∈L0

xL −
1

42

∑
L∈L1

xL −
11

168

∑
L∈L2

xL +
1

7

∑
L∈Lq+1

xL.

For (n, q) = (6, 2) with Q of elliptic type O−(6, q), Π1 is empty. Hence, for q = 2 the sets
Πi = Π1 ∪ Πi for i = 2, 3 have degree 2, and so any Πi with i ∈ {2, . . . , 4} has degree 2.

5.2 Examples for Solids

We consider examples on solids, that is k = 4. Let n = 8. Let Q be a nondegenerate
quadratic form of elliptic type O−(8, q), for instance Q(x) = x21+αx1x2+βx22+x23+· · ·+x28
such that x21 + αx1x2 + βx22 is irreducible over Fq. The terminology is identical to §5.1.2,
so Q is the set of singular points and we partition the lines set into L0 ∪ L1 ∪ L2 ∪ Lq+1.

the electronic journal of combinatorics 30(1) (2023), #P1.31 12



There are the following types of solids. In bracket we provide the explicit isomorphy type
in F4

q.

Let S1 denote the set of all solids of double plane type (with a quadratic form of type
Q′(x) = x21).

Let S2 denote the set of all solids with two totally singular planes (type Q′(x) = x1x2).

Let S3 denote the set of all solids with with precisely one totally singular line (type
Q′(x) = x21 + αx1x2 + βx22).

Let S4 denote the set of all solids that intersect Q in a cone with a point as base over a
conic (type Q′(x) = x21 + x1x2).

Let S5 denote the set of all nondegenerate solids of hyperbolic type O+(4, q) (type Q′(x) =
x1x2 + x3x4).

Let S6 denote the set of all nondegenerate solids of elliptic type O−(4, q) (type Q′(x) =
x21 + αx1x2 + βx22 + x23).

The example below can be seen as a generalization of the example by Bruen and
Drudge for degree 1 in [8]. Let A = (aji) denote the 6 × 4 matrix such that aji denotes
the number of lines of Li in a solid of Πj.

A =


0 q2(q2 + q + 1) 0 q2 + q + 1
0 q(q2 − 1) q4 2q2 + 2q + 1
q4 q(q + 1)2 0 1

1
2
q3(q − 1) q3 + 2q2 1

2
q3(q + 1) q + 1

1
2
q2(q − 1)2 (q + 1)(q2 − 1) 1

2
q2(q + 1)2 2(q + 1)

1
2
q2(q2 + 1) (q + 1)(q2 + 1) 1

2
q2(q2 + 1) 0

 .

Then we see that

A

(
q + 1

q3(q2 + q + 1)
, 0,− q + 1

q3(q2 + q + 1)
,

1

q2 + q + 1

)T
= (1, 1, 1, 0, 0, 0)T .

Hence, S1 ∪ S2 ∪ S3 is a degree 2 set. The corresponding degree 2 polynomial is

f =
q + 1

q3[3]

(
(
∑
L∈L0

xL)− (
∑
L∈L2

xL)

)
+

1

[3]

∑
L∈Lq+1

xL.

Note that |S1 ∪ S2 ∪ S3| = (q4 + 1)(q3 + 1)(q2 + 1)[5].

This example for Jq(8, 4) seems to depend on almost all coordinates which is in contrast
to J(8, 4) where we only obtained an example depending on 5 coordinates, see Section 3.
Formally, we can show the following:

Proposition 14. The example S1∪S2∪S3 depends on at least q4−q3+q2−q+3 variables
of type xP and xH for P a 1-space and H an (n− 1)-space.
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Proof. Put S = S1 ∪S2 ∪S3. On average, a point of F8
q lies in (q3 + 1)(q2 + 1)[5] elements

of S. A singular point lies in (q+ 1)(q2 + 1)2(q3 + 1) elements of S. Hence, a non-singular
point lies on

[8] · (q3 + 1)(q2 + 1)[5]− (q4 + 1)(q2 + q + 1) · (q + 1)(q2 + 1)2(q3 + 1)

[8]− (q4 + 1)(q2 + q + 1)

= (q3 + 1)[4]2 =: α

elements of S. Dually, a hyperplane of F8
q contains at most α elements of S. Hence, we

need at least ⌈
|S|
α

⌉
= q4 − q3 + q2 − q + 3

points and hyperplanes to cover all elements of S. Now suppose that S only depends
on a set R of less than q4 − q3 + q2 − q + 3 points and hyperplanes. Then there exist
4-spaces S ∈ S and T 6∈ S which are non-incident with all elements of R. Hence, we
cannot distinguish between S and T based on R which contradicts that S only depends
on R.

By Lemma 8, the preceding result is tight up to a constant factor (as q →∞). Hence,
there exists a degree 2 function on Jq(8, 4) which depends, up to a constant factor, the
maximum number of coordinates.

6 Other Examples

6.1 Local Degree 2 Examples for Planes

Here we provide an (incomplete) selection of examples which are of degree 2 and which
stabilize a partial flag of subspaces, but are not trivial.

6.1.1 A Line and a Complementary Spread

For n = 6, let L be a line and let C be a set of q2 + 1 colines through L which pairwise
meet in L. Note that C exists because F4

q possesses line spreads. Then the set {Π a plane :
dim(Π ∩ L) = 0 and ∃C ∈ C : Π ⊆ C} has degree 2 and size (q2 + 1) · q2(q + 1). We can
write its characteristic function f as

f =
∑
C∈C

(xC − xL).

The example is a (q + 1)(q2 + 2)-junta: we can decide if an element is in the set by
testing inclusion for each of the q + 1 hyperplanes through the q2 + 1 colines through L,
together with testing the inclusion for each of the q + 1 points of L.
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Figure 1: The point-plane-hyperplane example from §6.1.2. The planes of Π1 and Π2

correspond to the planes with dashed border.

6.1.2 Incident Point-Plane-Hyperplane

Let n = 6. Pick a point P , a plane Π, and a hyperplane H such that P ⊆ Π ⊆ H.

Let Π1 be the set of all planes not in H which meet Π in a line through P .

Let Π2 the set of all planes in H whose meet with Π is a point different from P .

Then Π1 ∪ Π2 corresponds to a degree 2 function and has size
q3(q + 1) + (q2 + q)q4 = (q2 + 1) · q3(q + 1). To see that it has degree 2, consider
the types of lines:

Let L1 be the set of all lines in Π through P .

Let L2 be the set of all lines in Π not through P .

Let L3 be the set of all lines in H whose meet with Π is P .

Let L4 be the set of all lines in H whose meet with Π is a point, but not P .

Let L5 be the set of all lines in H which are skew to Π.

Let L6 be the set of all lines whose meet with H is P .

Let L7 be the set of all lines whose meet with H is a point in Π, but not P .

Let L8 be the set of all lines whose meet with H is a point not in Π.

Then we can write the characteristic function f of Π1 ∪ Π2 as

f =
q3

[3][2]

∑
L∈L1

xL +
−q
[3]

∑
L2∪L3

xL

+
1

[3][2]

∑
L4∪L7

xL +
q + 1

q[3]

∑
L5∪L6

xL +
−1

q2[3]

∑
L8

xL.

See Figure 1 for an illustration. The example is a (q2 + q + 2)-junta: we can decide if an
element is in Π1 ∪ Π2 by testing inclusion for the q2 + q + 1 points in Π and H.
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6.2 Some Sporadic Examples

Here are some sporadic example for (n, q) = (6, 2). Despite our best efforts, we did not
manage to generalize them. The reader can find some more sporadic examples, which are
also equitable bipartitions, in [37].

6.2.1 Incident Line-Solid

For n = 6 and q = 2, let M be a line and let C be a coline with M ⊆ C. There are q + 1
hyperplanes through C and q + 1 points on M . For each of the q + 1 points P ⊆ M ,
choose a distinct hyperplane HP through C.

Let Π1 denote the set of all planes π with M ⊆ π ⊆ C.

Let Π2 denote the set of all planes π not in C which meet M in some point P and satisfy
π ⊆ Hp.

Let Π3 denote the set of all planes which meet M in some point p and and C in a line.
Note that Π2 ⊆ Π3.

The set Π1 ∪ Π3 has degree 2 and size (q + 1) + q3(q + 1)2 + q3(q2 + 1)(q + 1). It is a
2(q + 1)-junta: test all points on L and all hyperplanes through C.

Then set Π1∪Π2 has degree 2 and size (q+ 1) + q3(q+ 1)2. The example is a 2(q+ 1)-
junta (as before). Its characteristic function can be written as

f =
∑
P∈[M1 ]

(xP − xPxHP ),

where f is the characteristic function of Π1 ∪ Π2 ∪ Π3 and also has degree 2.

6.2.2 Incident Point-Line-Plane-Hyperplane

For n = 6 and q = 2, let P be a 1-space, M a 2-space, Π a 3-space, and H a 5-space such
that P ⊆M ⊆ Π ⊆ H.

Let Π1 denote all planes in H which contain M .

Let Π2 denote all planes not in H which meet Π in a line through P different from M .

Let Π3 denote all planes in H which meet Π in a point on M different from P .

The set Π1 ∪ Π2 ∪ Π3 has degree 2 and size 7 + 16 + 32 = 55. The example is a
(3q + 1)-junta, that is a 7-junta: we can decide if an element is in Π1 ∪ Π2 by testing
inclusion for H and the points in a triangle which includes M .

6.3 Unexplained Computer Examples

We found some examples by computer which we could not derive from any of the other
examples. We present these and their symmetries in the following table. In the structure
description, we denote the the cyclic group of order m by Cm, the symmetric group of
order m! by Sm, and the dihedral group of order m by Dm. We write ab if an orbit of
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length a occurs b times. For plane orbits, we only provide those that constitute the degree
2 example.

size stab size point orbits line orbits plane orbits structure
80 61440 32, 20, 10, 1 320, 160, 60, 402, 16, 10, 5 402 C5

2 o (C4
2 o S5)

85 86016 32, 142, 2, 1 2242, 84, 32, 282, 16, 72, 1 56, 21, 8 G, see below
177 64 32, 47, 24, 17 328, 1615, 88, 48, 224, 111 164, 810, 213, 17 C3

2 ×D8

420 126 42, 21 1264, 63, 42, 21, 14, 7 1263, 42 S3 × (C7 o C3)

Here G = (C4×C3
2 )o(C2×(C3

2oPSL(3, 2))).

7 Concluding Remarks

(1) In case of the Johnson graph, let us remark that a classification of Boolean degree 2
functions in J(n, k) appears feasible, but goes beyond the scope of the present work.

(2) For d = 1 and k = 2, Bamberg and Penttila [1] classified all subgroups of PΓL(n, q)
which have the same number of orbits on points and lines. This answered a conjecture
by Cameron and Liebler in [9]. In light of §A, the following generalization is natural:

Problem 15. Classify all subgroups of PΓL(n, q) with the same number of orbits on d-
spaces and k-spaces, that is all Boolean degree d functions on Jq(n, k) for which equality
holds in Lemma 17.

(3) In [13] it was shown for several domains that one can write a Boolean degree d function
as a constant depth decision tree. In case of the Grassmann graph, the natural queries
are “Is a point contained in a subspace?” and “Is a subspace in a hyperplane?”. In light
of our collection of examples, one is tempted to make the following conjecture:

Conjecture 16. For every given q and d, there exists a k0 such that if k, n − k > k0,
then every Boolean degree d function on Jq(n, k) is a constant depth decision tree.

One might also conjecture that the depth only depends polynomially on q. A related,
but less specific conjecture can be found in [27].
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A Permutation Groups and Block’s Lemma

In 1982 Cameron and Liebler investigated subgroups of PΓL(n, q) and their orbits on
points and lines of the vector space of the vector space Fnq , see [9]. An application of
Block’s lemma [3] shows that any subgroup of PΓL(n, q) has at least as many orbits on
lines as it has on points. In case of equality the orbits of lines have, in our terminology
here, degree 1.

In this section we concisely discuss a generalization of this application of Block’s lemma
to degree d, i.e. we show that a subgroup of PΓL(n, q) has at least as many orbits on
k-spaces of Fnq as on d-spaces if d 6 k 6 n/2. Again, if equality occurs, then the orbits
on k-spaces have degree d in the Grassmann graph Jq(n, k).

Lemma 17 ([3]). Let G be a group acting on two finite sets X and X ′, with respective
sizes n and m. Let O1, . . . , Os, respectively O′1, . . . , O

′
t be the orbits of the action on X,

respectively X ′. Suppose that R ⊆ X×X ′ is a G-invariant relation and call A = (aij) the
n×m matrix of this relation, i.e. aij = 1 if and only if xiRx

′
j and aij = 0 otherwise, after

having ordered the elements of X and X ′ arbitrarily. Let χS denote the characteristic
vector of a set S.

(i) The vectors ATχOi, i = 1, . . . , s, are linear combinations of the vectors χO′j .

(ii) If A has full row rank, then s 6 t. If s = t, then all vectors χO′j are linear combina-

tions of the vectors ATχOi, hence χO′j ∈ Im(AT ).

Let G 6 PΓL(n, q), n > 4, let 2 6 k < n, d 6 k and d 6 n/2, and let X, respectively
X ′ be the set of d-spaces, respectively k-spaces of Fnq . The incidence, i.e. the symmetrised
set theoretic containment, between an element of X and X ′ is G-invariant. Furthermore,
the incidence matrix is the incidence matrix of the k-space design of Fnq , and this matrix
has full row rank by [5]. If s = t, i.e. if G has equally many orbits on the d-spaces as on
the k-spaces, then the characteristic vector of each of the orbits of k-spaces lies in Im(AT ).

In [9], Cameron and Liebler studied collineation groups having equally many point
as line orbits, that is (d, k) = (1, 2). Conjecture 5 translates in this context that such
a group is line transitive, or fixes a hyperplane and acts transitively on the lines of the
hyperplanes, or, dually, fixes a point and acts transitively on the lines through the fixed
point.

We call two k-spaces of Fnq skew if and only if they only share the zero vector. A
partition of the points of Fnq in k-spaces is called a spread of Fnq in k-spaces. It is well
known that such a spread exists if and only if k | n, e.g. when n = 4 and k = 2,
there are spreads of lines in Fnq . By Proposition 3.1 of [9], for any set L of lines of F4

q,
χL ∈ Im(AT ) ⇐⇒ |L ∩ S| = x (a natural number, only depending on L), and for
any line spread S of F4

q. Often, a Cameron-Liebler line class of F4
q is defined using its

characterization with relation to line spreads of F4
q. When k - n, a set K of k-spaces of

Fnq is called a Cameron-Liebler set k-spaces of Fnq if and only if χK ∈ Im(AT ). This is the
case d = 1 and k > 1 found in a geometrical context in [4].
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Note that the statements of Block’s lemma are only unidirectional, i.e. an orbit of
k-spaces under a collineation group with equally many point orbits as orbits on k-spaces
is a Cameron-Liebler set of k-spaces, but the converse is not true, the union of all k-
spaces through a fixed point P and contained in a fixed hyperplane not through P is a
Cameron-Liebler set of k-spaces which is not the orbit under a collineation group with
equally many point as k-space orbits.

We do not know if a classification of such subgroups of PΓL(n, q) is feasible, but we
will see in §5.1.1 that the symplectic group Sp(n, q) provides us with some examples when
n and d are even.

B Divisibility Conditions

In the following we summarize known divisibility conditions based on the survey by Braun,
Kiermaier, Wassermann [6].

B.1 Small Parameters

For (n, k) = (6, 3), a 2-(6, 3, c(q + 1)) design has size c(q3 + 1)[5]. Existence is known for
(q, c) = (2, 1), (3, 3), (4, 2), (5, 13). Hence, for q = 2, 3, 4, 5 we obtain that |F| needs to be
divisible by 5, 10, 17, 2, respectively.

For (n, k) = (7, 3), a 2-(7, 3, λ) design has size λ(q2− q+ 1)[7]. Existence is known for
(q, λ) = (2, 3), (3, 5), (4, 21), (5, 31). Hence, for q = 2, 3, 4, 5 we obtain that |F| needs to

be divisible by [5] = q5−1
q−1 .

For (n, k) = (8, 4), a 2-(8, 4, c(q2 + q + 1)) design has size c(q4 + 1)[7]. Existence is
known for (q, c) = (2, 7), (3, 455), (4, 5733), (5, 20181). Hence, for q = 2, 3, 4, 5 we obtain
that |F| needs to be divisible by 93, 121, 341, 781, respectively.

B.2 Suzuki’s construction

Let q be a prime and n > 7 be an integer satisfying gcd(n, 4!) = 1. Then there exists a
2-(n, 3, q2 + q + 1) design. See [6, Theorem 11]. Hence,

Lemma 18. Let F be a degree 2 family of 3-spaces in Fnq . Then (q3 − 1)|F| is divisible
by qn−2 − 1.

For instance, for n = 11 and q = 2, 3, 4, 5 or 7: (q3 − 1)|F| is divisible by 511, 19 682,
262 143, 1 953 124 or 40 353 606, respectively.

B.3 More Conditions in the Binary Case

Lemma 19. Let m > 3. Suppose that F is a set of 3-spaces in Fn2 of degree 2, then the
following holds:

(a) If n = 8m, then C|F| is divisible by 28m−2 − 1, where C ∈ {42, 312}.
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(b) If n = 9m, then 42 · |F| is divisible by 29m−2 − 1.

(c) If n = 10m, then 210 · |F| is divisible by 210m−2 − 1.

(d) If n = 13m, then 42 · |F| is divisible by 213m−2 − 1.

Proof. By [6, Section 5.2], there exist (a) 2-(8m, 3, C)2 designs for C ∈ {42, 312}, (b) 2-
(9m, 3, 42)2 designs for m > 3, (c) 2-(10m, 3, 210)2 designs for m > 3, and (d) 2-(13m, 3,
42)2 designs for m > 3.
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