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Abstract

We make progress toward a characterization of the graphs H such that every
connected H-free graph has a longest path transversal of size 1. In particular, we
show that the graphs H on at most 4 vertices satisfying this property are exactly
the linear forests. We also show that if the order of a connected graph G is large
relative to its connectivity κ(G), and its independence number α(G) satisfies α(G) 6
κ(G) + 2, then each vertex of maximum degree forms a longest path transversal of
size 1.

Mathematics Subject Classifications: 05C38

1 Introduction

It is a classic result in graph theory that every two longest paths in a connected graph
share at least one vertex. Gallai [11] asked whether in fact all longest paths in a connected
graph share at least one vertex. This was answered in the negative by Walther [27], who
provided a counterexample with 25 vertices. A counterexample with 12 vertices was later

the electronic journal of combinatorics 30(1) (2023), #P1.32 https://doi.org/10.37236/11277

https://doi.org/10.37236/11277


Figure 1: The graph G0: A 12-vertex graph with no Gallai vertex.

constructed by Walther and Voss [28] and, independently, by Zamfirescu [31] (see Fig-
ure 1). Brinkmann and Van Cleemput (see [26]) verified that there is no counterexample
with less than 12 vertices.

A Gallai set (or longest path transversal) in a graph G is a set of vertices S such that
every longest path in G has a vertex in S. The Gallai number or longest path transversal
number of G, denoted by lpt(G), is the minimum size of a Gallai set and a Gallai family
is a family of graphs G such that lpt(G) = 1 for each connected graph G ∈ G. A vertex v
in G is a Gallai vertex if {v} is a Gallai set and a graph is Gallai if it has a Gallai vertex.

The counterexamples mentioned above consist of connected graphs G for which
lpt(G) = 2. In fact, there are examples of connected graphs G for which lpt(G) = 3
[15, 31] and Walther [27] and Zamfirescu [30] asked if the Gallai number of connected
graphs is bounded. In a companion paper [23] we addressed this fifty-year-old ques-
tion. Improving on [25], we showed that connected graphs admit sublinear longest path
transversals. The gap between our upper bound and the constant lower bound 3 remains
large.

In this paper we focus on another natural variant of Gallai’s question: Which classes
of graphs form Gallai families? It is well known that a family of pairwise intersecting
subtrees of a tree has non-empty intersection; in particular, trees form a Gallai family.
Several other Gallai families have been identified: split graphs and cacti [19], circular-arc
graphs [1, 18], series-parallel graphs [6], graphs with matching number at most 3 [5], dually
chordal graphs [17], 2K2-free graphs [13], P4-sparse graphs and (P5, K1,3)-free graphs [3],
bipartite permutation graphs [4], (H1, H2)-free graphs such that H1 and H2 are connected
and every 2-connected (H1, H2)-free graph is Hamiltonian (all such pairs are known and
each includes K1,3) [12].

Let Free(H) be the class of H-free graphs. A monogenic class of graphs has the form
Free(H), for some graph H. In this paper we aim at characterizing monogenic Gallai
families. In Section 3, we make progress by showing that if Free(H) is a Gallai family,
then H is a linear forest, and this suffices when |V (H)| 6 4. In the spirit of [13], we in
fact prove something more general: if H is a linear forest on at most 4 vertices and G is a
connected H-free graph, then all maximum degree vertices in G are Gallai. Dichotomies in
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monogenic classes for structural and algorithmic graph properties have been the subject of
several studies. For example, they have been provided for properties such as Hamiltonicity
[10, 22], boundedness of clique-width [9], price of connectivity [2, 16], and polynomial-time
solvability of various algorithmic problems [14, 20, 21, 24]. In Section 4, we show that if
G is a connected graph with independence number α(G) 6 4 (i.e., G is 5P1-free), then G
is Gallai. We then conjecture that the same holds if α(G) 6 5.

A celebrated result of Chvátal and Erdős [7] asserts that a graph G has a Hamiltonian
cycle when |V (G)| > 3 and α(G) 6 κ(G), and that G has a Hamiltonian path when
α(G) 6 κ(G) + 1. It follows that every vertex in G is Gallai when α(G) 6 κ(G) + 1.
In Section 5, we show that if a connected graph G is large relative to its connectivity
κ(G) and α(G) 6 κ(G) + 2, then each vertex of maximum degree is a Gallai vertex.
Moreover, for each k > 1, we provide an infinite family of k-connected graphs G such
that α(G) 6 k + 3 but no maximum degree vertex in G is Gallai (see Example 20). Our
result has the following immediate consequence: if a regular graph G is large relative
to its connectivity and α(G) 6 κ(G) + 2, then G contains a Hamiltonian path. The
condition α(G) 6 κ(G) + 2 is best possible up to an additive factor of 2 (this follows from
a construction in [8], see Example 22).

2 Preliminaries

In this paper we consider only finite graphs. Given a graph G, we denote its vertex set
by V (G) and its edge set by E(G).

Neighborhoods and degrees. For a vertex v ∈ V (G), the neighborhood NG(v) is
the set of vertices adjacent to v in G. For a set of vertices S ⊆ V (G), the neighborhood
of S, denoted NG(S), is

⋃
v∈S NG(v). We also extend the concept of neighborhood to

subgraphs by defining NG(H) = NG(V (H)) when H is a subgraph of G. The degree
dG(v) of a vertex v ∈ V (G) is the number of edges incident to v in G. When G is clear
from context, we may write d(v) for dG(v). A vertex v ∈ V (G) with d(v) = 3 is cubic.
The maximum degree ∆(G) of G is max {dG(v) : v ∈ V }. Similarly, the minimum degree
δ(G) of G is min {dG(v) : v ∈ V }.

Paths and cycles. A path is a non-empty graph P with V (P ) = {x0, x1, . . . , xk}
and E(P ) = {x0x1, x1x2, . . . , xk−1xk}. We may also denote P by listing its vertices in the
natural order x0x1 · · ·xk. The vertices x0 and xk are the ends or endpoints of P ; the other
vertices are interior vertices of P . The length of P is the number of edges in P . We denote
the n-vertex path by Pn. A path in a graph G is Hamiltonian, or spanning, if it contains
all vertices of G. A uv-path is a path whose endpoints are u and v. If P = x0x1 · · ·xk is
a path and k > 2, the graph with vertex set V (P ) and edge set E(P ) ∪ xkx0 is a cycle.
The length of a cycle is the number of its edges (or vertices) and the cycle on n vertices
is denoted by Cn. A cycle in a graph G is Hamiltonian, or spanning, if it contains all
vertices of G. The girth of a graph containing a cycle is the length of a shortest cycle
and a graph with no cycle has infinite girth. The distance distG(u, v) from a vertex u to
a vertex v in a graph G is the length of a shortest path between u and v.
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Graph operations. Let G be a graph and let S ⊆ V (G). The graph G − S is
obtained from G by deleting all vertices in S and all edges incident to a vertex in S. The
subgraph of G induced by a set of vertices S ′, denoted G[S ′], is the graph G− S, where
S = V (G)−S ′. For M ⊆ E(G), we define G−M analogously. The union of simple graphs
G and H is denoted G ∪H and has vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H).
The disjoint union of G and H, denoted G + H, is the union of a copy of G and a copy
of H on disjoint vertex sets. The disjoint union of k copies of G is denoted by kG.

Graph classes and special graphs. If a graph does not contain induced subgraphs
isomorphic to graphs in a set Z, it is Z-free and the set of all Z-free graphs is denoted
by Free(Z). A complete graph is a graph whose vertices are pairwise adjacent and the
complete graph on n vertices is denoted by Kn. A triangle is the graph K3. A graph G
is r-partite, for r > 2, if its vertex set admits a partition into r classes such that every
edge has its endpoints in different classes. An r-partite graph in which every two vertices
from distinct parts are adjacent is called complete and 2-partite graphs are usually called
bipartite. An (X, Y )-bigraph is a bipartite graph with bipartition {X, Y }. Given a graph
G and X, Y ⊆ V (G), the induced (X, Y )-bigraph is the bipartite subgraph of G with
vertex set X ∪ Y and where each edge has one endpoint in X and the other in Y . A tree
is a connected graph not containing any cycle as a subgraph and the vertices of degree 1
are its leaves.

Graph parameters. A set of vertices or edges of a graph is maximum with respect
to the property P if it has maximum size among all subsets having property P . An
independent set of a graph is a set of pairwise non-adjacent vertices and the independence
number α(G) is the size of a maximum independent set of G. A clique of a graph is a set
of pairwise adjacent vertices. A matching in G is a set of edges with distinct endpoints.
A matching M saturates a set of vertices S if each vertex in S is the endpoint of an edge
in M . A graph G is k-connected if |V (G)| > k and G−S is connected for each S ⊆ V (G)
with |S| < k. The connectivity of G, denoted κ(G), is the maximum k such that G is
k-connected.

3 Monogenic Gallai families

In this section we make progress toward a classification of monogenic Gallai families. We
first show that a necessary condition for a monogenic family Free(H) to be Gallai is that
H is a linear forest on at most 9 vertices, where a linear forest is a forest in which every
component is a path. Let G0 be the graph in Figure 1 with lpt(G0) = 2 [28, 31]. We obtain
necessary conditions on monogenic Gallai families by subdividing edges or replacing cubic
vertices with triangles in G0 to obtain new counterexamples with arbitrarily large girth
or no induced claw, respectively.

In the following, we say that a graph H is a fixer if Free(H) is a Gallai family; that
is, forbidding H “fixes” the answer to Gallai’s question.

Proposition 1. If H is a fixer, then H is a linear forest on at most 9 vertices.
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Proof. Let H be a fixer. By definition, if G is a graph with lpt(G) > 1, then H is an
induced subgraph of G.

Note that G0 is obtained from the Petersen graph by splitting an arbitrary vertex
into a set R of three vertices, each of degree 1 (see Figure 1). Clearly, G0 is triangle-free
and every path in G0 avoids at least one vertex in R. Since the Petersen graph has no
Hamiltonian cycle [29], every path in G0 omits at least 2 vertices. Moreover, since the
Petersen graph is vertex-transitive [29] and has a 9-cycle, it follows that for each vertex
x ∈ V (G0)−R, there is a longest path in G0 with both ends in R that omits only x and
the other vertex in R.

Let M be the set of 3 edges incident to the vertices in R. Let G1 be the graph obtained
from G0 by replacing each edge in M with a path of length q and replacing each edge
outside M with a path of length p, where p > |V (H)|. Provided that q > |E(G0)| · p,
the longest paths in G1 are in bijective correspondence with the longest paths in G0 that
have both ends in R. Recalling that, for each x ∈ V (G0) − R, there is a longest path in
G0 with both ends in R that omits x, we have lpt(G1) > 1. Since G1 has girth larger than
|V (H)| and H is an induced subgraph of G1, it follows that H is acyclic.

Let S be the set of cubic vertices in G1. We obtain G2 from G1 by replacing each
vertex w ∈ S with a triangle Tw such that the three edges incident to w in G1 are incident
to distinct vertices of Tw in G2. Clearly, G2 is claw-free. Let P be a longest path in G2.
Again, provided that q is sufficiently large, P has its ends in R. When P visits a vertex in
some Tw, it must visit all vertices in Tw before leaving. It follows that the longest paths
in G2 are in bijective correspondence with the longest paths in G1 and lpt(G2) > 1.

Since H is an induced subgraph of G1 and G2, it follows that H is triangle-free and
claw-free, and so ∆(H) 6 2. Recalling that H is acyclic, we have that H is a linear
forest. But H is also an induced subgraph of G0 and to obtain an induced linear forest as
a subgraph of G0, a vertex must be deleted from the closed neighborhood of each cubic
vertex of G0. Let R′ be the set of neighbors of vertices in R. Since the vertices in R′

are cubic and have disjoint closed neighborhoods, each induced linear forest has at most
|V (G0)| − |R′| vertices, and so |V (H)| 6 |V (G0)| − |R′| = 12− 3 = 9.

Remark 2. Gao and Shan [12, Problem 6] asked whether all longest paths in a connected
claw-free graph have a non-empty intersection. Proposition 1 answers this question in the
negative.

For |V (H)| 6 4, we show that H is a fixer if and only if H is a linear forest. Necessity
follows from Proposition 1. For sufficiency, we show that every 4-vertex linear forest is a
fixer. The linear forests of order 4 are P4, P3 +P1, 2P2, P2 + 2P1, and 4P1 (see Figure 2).
Cerioli and Lima [3] showed that P4-sparse graphs, a superclass of P4-free graphs, form
a Gallai family, whereas Golan and Shan [13] showed that 2P2-free graphs form a Gallai
family. In other words, P4 and 2P2 are fixers. In the following, we address the remaining
cases: P3 + P1, P2 + 2P1, and 4P1.

We begin with some basic but useful observations. Given vertices x, y ∈ V (G), an
xy-fiber is a longest path among all the xy-paths. Similarly, an x-fiber is a longest path
among all the paths having x as an endpoint, and a fiber is a longest path in G. Note
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4P1 2P2 P4P2 + 2P1 P3 + P1

Figure 2: The linear forests on 4 vertices. These are exactly the graphs H on 4 vertices
such that Free(H) is a Gallai family.

that every fiber is an x-fiber for some vertex x, and every x-fiber is an xy-fiber for some
vertex y.

The following two basic lemmas are used repeatedly, sometimes implicitly. Similar
ideas are key to the results in [7]. The first basic lemma treats single neighbors of fibers.

Lemma 3. Let P be an xy-path in a graph G, where P = v0 · · · v` with x = v0 and y = v`.
Let H be a component of G − V (P ) with a neighbor vi on P . If P is an x-fiber, then
i < `. Moreover, if 0 < i, then v`vi−1 6∈ E(G). Similarly, if P is a y-fiber, then 0 < i,
and if i < `, then v0vi+1 6∈ E(G).

Proof. Suppose P is an x-fiber. No vertex in H is adjacent to y, or else P extends to a
longer x-fiber, a contradiction. Therefore, i < `. Also, if i > 0 and vi−1v` ∈ E(G), then
following P from v0 to vi−1, traversing vi−1v`, following P backward from v` to vi, and
traveling to H produces a longer x-fiber. The case that P is a y-fiber is symmetric.

In many of our arguments, we show that a path P in G has some desired property
or else we obtain a longer path. We now formalize two common ways to obtain longer
paths. Given two lists of objects a and b, a splice of a with b is a sequence obtained from
a by (1) replacing a non-empty interval of a with b, or (2) inserting b between consecutive
elements in a, or (3) prepending or appending b to a. Given a host path P and a patching
path Q, a splice of P with Q is a path whose vertices are ordered according to a splice of
the ordered list of vertices in P with the ordered list of vertices in Q. A splice of P that
has the same endpoints as P is an interior splice; otherwise, the splice is exterior.

A detour of an xy-path P is a path obtained from P by using two patching paths
Q1 and Q2 as follows. Suppose that Qi is a uiwi-path for i ∈ {1, 2} and u1, u2, w1, w2

are distinct vertices appearing in order along P . We follow P from x to u1, traverse Q1,
follow P backward from w1 to u2, traverse Q2, and finally follow P from w2 to y.

Note that our definitions of a splice and detour require the resulting object to be a
path and therefore implicitly impose certain disjointness conditions on segments of the
host and the patching paths. Also, note that interior splices and detours of P have the
same endpoints as P . A splice or detour of P is augmenting if it is longer than P .

Let P be a path in G and let H be a component of G − V (P ). A vertex s ∈ V (P )
with a neighbor in H is an attachment point of H. Our next lemma concerns pairs of
attachment points.

Lemma 4. Let P be an xy-path in a graph G and let H be a component of G − V (P )
with attachment points s and s′, where s appears before s′ when traversing P from x to
y. The following hold:
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1. If s and s′ are consecutive on P , then there is an augmenting interior splice of P .

2. If s and s′ are not consecutive along P , w and w′ immediately follow s and s′

respectively, and ww′ ∈ E(G), then there is an augmenting detour of P .

3. If s and s′ are not consecutive along P , w and w′ immediately precede s and s′

respectively, and ww′ ∈ E(G), then there is an augmenting detour of P .

Proof. For part 1, since s and s′ are consecutive attachment points on P , we obtain an
augmenting interior splice by inserting an appropriate path in H between s and s′. For
part 2, let Q1 be an ss′-path with interior vertices in H and let Q2 be the path ww′.
There is an augmenting detour of P using patching paths Q1 and Q2. The case in part 3
is symmetric.

When P is a kind of fiber and a component H of G − V (P ) has many attachment
points, our next lemma obtains a large independent set contained in P consisting of
non-attachment points.

s1 sk
x y

HH

P

Figure 3: Construction of A in the proof of Lemma 5.

Lemma 5. Let P be an xy-path in a graph G, let H be a component of G−V (P ) and let
k be the number of attachment points of H. There is an independent set A of G such that
A ⊆ V (P ), no edge joins a vertex in A and a vertex in V (H), and the following hold:

1. If P is an xy-fiber, then A ⊆ V (P )− {x, y} and |A| > k − 1.

2. If P is an x-fiber, then A ⊆ V (P )− {x} and |A| > k.

3. If P is a fiber, then A ⊆ V (P ) and |A| > k + 1.

Proof. Let s1, . . . , sk be the attachment points of H, with indices increasing from x to y
along P , and let S = {s1, . . . , sk} (see Figure 3).

For part 1, let A be the set of vertices in P that immediately follow some si with
1 6 i < k. Since P is an xy-fiber, Lemma 4 implies that si and si+1 are not consecutive
along P . Therefore, S and A are disjoint and so no vertex in A has a neighbor in H. By
Lemma 4, it follows that A is an independent set.
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For part 2, suppose in addition that P is an x-fiber. By Lemma 3, sk 6= y, and we
may take A to be the set of vertices that immediately follow some si with 1 6 i 6 k.

For part 3, suppose in addition that P is a fiber. By Lemma 3, we have s1 6= x. Let A
be the set of vertices that immediately follow an attachment point together with x. Note
that since P is also a y-fiber, it follows from Lemma 3 that x has no neighbor in A, and
so A is an independent set of size k + 1.

We can finally show in the following sections that P3 + P1, P2 + 2P1, and 4P1 are all
fixers.

3.1 P3 + P1 is a fixer

Theorem 6. If G is a connected (P3 +P1)-free graph, then every vertex of degree at least
∆(G)− 1 is a Gallai vertex.

Proof. Let P be a longest path in G, where P = v0 · · · v` with x = v0 and y = v`. Suppose
for a contradiction that there is a vertex u with d(u) > ∆(G)−1 but u 6∈ V (P ). Let H be
the component of G− V (P ) containing u. Let T = V (H), let S be the set of attachment
points of H on P , let k = |S|, and let t = |T |.

Note that H is a complete graph, or else an induced copy of P3 in H together with an
endpoint of P would induce a copy of P3 + P1 in G. We now claim that xvi ∈ E(G) for
each vi ∈ S. Otherwise, by Lemma 3, given a neighbor z of vi in H, {z, vi, vi+1, x} would
induce a copy of P3 + P1.

Next we claim that vi−1vi+1 6∈ E(G) when vi ∈ S. Otherwise, we obtain a longer path
by starting with a neighbor z of vi in H, walking along zvix, following P from x to vi−1,
traversing vi−1vi+1, and following P from vi+1 to y. Therefore zvi ∈ E(G) for each z ∈ T
and vi ∈ S, otherwise {z, vi−1, vi, vi+1} would induce a copy of P3 + P1. It follows that
N(z) = (T − {z}) ∪ S for each z ∈ T . In particular, d(u) = (t− 1) + k.

Next we claim that, if vi, vj ∈ S with i 6= j, then vivj+1 ∈ E(G). Otherwise, given
a neighbor z of vi in H, the set {z, vi, vi+1, vj+1} would induce a copy of P3 + P1 since
vi+1vj+1 6∈ E(G) by Lemma 4. This implies that, if vi ∈ S, then the neighborhood of vi
contains x, T , and {vj+1 : vj ∈ S}, and so d(vi) > 1 + t + k. Therefore ∆(G) > d(vi) >
d(u) + 2, a contradiction.

The degree assumption in Theorem 6 is best possible. Indeed, the complete bipartite
graph Kt,t+2 is (P3 +P1)-free, has maximum degree t+ 2, and the vertices of degree t are
not Gallai.

3.2 P2 + 2P1 is a fixer

Proposition 7. If G is a connected (P2 + 2P1)-free graph, then every vertex of maximum
degree is a Gallai vertex.

Proof. Let G be a connected (P2 + 2P1)-free graph and let P = v0 · · · v` be a longest path
in G with ends x = v0 and y = v`. Suppose for a contradiction that u is a vertex of
maximum degree and u 6∈ V (P ). Let k = d(u) = ∆(G), and let H be the component of
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G−V (P ) containing u. Note that xy 6∈ E(G), or else we obtain a longer path by starting
at a vertex in H with a neighbor on P and traveling around the cycle P + xy. Also,
V (G)− V (P ) is an independent set, or else, by Lemma 3, an adjacent pair of vertices in
V (G)− V (P ) together with x and y would induce a copy of P2 + 2P1.

Let S be the set of attachment points of H. Since H has one vertex, we have |S| = k.
Applying Lemma 5 where H is the graph with the single vertex u, there is an independent
set A ⊆ V (P ) such that |A| = k + 1 and A ∩ S = ∅.

If some vertex s ∈ S has two non-neighbors w1, w2 ∈ A, then {u, s, w1, w2} induces a
copy of P2 + 2P1. Hence every vertex in S has at least k neighbors in A. Counting u,
every vertex in S has degree at least k + 1, contradicting that ∆(G) = k.

Vertices of degree ∆(G)− 1 in a (P2 + 2P1)-free graph G need not be Gallai. Indeed,
consider the graph G obtained from Kt,t+2 by removing a matching saturating the part
of size t. G is (P2 + 2P1)-free and ∆(G) = t+ 1. The longest paths in G omit one vertex,
and the Gallai vertices are those in the smaller part. Two of the non-Gallai vertices in
the larger part have degree t, which equals ∆(G)− 1.

3.3 4P1 is a fixer

For a path P in a graph G containing the vertices x and y, the closed subpath of P with
boundary points x and y, denoted P [x, y], is the subpath of P with endpoints x and y.
The open subpath of P with boundary points x and y, denoted P (x, y), is P [x, y]−{x, y}.
Additionally, we define the semi-open subpaths P [x, y) and P (x, y] analogously.

Let x, y ∈ V (G), let P be an xy-path in G, and let H be a component of G− V (P ).
For each non-attachment point w ∈ V (P ), we define the rank of w, denoted rank(w), to
be the maximum length of a subpath of P [x,w] containing w but no attachment points.
Note that if s1, . . . , sk are the attachment points with indices increasing from x to y, then
the rank of a non-attachment point w ∈ V (P (si, si+1)) is distP (si, w)− 1.

Lemma 8. Let P be an xy-path in a graph G and let H be a complete component of
G − V (P ). Let S be the set of attachment points of H on P , where S = {s1, . . . , sk},
with indices increasing from x to y, and suppose that the induced (S, V (H))-bigraph has
a matching saturating S0 when S0 ⊆ S and |S0| 6 |V (H)|. The following hold.

1. If s1 = x, then P has an augmenting splice with endpoint y. If sk = y, then P has
an augmenting splice with endpoint x. If si and si+1 are consecutive on P , then P
has an augmenting interior splice.

2. If some component P0 of P − S has fewer than |V (H)| vertices, then P has an
augmenting splice replacing P0.

3. If w and w′ are in distinct components of P −S−V (P [x, s1]), rank(w)+rank(w′) <
|V (H)|, and ww′ ∈ E(G), then P has an augmenting detour.

4. If w and w′ are in distinct components of P −S, rank(w) + rank(w′) < |V (H)|, and
ww′ ∈ E(G), then G has a path with endpoint y that is longer than P .
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Proof. For part 1, if s1 = x or sk = y, then we obtain an augmenting splice of P by
prepending or appending a Hamiltonian path of H. If si and si+1 are consecutive along
P , then it follows from Lemma 4 that P has an augmenting interior splice.

For part 2, let P0 be a component of P − S with 1 6 |V (P0)| < |V (H)|. Note that
P0 is P [x, s1), or P (sk, y], or P (si, si+1) for some i. Suppose that P0 = P (si, si+1). Hence
there is a matching {siz, si+1z

′} joining si and si+1 to distinct vertices z, z′ ∈ V (H).
Since H is complete, H contains a spanning zz′-path Q. Since |V (P0)| < |V (H)|, we
obtain an augmenting interior splice by replacing P0 with Q. The cases P0 = P [x, s1) and
P0 = P (sk, y] are similar, except that we obtain an augmenting external splice.

For part 3, we may assume that w appears before w′ when traversing P from x to y
(see Figure 4). Let i and j be indices such that w ∈ V (P (si, si+1)) and w′ ∈ V (P (sj, sj+1))
except that we set j = k if w′ ∈ V (P (sk, y]). Since w and w′ are in distinct components
of P −S, we have i < j. If |V (H)| = 1, then rank(w) + rank(w′) < |V (H)| implies that w
immediately follows si and w′ immediately follows sj. By Lemma 4 part (2), we have that
P has an augmenting detour. Otherwise, |V (H)| > 2 and there is a matching {siz, sjz′}
joining si and sj to distinct vertices z, z′ ∈ V (H). Let Q1 be an sisj-path whose interior
vertices form a spanning zz′-path in H, and let Q2 be the path ww′. The detour of P
with patching paths Q1 and Q2 adds the vertices in V (H) but omits the rank(w) vertices
in P (si, w) and the rank(w′) vertices in P (sj, w

′). Since rank(w) + rank(w′) < |V (H)|,
the detour is augmenting.

si sj
x y

w w′

sj+1si+1

z

z′ H

P

Figure 4: Part 3 in Lemma 8.

For part 4, we may apply the argument for part 3 unless w ∈ V (P [x, s1]). As before, let
j be the index such that w′ ∈ V (P (sj, sj+1)), except that we set j = k if w′ ∈ V (P (sk, y]).
We obtain a new path P ′ by following P backward from y to w′, traversing w′w, following
P forward from w to sj, traversing an edge joining sj and a vertex in H, and finishing with
a Hamiltonian path in H. The path P ′ includes all of V (H) but omits the rank(w) vertices
in P [x,w) and the rank(w′) vertices in P (sj, w

′). Since rank(w) + rank(w′) < |V (H)|, the
path P ′ is longer than P .

Our next lemma provides additional structure whenG is k-connected and α(G) 6 k+2.
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Lemma 9. Let P be a longest path in a graph G with endpoints x and y, and let H be a
component of G−V (P ). Suppose that G is k-connected and α(G) 6 k+ 2. The following
hold.

1. The set S of attachment points of H on P has size k.

2. The subgraph H is complete.

3. The graph P − S has k + 1 components, and each has at least |V (H)| vertices.

4. If w and w′ are in distinct components of P −S and rank(w) + rank(w′) < |V (H)|,
then ww′ 6∈ E(G).

5. The vertices in each component of P − S of rank less than |V (H)| form a clique.

Proof. Let S = {s1, . . . , sr}, with indices increasing from x to y. Since G is k-connected
and H is a component of G− V (P ), it follows that r > k, or else S separates V (H) from
x and y. Since P is a fiber, it follows from Lemma 5 that G contains an independent
set A with |A| = r + 1 such that A ⊆ V (P ) and no edge joins A and V (H). Since
1 + (k+ 1) 6 α(H) + (r+ 1) = α(H) + |A| 6 α(G) 6 k+ 2, it follows that α(H) = 1 and
r = k. Hence, there are exactly k attachment points and H is complete.

Let S0 ⊆ S with |S0| 6 |V (H)| and let B be the induced (S0, V (H))-bigraph. If
B has no matching saturating S0, then Hall’s Theorem [29] implies that there exists
S1 ⊆ S0 such that |NB(S1)| < |S1|. Since |NB(S1)| < |S1| 6 |S0| 6 |V (H)|, it follows
that NB(S1)∪ (S−S1) is a cutset of size less than k, contradicting that G is k-connected.
Therefore Lemma 8 applies, and since P is a longest path, parts 3 and 4 follow.

It remains to establish part 5. Suppose for a contradiction that w and w′ are distinct
vertices in the same component W of P − S such that rank(w), rank(w′) < |V (H)| and
ww′ 6∈ E(G). Let A be the set of non-attachment points in P with rank 0, and obtain
A′ from A by deleting the vertex in W ∩ A and adding w and w′. Note that, with the
possible exception of {w,w′}, each pair of vertices in A′ has rank sum less than |V (H)|
and intersects two components of P −S. It follows from part 4 that A′ is an independent
set. Since |A′| = k + 2 and A consists of non-attachment points, we may add any vertex
in H to obtain an independent set of size k + 3, a contradiction.

Theorem 10. Let k ∈ {1, 2}. If G is k-connected and α(G) 6 k + 2, then every longest
path in G contains every vertex of degree at least ∆(G)− (2− k).

Proof. Let P be a longest path in G with endpoints x and y, and suppose for a con-
tradiction that there exists u /∈ V (P ) with d(u) > ∆(G) − (2 − k). Let H be the
component of G − V (P ) containing u, and let t = |V (H)|. Let s1, . . . , sk be the attach-
ment points of H on P , indexed in order from x to y, and let S = {s1, . . . , sk}. Note that
∆(G) 6 d(u) + (2− k) 6 ((t− 1) + k) + (2− k) = t+ 1.

For each component W of P−S, let f(W ) be the set of vertices w in W with rank(w) <
t. We claim that N(s1) either contains V (H) or f(W ), for some component W of P − S.
If not, then let A be the set of vertices consisting of the lowest-ranked non-neighbor of
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s1 in each component of P − S. Note that if {w,w′} is a pair of vertices in A, then
rank(w) + rank(w′) < t, or else s1 has a set B of at least t neighbors in the components
of P − S containing w and w′. Let z be the vertex in P [x, s1] that preceeds s1. Note
that z 6∈ B, since some non-neighbor of s1 separates z and the initial segment of P [x, s1)
consisting of vertices belonging to B. Counting B together with z, it follows that d(s1) >
t + 2, contradicting that ∆(G) 6 t + 1. Hence rank(w) + rank(w′) < t and it follows
from Lemma 9 part (4) that A is an independent set. But A together with s1 and a non-
neighbor of s1 in H forms an independent set of size k+3, contradicting that α(G) 6 k+2.
Therefore N(s1) either contains V (H) or f(W ) for some component W of P − S.

Note that |V (H)| = t and |f(W )| = t for each component W of P − S. Let v and v′

be the immediate neighbors of s1 along P , and let v′′ be a neighbor of s1 in H. Noting
that V (H) and each f(W ) intersect {v, v′, v′′} in at most one vertex, it follows that
d(s1) > t+ 3− 1, contradicting that ∆(G) 6 t+ 1.

We note two consequences.

Corollary 11. If G is a connected graph with α(G) 6 3 and ∆(G) − δ(G) 6 1, or if G
is a 2-connected regular graph with α(G) 6 4, then G has a Hamiltonian path.

Corollary 12. The graph 4P1 is a fixer.

4 A 5-vertex fixer

In this section, we show that 5P1 is a fixer. Although 5P1 is a fixer, there are connected
5P1-free graphs in which no vertex of maximum degree is Gallai (see Example 20). By
contrast, for each fixer F of order at most 4, the vertices of maximum degree in a connected
F -free graph are all Gallai: Golan and Shan [13] show this for F = 2P2, our results in
Section 3 show this for F ∈ {P3 + P1, P2 + 2P1, 4P1}, and we leave the case F = P4 as an
exercise.

The statement that 5P1 is a fixer is equivalent to the statement that if G is a connected
graph with α(G) 6 4, then G has a Gallai vertex. In the case that G is 2-connected, the
result already follows from Theorem 10. When G has cut-vertices, we exploit the block-
cutpoint structure of G. We need the following two variants of Theorem 10 in the case
that P is an x-fiber or an xy-fiber for distinguished vertices x, y ∈ V (G).

Lemma 13. Let G be a 2-connected graph with a distinguished vertex x. If α(G−x) 6 3,
then every x-fiber contains every vertex in G of maximum degree.

Proof. Let P be an x-fiber with other endpoint y, and suppose for a contradiction that u
is a vertex of maximum degree not on P . Let H be the component of G−V (P ) containing
u, and let r be the number of attachment points of H on P . Note that r > 2, or else there
is at most one attachment point separating y and H, contradicting that G is 2-connected.
Moreover, by Lemma 5 part (2), we have that r+α(H) 6 α(G−x) 6 3. Since r > 2 and
α(H) > 1, it follows that r = 2 and α(H) = 1. Therefore H is a complete graph. Let
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{s1, s2} be the set of attachment points of H on P , with indices increasing from x to y,
and let S = {s1, s2}.

Since G is 2-connected, there is a matching in the induced (S, V (H))-bigraph saturat-
ing S or |V (H)| = 1. Let t = |V (H)| and note that d(u) 6 (t − 1) + 2 = t + 1. Since
P is an x-fiber, it follows from Lemma 8 that both P (s1, s2) and P (s2, y] are non-empty
(part (1)) and have at least t vertices (part (2)). If s2 has at least t neighbors in some
set in {V (H), V (P (s1, s2)), V (P (s2, y])}, then d(s2) > t + 2 > d(u), contradicting that u
has maximum degree. Hence s2 has fewer than t neighbors in each of V (H), V (P (s1, s2)),
and V (P (s2, y]). Let w1 and w2 be the non-neighbors of s2 of minimum rank in P (s1, s2)
and P (s2, y], respectively, and let z be a non-neighbor of s2 in H.

We claim that {s2, z, w1, w2} is an independent set, contradicting α(G − x) 6 3. By
construction, s2 has no neighbor in {z, w1, w2}. Since w1 and w2 are not attachment
points, z has no neighbor in {w1, w2}. If w1w2 ∈ E(G), then Lemma 8 part (3) and the
fact that P is an x-fiber imply that rank(w1) + rank(w2) > t. Hence s2 is adjacent to all
vertices in P (s1, w1) and P (s2, w2), and there are at least t of them. Together with the
vertex preceding s2 in P and a neighbor of s2 in H, we have d(s2) > t+ 2, contradicting
that u has maximum degree.

Lemma 14. Let G be a 2-connected graph and let x and y be distinct vertices of G. If
α(G− {x, y}) 6 2, then every xy-fiber contains every vertex in G of maximum degree or
G− {x, y} is the disjoint union of two complete graphs.

Proof. Let P be an xy-fiber, let u be a vertex of maximum degree not on P , and let H
be the component of G − V (P ) containing u. Let {s1, . . . , sr} be the set of attachment
points of H, with indices increasing from x to y, and let S = {s1, . . . , sr}. Since G is
2-connected, we have r > 2, or else deleting S separates H from V (P ) − S (which is
non-empty since x 6= y). By Lemma 5, there is an independent set A ⊆ V (P − {x, y})
such that |A| = r − 1 and there are no edges joining A and V (H). Therefore 1 + 1 6
(r − 1) + α(H) 6 α(G− {x, y}) 6 2. It follows that r = 2 and α(H) = 1.

Let t = |V (H)|. Note that H is complete and, since G is 2-connected, there is a
matching in the induced (S, V (H))-bigraph saturating S or |V (H)| = 1. By Lemma 8,
we have |V (P (s1, s2))| > t or else there is an augmenting interior splice of P replacing
P (s1, s2), contradicting that P is an xy-fiber.

Let W = V (P (s1, s2)). Note that W is a clique, or else a non-adjacent pair of vertices
in W together with a vertex in H gives an independent set of size 3, contradicting α(G−
{x, y}) 6 2.

If (x, y) = (s1, s2), then G− {x, y} is the disjoint union of the complete graph H and
the complete graph on W . Otherwise, if x 6= s1, then s1 has a non-neighbor in H and a
non-neighbor in W , or else d(s1) > t+2 > d(u). So s1 together with a non-neighbor in W
and a non-neighbor in H form an independent set of size 3 in G−{x, y}, a contradiction.
The case that y 6= s2 is similar.

The block-cutpoint graph of a graph G is a bipartite graph H in which one part consists
of the cut-vertices of G and the other has a vertex bi for each block Bi of G. Moreover,
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vbi is an edge of H if and only if v ∈ Bi. When G is connected, its block-cutpoint graph
is a tree whose leaves are the blocks of G (see, e.g., [29]). We say that a block B of a
graph G is special if every longest path in G contains an edge in B.

Lemma 15. If no cut-vertex in a connected graph G is Gallai, then G has a special block.

Proof. Let G be a connected graph such that no cut-vertex is Gallai. Suppose for a
contradiction that no block of G is special. Let T be the block-cutpoint tree of G. We
construct a digraph D on V (T ) in which each vertex has out-degree 1. Let B be a block
in G. We identify a particular cut-vertex x ∈ V (B) and we include the directed edge Bx
in D. Since B is not special, some longest path of G is contained in some component H
of G− E(B). Note that H and B have exactly one vertex in common, and we take x to
be this cut-vertex.

Let x be a cut-vertex in G. We specify a particular block B that contains x and we
include the directed edge xB in D. Since x is not Gallai, some component H of G − x
contains a longest path in G. Let B be the block containing x such that B − x ⊆ H. We
add the directed edge xB to E(D).

Since |E(D)| = |V (T )| > |E(T )|, it follows that there is a block B and a cut-vertex x
such that both Bx and xB are edges in D. This implies that G has vertex-disjoint longest
paths, contradicting the fact that every two longest paths in a connected graph share at
least one vertex.

Lemma 16. If G is a connected graph, α(G) 6 4, and G has a special block, then G has
a Gallai vertex.

Proof. Let G be a connected graph with α(G) 6 4 and with a special block B. Let S be
the set of cut-vertices in B, with S = {x1, . . . , xk}. Since α(G) 6 4, we have k 6 4.

Case k = 0. In this case, G = B and so G is 2-connected. It follows from Theorem 10
that G has a Gallai vertex.

Case k = 1. Let u ∈ V (B) with dB(u) = ∆(B). We claim that u is a Gallai vertex in
G. Let P be a longest path in G. If P is contained in B, then u ∈ V (P ) by Theorem 10.
If P leaves B through the cut-vertex x1, then P ∩B is an x1-fiber in B and it follows that
u ∈ V (P ) by Lemma 13.

Case k = 2. Suppose first that B−S is not the disjoint union of two complete graphs.
Let u ∈ V (B) with dB(u) = ∆(B). We claim that u is a Gallai vertex. Let P be a longest
path in G. Since B is special, it follows that P ∩ B is a nontrivial subpath of P . Note
that, as a subgraph of B, the path P ∩B is either a fiber, an x1-fiber or an x2-fiber, or an
x1x2-fiber, depending on whether P has two, one, or zero endpoints in B, respectively. It
follows from Theorem 10, Lemma 13, or Lemma 14 that u ∈ V (P ∩B), respectively.

Otherwise, suppose that B−S is the disjoint union of two complete graphs W1 and W2

(see Figure 5). Since B is 2-connected, for i ∈ {1, 2}, there is a matching in the induced
(S, V (Wi))-bigraph saturating S or |V (Wi)| = 1. Also, since S is a minimum cut in B,
each vertex in S has neighbors in V (W1) and V (W2). It follows that B has a Hamiltonian
cycle. We claim that x2 is a Gallai vertex. Let P be a longest path in G, and suppose
for a contradiction that x2 6∈ V (P ). Since B is special, P has at least one endpoint in
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B. Replacing the subpath of P inside B with an appropriate Hamiltonian path gives a
longer path in G.

x1 x2

W1
W2

B

P

Figure 5: Case k = 2 in the proof of Lemma 16.

Case k = 3. Note that B−S is a complete graph W1 or else α(G) > 4. Suppose there
is a pair of cut-vertices, say {x1, x3}, such that B − {x1, x3} is the disjoint union of two
complete graphs. These are necessarily W1 and the 1-vertex subgraph consisting of x2; let
W2 be this 1-vertex subgraph. As in the case k = 2, it follows that B has a Hamiltonian
cycle containing x1x2x3 as a subpath. We claim that x3 is a Gallai vertex. Let P be a
longest path in G and suppose for a contradiction that x3 6∈ V (P ). Note that P cannot
have an endpoint in B, or else replacing P ∩ B with an appropriate Hamiltonian path
gives a longer path in G. Therefore, as a subgraph of B, the path P ∩B is an x1x2-fiber.
But B has a spanning x1x2-path, contradicting x3 6∈ V (P ).

Otherwise, there is no pair of cut-vertices whose removal from B results in the disjoint
union of two complete graphs. Let u ∈ V (B) with dB(u) = ∆(B). We claim that u is
a Gallai vertex. Let P be a longest path in G. It follows that, as a subgraph of B, the
path P ∩ B is a fiber, an xi-fiber for some xi ∈ S, or an xixj-fiber for some xi, xj ∈ S,
depending on whether P has two, one, or zero endpoints in B, respectively. It follows
from Theorem 10, Lemma 13, or Lemma 14 that u ∈ V (P ∩B), respectively.

Case k = 4. The condition α(G) 6 4 requires that |V (B)| = 4 and 2-connectivity
requires that B contains a 4-cycle C. Let xi be a cut-vertex in B which maximizes the
length of an xi-fiber in G−E(B). We claim that xi is a Gallai vertex. Let P be a longest
path in G, and suppose for a contradiction that xi 6∈ V (P ). The path P decomposes into
three subpaths P1, P2, and P3, where P2 = P ∩B. Let xj be the vertex in V (P1)∩V (P2),
and let xk be the vertex in V (P2) ∩ V (P3). Since |V (B)| = 4, it follows that xj or xk
is a neighbor of xi in C. If xkxi ∈ E(C), then we find a longer path in G by keeping
P1, extending P2 by the edge xkxi to obtain P ′2, and replacing P3 with an xi-fiber P ′3 in
G−E(B). Since P ′2 is longer than P2 and P ′3 is at least as long as P3 by our choice of xi,
the path obtained by combining P1, P

′
2, and P ′3 is longer than P . The case xjxi ∈ E(C)

is symmetric.
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Applying our lemmas gives the following.

Theorem 17. Let G be a connected graph. If α(G) 6 4, then G has a Gallai vertex.
Equivalently, 5P1 is a fixer.

Proof. If some cut-vertex in G is Gallai, then the claim follows. Otherwise, we have that
G has a special block by Lemma 15, and hence G has a Gallai vertex by Lemma 16.

The graph G0 from Figure 1 shows that there is a connected graph G such that G has
no Gallai vertex and α(G) = 6. The case α(G) 6 5 remains open.

Conjecture 18. If α(G) 6 5 and G is connected, then G has a Gallai vertex.

When G is 3-connected, α(G) 6 5, and G is sufficiently large, Theorem 19 shows
that G has a Gallai vertex. Outside of a finite number of cases when κ(G) > 3, resolving
Conjecture 18 reduces to the cases that κ(G) = 1 and κ(G) = 2. Although it is reasonable
to expect that the case κ(G) = 1 may be treated by analyzing the block structure of G,
it is less clear how to handle the case κ(G) = 2.

5 A Chvátal–Erdős type result

A celebrated result of Chvátal and Erdős [7] states that if α(G) 6 κ(G), then G has a
Hamiltonian cycle, and the same technique shows that G has a Hamiltonian path when
α(G) 6 κ(G) + 1. Clearly, when G has a Hamiltonian path, every vertex in G is Gallai.
We show that if α(G) 6 κ(G) + 2 and G is sufficiently large in terms of κ(G), then the
maximum degree vertices in G are Gallai.

Theorem 19. For each positive integer k, there exists an integer n0 such that if G is an
n-vertex k-connected graph with α(G) 6 k + 2 and n > n0, then each vertex of maximum
degree is Gallai.

Proof. We take n0 = k(k+ 2)(2k+ 3) + 1. Let P be a longest path in G with endpoints x
and y, and suppose for a contradiction that u ∈ V (G)−V (P ) and d(u) = ∆(G). Let H be
the component of G− V (P ) containing u, and let t = |V (H)|. From Lemma 9, it follows
that H is complete and H has a set S of k attachment points on P . Let S = {s1, . . . , sk}
with indices increasing from x to y. For 1 6 i < k, let Wi = V (P (si, si+1)); we also
define W0 = V (P [x, s1)) and Wk = V (P (sk, y]). By Lemma 9, we have that |Wi| > t
for 0 6 i 6 k. Since u ∈ V (H), we have that N(u) ⊆ (V (H) − {u}) ∪ S and therefore
∆(G) = d(u) 6 (t − 1) + k. If t 6 2k(k + 1), then ∆(G) 6 k(2k + 3) − 1 and so
α(G) > n/(∆(G) + 1) > n/[k(2k + 3)] > k + 2, since n > n0. Therefore we may assume
that t > 2k(k + 1).

We claim that H is the only component of G− V (P ). If G− V (P ) contains a second
component H ′, then let S ′ be the set of attachment points of H ′ on P . By Lemma 9,
it follows that |S ′| = k. For each i, choose ai ∈ Wi among the vertices with ranks in
{0, . . . , k} so that ai 6∈ S ′. Let A = {a0, . . . , ak}. Since t > 2k(k+ 1) > 2k, it follows from
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Lemma 9 that A is an independent set of size k + 1. Since A is disjoint from S ∪ S ′, we
may extend A to an independent set of size k + 3 by adding a vertex in H and a vertex
in H ′. Since α(G) 6 k+ 2, we obtain a contradiction, and so H is the only component of
G− V (P ).

Next, we claim that each vertex w ∈ Wi has at most k neighbors outside Wi. Let
A be the subset of V (P ) − S consisting of the vertices w such that rank(w) = 0. By
Lemma 9, we have that A is an independent set with |A| = k + 1. Note that each
vertex w ∈ V (P ) − (S ∪ A) has at least one neighbor in A, or else w together with A
and a vertex in H would give an independent set of size k + 3. Since |A| = k + 1 and
∆(G) 6 t + k − 1, it follows that |V (P ) − (S ∪ A)| 6 (k + 1)(t + k − 1) and hence
|V (P )−S| 6 (k+ 1)(t+k) = t(k+ 1) +k(k+ 1). Since V (P )−S =

⋃k
i=0Wi and |Wi| > t

for each i, it follows that t 6 |Wi| 6 t+ k(k+ 1). By Lemma 9, in each Wi, the t vertices
of smallest rank form a clique. By symmetry, in each Wi, the t vertices of largest rank
also form a clique. Since |Wi| 6 t + k(k + 1) < 2t, it follows that each vertex in Wi is
among the t vertices with smallest rank or the t vertices with largest rank. In particular,
each vertex in Wi has at least t−1 neighbors in Wi and hence at most k neighbors outside
Wi.

It now follows that each Wi is a clique. Indeed, if wi, w
′
i ∈ Wi but wiw

′
i 6∈ E(G),

then we obtain an independent set A with A ⊆ V (P ) − S and |A| = k + 2 as follows.
Starting with A = {wi, w

′
i}, we add a vertex to A from each Wj with j 6= i. Since

|Wj| > t > k(k + 1) and each of the vertices already in A have at most k neighbors in
Wj, some vertex in Wj can be added to A. The set A together with a vertex in H gives
an independent set of size k + 3, a contradiction. Hence each Wi is a clique.

A vertex z dominates a set of vertices B if z is adjacent to each vertex in B. Next, we
claim that each si ∈ S dominates some set in {W0, . . . ,Wk, V (H)}. If some attachment
point si has more than k2 non-neighbors in each Wj and a non-neighbor v in H, then
we may obtain an independent set of size k + 3 by starting with {si, v} and adding one
vertex from each Wj. It follows that each si has at least t − k2 neighbors in some set in
{W0, . . . ,Wk, V (H)}. LetWk+1 = V (H), let si be an attachment vertex, and choose j such
that 0 6 j 6 k+ 1 and si has at least t−k2 neighbors in Wj. We claim that si dominates
Wj. Indeed, if w ∈ Wj but siw 6∈ E(G), then we obtain an independent set A of size k+3
starting with A = {si, w} and adding one vertex from each W` with 0 6 ` 6 k + 1 and
` 6= j. Since si has at most (t+k−1)− (t−k2) neighbors in W`, each of the other vertices
already in A has at most k neighbors in W`, and |W`| > t > (k(k + 1)− 1) + (k + 1)k, it
follows that W` contains a vertex that can be added to A. Since α(G) 6 k+ 2, we obtain
a contradiction, and so si dominates Wj.

Let 1 6 i < k. Since Wi is a clique and Wi = V (P (si, si+1)), we obtain a path P ′

with V (P ) = V (P ′) and the same set of attachment points by reordering the vertices in
Wi arbitrarily, so long as the first vertex is adjacent to si and the last vertex is adjacent
to si+1. Similarly, we may reorder W0 provided that the last vertex in W0 is adjacent
to s1 and we may reorder Wk provided that the first vertex in Wk is adjacent to sk.
Let R be the set of neighbors of S in P . Note that for each w ∈ Wi − R and each q
with 1 6 q 6 |Wi| − 2, we may obtain a path P ′ with V (P ) = V (P ′) and the same
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attachment points in which rank(w) = q by an appropriate reordering of Wi. It follows
that if ww′ ∈ E(G), for some w ∈ Wi and w′ ∈ Wj, with i and j distinct in {0, . . . , k},
then w,w′ ∈ R. Otherwise, we may reorder Wi and Wj to obtain a new path P ′ in which
either rank(w) 6 1 and rank(w′) 6 1, or rank(w) > |Wi| − 2 and rank(w′) > |Wj| − 2.
In the latter case, reversing P ′ gives a path P ′′ in which rank(w) 6 1 and rank(w′) 6 1.
This contradicts Lemma 9 with respect to P ′ or P ′′ since rank(w) + rank(w′) 6 2 but
|V (H)| = t > 2k(k + 1) > 4.

We obtain a final contradiction by showing that some attachment point has degree
exceeding ∆(G). Let D =

∑k
i=1 d(si) and note that D 6 k(t + k − 1). We give a lower

bound on D using three sets of edges. First, for each si, let Ti be a set of 3 edges incident
to si consisting of the edges joining si to its two neighbors in R and a third edge joining si
and a vertex in H. Second, for 0 6 i 6 k, there is a matching Mi of size k joining vertices
in Wi and V (G)−Wi, or else the Kőnig-Egerváry Theorem [29] implies that the induced
(Wi, V (G) − Wi)-bigraph has a vertex cover of size less than k, which is also a vertex
cut since |Wi|, |V (G) −Wi| > t > k. Obtain M ′

i from Mi by discarding edges incident
to vertices in Wi ∩ R. Note that |M ′

i | > |Mi| − 2 > k − 2 always, but for i ∈ {0, k}
we have |M ′

i | > |Mi| − 1 > k − 1. Suppose that e ∈ M ′
i , let w be the endpoint of e in

Wi, and let v be the other endpoint of e in V (G) −Wi. Since w is not an attachment
point, we have v 6∈ V (H), and since H is the only component of G−V (P ), it follows that
v ∈ V (P )−Wi. Since w 6∈ R, it follows that v must be an attachment point. Hence each
edge in M ′

i joins a vertex in Wi−R and a vertex in S. Moreover, M ′
i and Tj are disjoint,

as each edge in Tj has an endpoint in R∪V (H) and no edge in M ′
i has such an endpoint.

With Z =
⋃k

i=0M
′
i ∪

⋃k
j=1 Tj, we have |Z| > [(k − 1)(k − 2) + 2(k − 1)] + 3k = k(k + 2).

Third, for 1 6 i 6 k, let Fi be the set of edges joining si and a set in {W0, . . . ,Wk, V (H)}
dominated by si. Note that |Fi∩Z| 6 2, since Fi contains at most one edge in

⋃k
i=0M

′
i and

at most one edge in
⋃k

j=1 Tj. Let F =
⋃k

j=1 Fi, and note that |F | > tk and |F ∩Z| 6 2k.

We compute D > |F ∪Z| = |F |+|Z|−|F ∩Z| > tk+k(k+2)−2k = tk+k2 = k(t+k).
Since D 6 k(t+ k − 1), it follows that k(t+ k) 6 D 6 k(t+ k − 1), contradicting that k
is positive.

Example 20. The assumption α(G) 6 κ(G)+2 in Theorem 19 is best possible. Let G be
the graph obtained from the star K1,k+2 with leaves {x1, . . . , xk+2} by replacing the center
vertex with a k-clique S and replacing each leaf vertex xi with a t-clique Xi containing
a set of k distinguished vertices Yi that are joined to S. Since V (G) can be covered by
k + 3 cliques, we have α(G) 6 k + 3. Also, we have κ(G) = k since S is a cutset of size k
and when R ⊆ V (G) and |R| < k, the graph G − R contains at least one vertex in each
of S, Y1, . . . , Yk+2, implying that G−R is connected.

We claim that the set of Gallai vertices in G is S. Since |S| = k and G − S is the
disjoint union of k+ 2 copies of Kt, it follows that every path in G has at most |V (G)|− t
vertices. Paths in G that achieve this bound contain S and all but one of X1, . . . , Xk+2,
implying that u ∈ V (G) is Gallai if and only if u ∈ S. By construction, each vertex in S
has degree k(k + 2) + (k − 1). Hence, when t is sufficiently large, the set of vertices in G
of maximum degree is Y1 ∪ · · · ∪ Yk+2, and none of these is Gallai.
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Although maximum degree vertices are not Gallai, our construction still has Gallai
vertices. It is natural to ask whether every graph with sufficiently high connectivity has
a Gallai vertex [30, 32]. As noted in Section 1, there are k-connected graphs having no
Gallai vertices when k 6 3. The question remains open for k > 4.

The complete bipartite graphs Ks,s+2 show that the condition α(G) 6 κ(G)+1 cannot
in general be relaxed to α(G) 6 κ(G)+2 while still guaranteeing existence of Hamiltonian
paths [7]. However, Theorem 19 immediately implies that this is possible for sufficiently
large regular graphs.

Corollary 21. For each positive integer k, there exists n0 such that every k-connected
regular graph G with α(G) 6 k + 2 and n > n0 vertices has a Hamiltonian path.

We do not know whether the condition α(G) 6 k + 2 in Corollary 21 is best possible.
The following construction from [8] shows that it cannot be relaxed to α(G) 6 k + 5.

Example 22. Let k > 6 be even. Let G1 be Kk+1 minus an edge and let G2 be Kk+1

minus a matching on k − 4 vertices. Let G be the graph obtained from two copies of G1

and one copy of G2 by adding a new vertex adjacent to all k vertices of degree k− 1. We
have that G is a 1-connected regular graph with α(G) = 6 and no Hamiltonian path.

6 Concluding remarks and open problems

In this paper we aimed at characterizing monogenic Gallai families. Let H be the set
of fixers, and recall that H ∈ H if and only if Free(H) is a Gallai family. We showed
that H contains 5P1 (Theorem 17) and all linear forests on at most 4 vertices (Section 3).
Also, H is contained in the family of linear forests that are induced subgraphs of G0

(Proposition 1). It remains open to decide if H ∈ H in finitely many cases:

Question 23. Let H be a linear forest induced subgraph of G0 such that 5 6 |V (H)| 6 9
and H 6= 5P1. Is Free(H) a Gallai family?

We believe that Free(6P1) provides an affirmative answer (Conjecture 18). It turns
out that 3P3 and P7+2P1 are the only linear forest induced subgraphs of G0 on 9 vertices,
and hence the only candidates for 9-vertex fixers, as shown in the following.

Remark 24. The graphs 3P3 and P7 + 2P1 are the only 9-vertex linear forest induced
subgraphs of G0. The argument is as follows. Let H be an induced linear forest of G0 on
9 vertices and let P = v1 · · · vi be a longest path in H.

Suppose first that P contains two vertices of degree 1 in G0. Since the first 3 vertices
and the last 3 vertices of P determine P , it is easy to see that, up to symmetry, P is one
of the bold paths depicted in Figure 6. It follows that H is a copy of P7 + 2P1.

Suppose finally that P contains at most one vertex of degree 1 in G0. We claim that
i 6 3. Indeed, if i > 4, then P contains at least i − 1 > 3 vertices of degree 3 in G0,
say without loss of generality v1, v2, v3. Note that v1 has two neighbors in V (G0)− V (H)
and both v2 and v3 have one neighbor in V (G0) − V (H). Since G0 has girth 5, these
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Figure 6: The induced paths in G0 containing two degree-1 vertices of G0.

neighbors are distinct and so |V (H)| 6 12−4 = 8, a contradiction. Suppose now H has k
components. Note that H has 9− k edges and G0−E(H) has 6 + k edges, each of which
has an endpoint in V (G0)−V (H). Since G0 is subcubic and |V (G0)−V (H)| = 12−9 = 3,
it follows that 6 + k 6 3 · 3, and so k 6 3. Hence H = 3P3.

In Corollary 21, we observed the following Chvátal–Erdős type result: for a regular
graph G, if α(G) 6 κ(G) + 2 and G is sufficiently large in terms of κ(G), then G contains
a Hamiltonian path. We also observed that we cannot relax α(G) 6 κ(G) + 2 to α(G) 6
κ(G) + 5 and we conclude by asking to determine the best possible condition.
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