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Abstract

The generalized Turán function ex(n,H, F ) denotes the largest number of copies
of H among F -free n-vertex graphs. We study ex(n,H, F ) when H or F is K2,t. We
determine the order of magnitude of ex(n,H,K2,t) when H is a tree, and determine
its asymptotics for a large class of trees. We also determine the asymptotics of
ex(n,K2,t, F ) when F has chromatic number at least three and when F is bipartite
with one part of order at most two.

Mathematics Subject Classifications: 05C35

1 Introduction

One of the most fundamental problems of extremal graph theory deals with determining
the largest number of edges in n-vertex graphs that do not have a given subgraph F . This
quantity is called the Turán number of F and is denoted by ex(n, F ). Here we mention one
particular result due to Füredi [2]: for t ≥ 2 we have ex(n,K2,t) = (1+o(1))

√
t− 1n3/2/2.

In this paper we deal with a generalization of the Turán number. Given two graphs
H and G, we denote by N (H,G) the number of (unlabeled) copies of H in G. We let
ex(n,H, F ) := max{N (H,G) : G is an n-vertex F -free graph}, i.e. the largest number
of copies of H in n-vertex F -free graphs. In particular, ex(n,K2, F ) = ex(n, F ). We will
consider the cases when either H or F is K2,t for some t ≥ 2.

Let us describe the above mentionedK2,t-free construction of Füredi [2] in more detail,
as we will use it later. Let qt(n) be the largest prime power such that t−1 divides qt(n)−1
and (qt(n)

2−1)/(t−1) ≤ n. When t and n are clear from the context, we will sometimes
omit them and denote qt(n) by q. It is well-known that for sufficiently large n there
exists such a qt(n) with

!
n(t− 1) − n1/3 < qt(n) [10]. Therefore, we can use graphs

on (qt(n)
2 − 1)/(t− 1) vertices instead of n-vertex graphs, and this does not change the

asymptotics of the lower bounds obtained.
Let us consider a qt(n)-element field and let h be an element of order t − 1, thus

the elements {h, h2, h3, . . . , ht−1} form a multiplicative subgroup. Two pairs (a, b) and
(a′, b′) of elements are considered equivalent if a = hpa′ and b = hpb′ for some p. Then
we have (qt(n)

2 − 1)/(t− 1) equivalence classes, which form the vertex set of our graph.
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The equivalence class of (a, b) and the equivalence class of (c, d) are joined by an edge if
ac+ bd = hp for some p. Observe that by this definition some vertices could be adjacent
to themselves, creating a loop; we will call such vertices special and ignore the loops to
obtain a simple graph that we call the Füredi graph and denote by F (n, t).

Füredi [2] showed that any special vertex of F (n, t) is adjacent to exactly q−1 vertices
and other vertices are adjacent to exactly q = (1+ o(1))

!
(t− 1)n vertices. Two vertices

u and v of F (n, t) have exactly t− 1 common neighbors unless u and v are adjacent and
at least one of them is a special vertex, in which case they have at most t − 2 common
neighbors.

Now we are ready to introduce the main definition of this paper. A graph H is called
t-Füredi-good if

ex(n,H,K2,t) = (1 + o(1))N (H,F (n, t)).

This definition is motivated by the similar notion of k-Turán-good graphs [7]. Those
are the graphs H with ex(n,H,Kk) = N (H, Tk−1(n)), where Tk−1(n) is the (k−1)-partite
Turán graph, which is the unique n-vertex Kk-free with ex(n,Kk) edges. Similarly, here
we examine when we have the same extremal graph as in the ordinary Turán problem,
but only in the asymptotical sense.

Now, we can quickly summarize most of the results concerning ex(n,H,K2,t) for t ≥ 2:
Alon and Shikhelman [1] showed thatK3 is t-Füredi-good, Gerbner and Palmer [6] showed
that Pk and Ck are t-Füredi-good, Gerbner and Patkós [8] showed that K2,s is t-Füredi-
good.

There are some other results. Zhang and Ge [13] showed that for t ≥ 2m − 3 ≥ 3
we have ex(n,Km, K2,t) = Θ(n3/2). Gerbner and Patkós [8] determined ex(n,K1,p, K2,t)
exactly if p > t + 1 and n is large enough. The case of forbidden K2,2 was studied in
[3, 4]. In particular, Gerbner [3] showed that P3 is 2-Füredi-good, but also presented
an exact result ex(n, P3, K2,2) =

"
n
2

#
for n even and ex(n, P3, K2,2) =

"
n
2

#
− 1 (with the

construction being a matching added to the star Sn). Moreover, for other stars we have
ex(n, Sr, K2,2) =

"
n−1
r−1

#
.

In our main result, we characterize the t-Füredi-good trees. Furthermore, we deter-
mine the order of magnitude of ex(n, T,K2,t) for other trees as well. Before stating our
results, we need to introduce further definitions.

Let T be a tree. We will partition its vertex set into two parts A and B via a greedy
process. Originally A consists of vertices of degree 2, and B contains the rest of the
vertices. Then, if there is a non-leaf vertex v in B that is adjacent to at most two vertices
in B, then we add v to A. We repeat this as long as we can find a vertex satisfying the
above property. This gives an ordering v1, . . . , vm of vertices in A with degree more than
2 (the order of adding them to A). This ordering is not unique, but each ordering gives
the same A and B.

We say that T is nice if every vertex of B is a leaf, and T has at least 3 vertices.

Theorem 1.1. Nice trees are t-Füredi-good for every t ≥ 2.

Let us assume now that T is not nice and introduce some notation. Let L be the set
of leaves of T . Let Q be the subgraph induced on B (thus Q contains L). Let Q′ be the
subgraph we obtain by deleting L from Q. Then Q′ is a forest and we let Qi denote its
connected components. Removing Q′ cuts T into several subtrees T1, . . . , Ts. Each Tj is

the electronic journal of combinatorics 30(1) (2023), #P1.34 2



connected to one or more Qi with an edge. Observe that Q′ has vertices, otherwise T is
nice.

Theorem 1.2. Let t ≥ 2 and T be a tree on at least three vertices that is not nice. Then

ex(n, T,K2,t) = Θ
$
n|L|+ |A|+s

2

%
.

Observe that Q induces a forest where every non-leaf vertex has degree at least 3.
Since the average degree in a forest is less than, it implies that there are more leaves than
non-leaves in Q, thus 2|L|> |B|, which implies that for non-nice trees |L|+(|A|+s)/2 >

V (T ) + 1. We will show later that the Füredi graph contains Θ
$
n

|V (T )|+1
2

%
copies of T ,

thus for non-nice trees N (T, F (n, t)) does not even have the same order of magnitude as
ex(n, T,K2,t).

Let us consider now the problem of counting copies of K2,t. Several results of Gerbner
and Patkós contain this as a subcase; in particular they determined the exact value of
ex(n,K2,t, Kp,r) if 2 < p, r ≤ t and n is large enough.

Győri, Pach and Simonovits [9] showed that if H is complete multipartite, then
ex(n,H,Kk) = N (H,G) for some complete (k − 1)-partite graph G on n vertices. G
does not have to be balanced, but they showed that if H is K2,2 or K2,3, then G is bal-
anced, i.e. the Turán graph. It is a straightforward optimization to find the optimal graph
for given values of t and k, but we are unable to deal with this problem in this generality.
Ma and Qiu [11] showed that for k = 3, in the case of t = 4 the Turán graph is not opti-
mal, but is asymptotically optimal. In other words, ex(K2,4, K3) ∕= N (K2,t, K⌊n/2⌋,⌈n/2⌉)
but ex(K2,4, K3) = (1 + o(1))N (K2,t, K⌊n/2⌋,⌈n/2⌉). For larger t, K⌊n/2⌋,⌈n/2⌉ does not even
give the correct asymptotics.

Gerbner and Palmer [6] proved that if F has chromatic number k, then for any H we
have ex(n,H, F ) ≤ ex(n,H,Kk) + o(nk). In our case it shows that the complete (k − 1)-
partite n-vertex graph G with the most copies of K2,t gives the correct asymptotics for
ex(n,K2,t, F ).

Gerbner, Nagy and Vizer [5] determined the asymptotics of ex(n,K2,t, C2k), general-
izing a result of Gerbner, Győri, Methuku and Vizer [4]. There are too many results on
ex(n,C4, F ) to list them here.

Alon and Shikhelman [1] determined the graphs F with ex(n,K3, F ) = O(n). Their
results also implied a similar characterization where K3 is replaced with any forest. Gerb-
ner and Palmer [6] obtained such a characterization for every cycle.

In this paper we obtain such a characterization for K2,t. Moreover, we characterize
the possible orders of magnitude below nt. Let Kp,r

2,s denote the graph we obtain from
K2,r if we connect p new vertices to u and r new vertices to v, where u and v are the
vertices of the partite set of size 2 of K2,s. We note that s, p, r can be 0. For integers
k, t ≥ 2, we let M(n, k, t) denote the complete k-partite n-vertex graph with the most
copies of K2,t. Clearly, M(n, k, t) contains Θ(nt+2) copies of K2,t. For a graph H, we
denote by kH the graph consisting of k vertex-disjoint copies of H.

Theorem 1.3. For any integer t ≥ 2 and any graph F without isolated vertices we have
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ex(n,K2,t,F )=

!
""""""""""""#

""""""""""""$

0 if K2,t contains F ,
(1 + o(1))N (K2,t, ⌊n

r
⌋Kr) if F = K1,r with r > t,

(1 + o(1))N (K2,t, ⌊ n
p+r+s+1

⌋Kp+r+s+1) if F = Kp,r
2,s with s ≤ t and p+ r + s > t,

(1 + o(1))N (K2,t, F (q(n), s)) if F = Kp,r
2,s with s > t,

Ω(nt) if F is any other bipartite graph,
(1 + o(1))N (K2,t,M(n, k − 1, t)) if F has chromatic number at least three.

Note that isolated vertices in F do not change ex(n,H, F ) if n is sufficiently large.
Let us discuss the missing case. For a bipartite graph F , we denote by β(F ) the smallest
p such that F is a subgraph of Kp,r for some r. In the above theorem, the Ω(nt) bound
belongs to the case β(F ) ≥ 3. If β(F ) ≤ t, we have ex(n,K2,t, F ) = Θ(nt), where
the upper bound follows from a result of Gerbner and Patkós [8] on ex(n,K2,t, Kp,r). If
β(F ) < t, we have ex(n,K2,t, F ) = (1 + o(1))N (K2,t, Kβ(F )−1,n−β(F )+1), where the upper
bound follows from another result of Gerbner and Patkós [8]. This also implies that for
any given F , for t ≥ |V (F )|−2 we have the asymptotics of ex(n,K2,t, F ) (assuming in
the case χ(F ) ≥ 3 that we can solve the optimization problem mentioned earlier).

If β(F ) > t, then by a result of Alon and Shikhelman [1] we have the upper bound
O(nt+2−2t/β). This is also sharp in some cases, see [8] for a collection of results on
ex(n,Ks,t, Kp,r).

In Section 2, we deal with the case where K2,t is forbidden, we prove Theorems 1.1
and 1.2, and a corollary. In Section 3 we deal with the case of counting copies of K2,t and
prove Theorem 1.3 through a series of propositions. Some of those prove slightly more
than stated in Theorem 1.3.

2 Forbidding K2,t

In this section instead of copies of T , we will often talk about embeddings of T , that
create ordered copies of T . As it only depends on T how many ordered copies of itself T
contains, it will not change anything when we compare the number of copies of T in G and
in F (n, t). More precisely, an embedding f : V (T ) → V (G) is an injective function such
that if uv is an edge of T , then f(u)f(v) is an edge of G. Let N ′(T,G) denote the number
of embeddings of T into G. Then N ′(T,G) = c(T )N (T,G) for some c(T ) depending only
on T (the number of automorphisms). We will also talk about embeddings with some
fixed vertices. That means that f(v1), . . . , f(vℓ) are already given. More precisely, if
v1, . . . , vℓ ∈ V (T ) and x1, . . . , xℓ ∈ V (G), then let N ′(T, v1, . . . , vℓ, G, x1, . . . , xℓ) denote
the number of embeddings f of T into G such that f(vi) = xi for every i ≤ ℓ.

Let us define embeddings f of T into F (n, t), greedily. First we let f(v) = x for some
v ∈ V (T ) and x ∈ V (F (n, t)), and then in each step, we pick a vertex of T adjacent to
exactly one of the vertices already embedded. It is well-known that we can build any tree
this way. When we pick a vertex y that is adjacent to an already embedded vertex z,
we need to pick a neighbor f(z) in F (n, t). We pick a neighbor that we have not picked
as an image. Clearly, there are (1 + o(1))

!
(t− 1)n ways to pick such an image. The

number of embeddings we found is (1 + o(1))(t− 1)(|V (T )|−1)/2n(|V (T )|+1)/2.
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We state the following strengthening of Theorem 1.1. This will help us with the induc-
tion. Note that K2 is not a nice tree, but it is t-Füredi-good. However, the strengthening
below does not hold for K2.

Theorem 2.1. Let T be a nice tree. Then ex(n, T,K2,t) = (1 + o(1))N (T, F (n, t)). More-
over, let ℓ ≥ 1 be an integer and v1, . . . , vℓ be leaves of T such that any pair of them has
distance more than 2. Then for any K2,t-free n-vertex graph G and x1, . . . , xℓ ∈ V (G),
we have N ′(T, v1, . . . , vℓ, G, x1, . . . , xℓ) ≤ (1 + o(1))(t− 1)(|V (T )|−1)/2n(|V (T )|−2ℓ+1)/2.

Proof. We use induction on |V (T )|. We deal first with the case T has a vertex w such
that each leaf is at distance two from w. This proves the base case |V (T )|= 3. First we

embed the leaves that are not fixed and w, arbitrarily, this can be done at most n
|V (T )|+1

2
−ℓ

ways. Then each of the other (|V (T )|−1)/2 vertices is the common neighbor of w and a
leaf, thus can be embedded to at most t− 1 vertices.

Let us assume that |V (T )|≥ 4. We will define an embedding g of T into G recursively
such that g(vi) = xi for every i ≤ ℓ. It is easy to see that each such embedding of T into
G can be found with the recursive embeddings defined below, thus an upper bound on
the number of such embeddings is an upper bound on N ′(T, v1, . . . , vℓ, G, x1, . . . , xℓ).

Let us consider a subtree T ′ with a vertex v ∈ A such that a leaf neighbor v′ of v
is already embedded. If v has another leaf neighbor, we denote that neighbor by v′′.
By deleting v from T ′ we obtain several subtrees T ′

i . We label a subtree with the most
vertices to be T ′

1. Each subtree T ′
i has a vertex wi adjacent to v. If v′′ does not exist, we

can assume that T ′
1 has more than 2 vertices (otherwise T is a spider with legs of length

two and we are done).
Now we are ready to define the recursive embedding g of T ′. We first embed v′′

arbitrarily. If there is no v′′, we will embed T ′
1 first. There are two possibilities. If there

is a fixed vertex u′ in T ′
1, we use that as the first embedded vertex. Then u′ is a leaf and

has a neighbor u. Then u is not a leaf, thus u ∈ A, hence we can apply the recursion
with u playing the role of v and u′ playing the role of v′, and embed T ′

1.
If T ′

1 does not have a fixed vertex, then we pick a vertex w′
1 of T ′

1 in A with a leaf
neighbor w′′

1 . Such vertices exist as T ′
1 has leaves and also has at least one vertex (w1)

in A. We embed w′′
1 first. Then w′

1 has an already embedded leaf neighbor, and at most
one other neighbor in B, thus we can apply the recursion and embed T ′

1.
After embedding v′′ or T ′

1, we pick g(v) as a common neighbor of g(v′) and g(v′′), or if
v′′ does not exist, we pick g(v) as a common neighbor of g(v′) and g(w1). Consider a tree
T ′
i not yet embedded. We have wi ∈ A, and wi has a neighbor v already embedded. In

the tree that we obtain by adding v to T ′
i , v is a leaf, thus we can embed T ′

i recursively.
Let us count the embeddings. By induction, we know the situation in each T ′

i . Assume
that T ′

i contains ℓi fixed vertices. For i > 1, we embed T ′
i together with v, thus we

have |V (T ′
i )|+1 vertices, and ℓi + 1 of them are fixed. Therefore, there are at most

(1 + o(1))(t− 1)|V (T ′
i )|/2n(|V (T ′

i )|−2ℓi)/2 embeddings of T ′
i .

If v′′ exists, we have the same bound for T ′
1, and a factor of at most t− 1 for choosing

g(v) as a common neighbor of g(v′) and g(v′′). Furthermore, if v′′ is not fixed, we have
an additional factor of at most n for choosing v′′. The ℓi’s add up to ℓ − 1 if v′′ is not
fixed an to ℓ − 2 if v′′ is fixed. The |V (T ′

i )|’s add up to |V (T )|−3, thus we obtain the
desired bound.
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If v′′ does not exist, then the |V (T ′
i )|’s add up to |V (T )|−2. We can embed T ′

1 at
most (1 + o(1))(t − 1)(|V (T ′

1)|−1)/2n(|V (T ′
1)|−2ℓ1+1)/2 ways. Again, we have a factor of t − 1

for choosing g(v), which gives the desired bound. !

The above theorem easily implies that we can attach nice trees to t-Füredi-good graphs
to obtain other t-Füredi-good graphs, as described in the following corollary.

Corollary 1. Let H be a t-Füredi-good graph, T be a nice tree and H ′ be obtained from H
and T by identifying an arbitrary vertex of H and a leaf of T . Then H ′ is t-Füredi-good.

Proof. First we embed H, and then embed T with one of its leaves fixed. By definition
and by Theorem 2.1, in both cases F (n, t) asymptotically maximizes the number of
embeddings. !

Let us turn to other trees. Recall that Theorem 1.2 states that ex(n, T,K2,t) =

Θ(n|L|+ |A|+s
2 ).

Proof of Theorem 1.2. Let us start with the upper bound and let G be an n-vertex K2,t-
free graph. We will take a copy of T the following way. First we pick the leaves adjacent
to Q′, we have at most linearly many choices for each. If a vertex of T is adjacent to at
least 2 vertices picked earlier, then there is a constant number of ways to pick them. We
pick those vertices. Assume that no such vertex is left. We claim that we have picked
every vertex of Q′. Recall that Q′ is a forest. After we have picked some of its vertices,
the remaining vertices form a forest Q′′. If Q′′ is not empty, then there is a leaf w of Q′′.
Observe that w is a non-leaf vertex of T and w ∈ B. This shows that w is adjacent to
at least 3 vertices of B, and at most one of those is in Q′′. Hence w has at least two
neighbors already picked, thus we also pick w. This shows that we picked every vertex of
B, and we had O(nℓ) choices.

Let Ti be a subtree with neighbors v1, . . . , vℓ, then let T ′
i be Ti together with v1, . . . , vℓ.

The number of ways to pick T ′
i with v1, . . . , vℓ fixed is Θ(n(|V (T ′

i )|−2ℓ+1)/2) by Theorem 2.1.
The |V (T ′

i )|’s add up to |A|, and we have an extra n1/2 factor for every i, which completes
the proof of the upper bound.

To prove the lower bound, we define a K2,t-free graph G0. We let n′ = (n −
|V (Q′)|)/|V (T ). We take a copy of Q′, and one copy of each Tj. Consider a vertex
v of Q′. If v has a leaf neighbor, we add n′ new vertices and connect them to v. Let us
consider the subtrees Tj now and let v1, . . . , vℓ be the neighbors of vertices of Tj in Q′.
We take a copy of F (n′, t), and we will pick ℓ independent vertices in it. We identify
those ℓ vertices with v1, . . . , vℓ. We pick the ℓ independent vertices of F (n′, t) such a
way that it maximizes the number of embeddings of Tj with the vertices vi adjacent to
the appropriate vertices of the embedded copy of Tj. We repeat this for every j (with
different copies of F (n′, t)).

The resulting graph G0 has at most n vertices as we replace at most |V (T )| vertices
with n′ new vertices. It is also easy to see that G0 is K2,t-free. Indeed, the only cycles in
G0 are inside the vertex-disjoint copies of F (n′, t), which are K2,t-free.

Let us count the number of embeddings of T into G0. For each leaf adjacent to a
vertex of Q′, we have linearly many choices.

We will show that the number of ways to pick T ′
j in F (n′, t) is Ω(n(|V (T )|−2ℓ+1)/2),

completing the proof. Indeed, without fixing the ℓ leaves there are Θ(n(|V (T )|+1)/2) ways
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to pick T ′
j by Theorem 2.1, thus there must be a way to fix the leaves such that we can

pick the remaining part of T ′
j (i.e. Tj) in Ω(n(|V (T )|−2ℓ+1)/2) ways. !

3 Counting K2,t

In the section we prove Theorem 1.3. First we deal with the linear case, where we also
obtain an exact result for infinitely many values of n. Recall that Kp,r

2,s is obtained by
connecting p and r leaves to the two vertices in the partite set of size two of K2,s.

Proposition 2. Let s ≤ t and p+ r + s > t. Then

ex(n,K2,t, K
p,r
2,s ) = ⌊ n

p+ r + s+ 1
⌋N (K2,t, Kp+r+s+1) +O(1).

Moreover, if p+ r + s+ 1 divides n, then ex(n,K2,t, K
p,r
2,s ) =

n
p+r+s+1

N (K2,t, Kp+r+s+1).

Proof. The lower bound is obtained by ⌊ n
p+r+s+1

⌋ vertex disjoint copies of Kp+r+s+1.

For the upper bound, consider an n-vertex Kp,r
2,s -free graph G. We will define an

auxiliary multigraph G′ on the same vertex set. There are m edges between two vertices
u and v if there are m copies of K2,t in G where u and v form the partite set of size
2. Clearly, the number of edges in G′ is equal to the number of copies of K2,t in G.
Therefore, it is enough to bound the average degree in G′.

We claim that it is enough to show that the average degree in G′ is at most"
p+r+s−1

t

#
(p+ r+ s). Indeed, if G consists of ⌊ n

p+r+s+1
⌋ vertex disjoint copies of Kp+r+s+1,

then the average degree in G′ is at most
"
p+r+s−1

t

#
(p+ r+ s), with equality if p+ r+ s+1

divides n.
Observe that for a vertex v with degree d in G, its degree is at most

"
d
t

#
(p+ r+ s− 2)

in G′, as we pick t neighbors of v, and then those t neighbors have at most p+ r + s− 1
common neighbors, we pick one of them that is different from v.

Claim 3.1. If dG(v) ≥ p+ r + s, then in G′ at most (p+ r + s)
"
p+r+s−1

t

#
edges go from v

to vertices w with dG(w) ≥ p+ s.

Proof of Claim. If v is adjacent to a vertex w in G′, this means that v and w have t
common neighbors in G. Assume first that vw ∕∈ E(G). If dG(w) ≥ p + s, then we pick
s common neighbors of v and w, p other neighbors of w, and v still has r neighbors left.
This way we obtain a Kp,r

2,s , a contradiction. Thus dG(w) ≤ p+ r − 1.
Assume now that vw ∈ E(G). If dG(v) ≥ p+r+s+1, the above reasoning still works

and we obtain that dG(w) ≤ p+ s− 1. Finally, let us assume that dG(v) = p+ r+ s and
w is one of the p+ r+ s neighbors of v in G. Then there are at most

"
p+r+s−1

t

#
copies of

K2,t where v and w are in the partite set of size 2, i.e. there are at most
"
p+r+s−1

t

#
edges

between v and w in G′. !

Let us return to the proof of the proposition. Let A denote the set of vertices with
degree at least p + r + s in G, and B denote the set of vertices with degree at most
p+ s− 1. Then in G′, the vertices of B have degree at most

"
p+s−1

t

#
(p+ r + s− 2). For

every vertex v of A, in G′ all but
"
p+r+s−1

t

#
(p+ r + s) edges incident to v go to a vertex

of B. This implies that in G′ all but
"
p+r+s−1

t

#
(p+ r+ s)|A| edges incident to A go to B,
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thus there are at most
"
p+r+s−1

t

#
(p + r + s)|A|+

"
p+s−1

t

#
(p + r + s− 2)|B| edges incident

to A ∪ B. This shows that the average degree in G′ is at most
"
p+q+r−1

t

#
(p + q + r) on

A ∪ B. The other vertices have degree at most p + r + s − 1 in G, thus degree at most"
p+r+s−1

t

#
(p+ r + s− 2) in G′, completing the proof. !

We remark that it is easy to extend this proof to show that in a Kp,r
2,s -free graph with

ex(n,K2,t, K
p,r
2,s ) copies of K2,t, all but O(1) of the vertices form vertex-disjoint copies of

Kp+r+s1. Indeed, all but O(1) vertices must be in A and have p + r + s − 1 common
neighbors (as other vertices have smaller degree in G′). In other words, we take almost
n/(p+ r+ s+1) copies of Kp+r+s+1, and then the graph with the most copies K2,t on the
remaining O(1) vertices. What is left is to determine ex(n,K2,t, K

p,r
2,s ) for small values of

n.
A natural idea is to take ⌊n/(p+ r + s+ 1)⌋ copies of Kp+r+s+1 and a smaller clique

on the remaining vertices, but this construction is not always optimal. Consider e.g.
ex(14, K2,7, K

3,3
2,2). The above construction contains 36 copies of K2,7, while another K

3,3
2,2 -

free graph K7,7 contains 42 copies.

Proposition 3. Let s > t > 1. Then ex(n,K2,t, K
p,r
2,s ) = (1 + o(1))N (K2,t, F (q(n), s)) =

(1 + o(1))
"
n
2

#"
s−1
t

#
.

Proof. Let G be an n-vertex Kp,r
2,s -free graph. Assume first that two vertices u and v have

degree at least p+ r+ s. Then u and v have at most s− 1 common neighbors, thus they
are in the smaller partite set of at most

"
s−1
t

#
copies of K2,t.

Assume now that the degree of a vertex u is less than p+ r+ s. Then for every v such
that u and v form the smaller partite set of a K2,t, there are at least t neighbors of u
adjacent to v. There are at most

"
p+r+s

t

#
ways to pick t neighbors of u. These t neighbors

have at most p+ r+ s common neighbors. Therefore, there are at most (p+ r+ s)
"
p+r+s

t

#

vertices that can be adjacent to t neighbors of u, thus u is in the smaller partite set of at
most (p+ r + s)

"
p+r+s

t

#
copies of K2,t.

We count the copies of K2,t by picking the two vertices in the smaller partite set. Let
us count first the copies where the two vertices in the smaller partite set have degree at
least p + r + s. They are in the smaller partite set of at most

"
s−1
t

#
copies of K2,t, thus

there are at most
"
n
2

#"
s−1
t

#
such copies of K2,t. Finally, we count the copies of K2,t where

one of the vertices in the smaller partite set has degree less than p+ r + s. There are at
most n such vertices, and each of them is contained in the smaller partite set of at most
(p+r+s)

"
p+r+s

t

#
copies of K2,t. Therefore, there are at most

"
n
2

#"
s−1
t

#
+n(p+r+s)

"
p+r+s

t

#

copies of K2,t in G, completing the proof. !

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The first line of the inequality is obvious, the third and fourth
lines are dealt with in Propositions 2 and 3. The second line follows from the proof of
the third line, as Kr,0

2,0 is K1,r plus an isolated vertex. The fifth line is shown by the
construction K2,n−2.

For non-bipartite graphs F , the lower bound holds by definition and the upper bound
follows from the results mentioned in the introduction: the result of Győri, Pach and
Simonovits [9] stating that a complete (k − 1)-partite graph contains the most copies
of any complete multipartite H among Kk-free graphs, and a result of Gerbner and
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Palmer [6] stating that changing Kk to any k-chromatic F results in an additive term
o(n|V (H)|). !

Funding: Research supported by the National Research, Development and Innova-
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