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Abstract

Let K be a complete graph of order n. For d ∈ (0, 1), let c be a ±1-edge labeling
of K such that there are d

!
n
2

"
edges with label +1, and let G be a spanning subgraph

of K of maximum degree at most ∆ and with m(G) edges. We prove the existence
of an isomorphic copy G′ of G in K such that the number of edges with label +1

in G′ is at least

#
d+

min{2−d−2
√
1−d,

√
d−d}

2∆+1 −O
!
1
n

"$
m(G), that is, this number

visibly exceeds its expected value d · m(G) when considering a uniformly random
copy of G in K. For d = 1

2 , and ∆ ! 2, we present more detailed results.

Mathematics Subject Classifications: 05C22

1 Introduction

Let K be a complete graph with vertex set [n] = {1, . . . , n}, and let c : E(K) → {±1}
be a ±1-edge labeling of K. The edge-labeling c of K is balanced if there are equally
many plus-edges and minus-edges, that is, edges with label +1 and −1, respectively. For
a spanning subgraph G of K, let c(G) = c(E(G)) =

!
e∈E(G)

c(e), and let m(G), m+(G),
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and m−(G) denote the number of edges, the number of plus-edges, and the number of
minus-edges of G, respectively. Note that c(G) = m+(G)−m−(G). For a permutation π
from Sn, let Gπ be the isomorphic copy of G in K with edge set {π(u)π(v) : uv ∈ E(G)}.

In the present paper, we study the structure of the set

σ(K,c)(G) = {m+(Gπ) : π ∈ Sn}.

Our research is inspired by recent beautiful work of Caro, Hansberg, and Montejano [6]
on so-called omnitonal graphs. Roughly speaking, a graph G is said to be omnitonal if
for every pair (K, c), where the order n of K is sufficiently large and there are sufficiently
many plus-edges and minus-edges in K, and for every two non-negative integers m+ and
m− with m(G) = m++m−, there is an isomorphic copy G′ of G in K with m+(G′) = m+

and m−(G′) = m−. The key difference to the problems we study here is that the order
of K is necessarily much bigger than the order of G, that is, the graph G is far from
being a spanning subgraph of K. Quite surprisingly, exploiting recent strong results from
Ramsey theory [8, 13], Caro et al. [6] achieve a very concise characterization of omnitonal
graphs. While being inspired by their work, requiring that G is a spanning subgraph of
K drastically changes the nature of the problem. The higher the density of a spanning
graph G is, the more every isomorphic copy of G in K is forced to reproduce the density
of plus- and minus-edges in (K, c). Therefore, as a natural hypothesis excluding dense
spanning subgraphs, we consider graphs of bounded maximum degree.

Another perspective on our results is that they correspond to relaxed versions of
classical extremal problems, which ask how many edges suffice to ensure the existence of
a specific subgraph. In order to force a Hamiltonian cycle in a graph G of order n, for
instance, one needs to require at least

"
n−1
2

#
+ 2 edges in G, that is, the graph has to be

almost complete with a density m(G)/
"
n
2

#
tending to 1. Our Theorem 2(i) below can be

rephrased to say that while a density of 1/2 does not force the existence of a Hamiltonian
cycle, it forces the existence of 58% of it, more precisely, of a Hamiltonian cycle in the
complete graph on the same vertex set in which 58% of the edges belong to the original
graph, which is best possible. Also our main result, Theorem 1, can be rephrased in such
a way.

A third motivation for our results is their relation to graph discrepancy notions orig-
inating in work of Erdős et al. [11] and recently considered in [2, 3, 12]. In these works,
the authors mainly focus on the minimum degree threshold ensuring high discrepancy;
considering a much simpler setting, we obtain better estimates, and illustrate the relation
to our results below in Corollary 3.

If d ∈ [0, 1] is such that m+(K) = d
"
n
2

#
, that is, d is the density of the plus-edges in (K, c),

then, since, by symmetry, every edge of K belongs to the same number of subgraphs Gπ,
we obtain

1

n!

$

π∈Sn

m+(Gπ) = d ·m(G). (1)

Furthermore, transposition arguments as in [7, 16] imply that if σ(K,c)(G) = {m+
1 , . . . ,m

+
k }
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for m+
1 < . . . < m+

k , then

m+
i+1 −m+

i ! ∆(G) + δ(G) ! 2∆(G) for every i ∈ [k − 1], (2)

that is, if the maximum degree ∆(G) of G is small, then there are no big gaps in σ(K,c)(G).
This motivates to consider max σ(K,c)(G) and min σ(K,c)(G).

In the case that c is balanced, that is, d = 1
2
, the existence of copies Gπ for which

|c(Gπ)| is small, or equivalently, m+(Gπ) is close to
m(G)

2
has been studied under the term

zero sum problems or zero sum Ramsey theory; see [4, 5, 6, 7, 9, 14, 15, 16, 17] as well
as the references therein pointing out connections to further research directions. The
observations (1) and (2) are based on common arguments from this area, and together
they imply the existence of some permutation π from Sn with

%%m+(Gπ)− d ·m(G)
%% ! ∆(G),

that is, the averaging arguments (1) and transformation arguments (2) imply the existence
of some permutation π from Sn for which m+(Gπ) is close to its expected value d ·m(G),
when choosing π uniformly at random from Sn.

Our first result in this paper is that, for maximum degree ∆(G) at most some constant
∆, and d ∈ (0, 1), the value max σ(K,c)(G), and, by symmetry, also min σ(K,c)(G), visibly
deviates from d·m(G). Combined with (2), this implies that σ(K,c)(G) stretches in bounded
discrete steps over a non-trivial interval depending on d and ∆(G).

Theorem 1. If K is a complete graph of order n with n " 4, c : E(K) → {±1} is a
±1-edge labeling of K such that m+(K) = d

"
n
2

#
, and G is a spanning subgraph of K of

maximum degree at most ∆, then there is a permutation π from Sn with

m+(Gπ) "

&

'd+
min

(
2− d− 2

√
1− d,

√
d− d

)

2∆+ 1
− 3

n− 3

*

+m(G).

All proofs are given in the second section.
We now focus in more detail on the balanced case, that is, in (K, c) there are equally

many plus-edges and minus-edges, or, equivalently, d = 1
2
. Note that K necessarily has

an even number of edges in this case, which implies that n is equivalent to 0 or 1 modulo
4. Let G(n,∆) be the set of all triples (K, c,G) such that K is a complete graph of order
n, c is a balanced ±1-edge labeling of K, and G is a spanning subgraph of K of maximum
degree at most ∆.

If

c∆ = lim inf
n→∞

,
min

-
max

-
m+(Gπ)

m(G)
: π ∈ Sn

.
: (K, c,G) ∈ G(n,∆)

./
,

then Theorem 1 implies

c∆ " 1

2
+

3− 2
√
2

4∆+ 2
.
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The following construction shows that there is little room for improvements of Theorem 1:
Let n be a multiple of 4 and ∆ + 1, let G be the disjoint union of n

∆+1
copies of K∆+1,

and let c be such that the plus-edges of K form the graph that arises by removing a
matching of size n

4
from the complete bipartite graph Kn

2
,n
2
. Note that c is balanced by

construction. Now, since each copy of K∆+1 within K contains at most
"
∆+1
2

#2
many

plus-edges, we obtain

c∆ !
"
∆+1
2

#2
"
∆+1
2

# =
1

2
+

1

2∆
.

Recall that the matching number of a graph G is the maximum number of edges in a
spanning subgraph of G that is of maximum degree at most 1. A classical result of Erdős
and Gallai, Theorem 4.1 in [10], states that a graph G with n vertices, m edges, and
matching number ν satisfies

ν "

0
1

2
n− 1

2
−

3
n2 − 2m− n+ 1

4
, if m ! 8n2−14n+3

25

1
4

"√
8m+ 1− 1

#
, otherwise.

(3)

If K is a complete graph of sufficiently large order n and c is a balanced edge-labeling
of K, then m+(K) = 1

2

"
n
2

#
! 8n2−14n+3

25
, and (3) implies that K contains a matching

consisting of

n− 1

2
−

4

n2 −
,
n

2

/
− n+

1

4
=

5
2−

√
2
6 n

2
− o(n)

plus-edges. Since every spanning subgraph of K of maximum degree at most 1 has at
most n

2
edges, this implies c1 " 2−

√
2. Constructions given by Erdős and Gallai to show

that (3) is best possible imply that

c1 = 2−
√
2 ≈ 0.58.

Our second result concerns c2.

Theorem 2. Let K be a complete graph of order n and let c : E(K) → {±1} be a balanced
±1-edge labeling of K.

(i) If n " 4, then there is a Hamiltonian cycle C of K with

m+(C) "
5
2−

√
2
6
n− o(n) ≈ 0.58n− o(n).

(ii) If n ≡ 0 mod 3, then there is a C3-factor F of K with

m+(F ) "
7
3
√
2

4
− 1

2

8
n− o(n) ≈ 0.56n− o(n).
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In the setting of Theorem 2, the inequality (3) easily implies the existence of some span-
ning 2-regular subgraph H of K, that is, of a 2-factor of K, with m+(H) "

"
2−

√
2
#
n−

o(n), obtained by extending the union of two disjoint matchings of size
5
1− 1√

2

6
n−o(n)

in the spanning subgraph of K formed by the plus-edges. Nevertheless, this argument
does not allow any control of the structure of H. It is conceivable that c2 equals c1, that
is, c2 = 2 −

√
2 ≈ 0.58. Choosing G as the disjoint union of copies of K4, and choosing

c such that the minus-edges essentially form a clique of order n√
2
, which corresponds to

one of the extremal configurations for the estimate (3) of Erdős and Gallai, it follows that

c3 ! 1−
√
2
3

≈ 0.53.
Before we proceed to the proofs, we illustrate the relation of our results to the dis-

crepancy notions mentioned above. Following Balogh et al. [2], the term (4) below can
be considered the discrepancy of Hamiltonian cycles in the complete graph K. In the
setting considered in Corollary 3, their Theorem 1 from [2] implies that (4) is at least
1

128
n− o(n) ≈ 0.0078n− o(n).

Corollary 3. If K is a complete graph of order n with n " 4, then

min
(
max

(
|c(C)| : C is a Hamiltonian cycle in K

)
: c is a ±1-edge labeling of K

)
(4)

is at least
"
3− 2

√
2
#
n− o(n) ≈ 0.17n− o(n).

Proof. Let the ±1-edge labeling c0 of K minimize the maximum value of |c0(C)|, where
C is a Hamiltonian cycle in K, that is, (4) equals

max{|c0(C)| : C is a Hamiltonian cycle in K}.

Clearly, we may assume that the number of plus-edges under c0 is at least the number of
minus-edges, that is, |c−1

0 (1)| " |c−1
0 (−1)|.

For simplicity, we first assume that nmod 4 ∈ {0, 1}, which implies that K has an
even number of edges. Let the ±1-edge labeling c1 of K arise from c0 by changing
1
2
(|c−1

0 (1)| − |c−1
0 (−1)|) of the +1-labels on edges to −1-labels, which implies that c1

is balanced. By Theorem 2(i), there is a Hamiltonian cycle C in K with m+
c1
(C) ""

2−
√
2
#
n− o(n), where the index indicates with respect to which labeling we count the

plus-edges. By construction,

c0(C) " c1(C) = m+
c1
(C)−m−

c1
(C) = 2m+

c1
(C)− n "

5
3− 2

√
2
6
n− o(n),

and, hence, (4) is at least
"
3− 2

√
2
#
n− o(n).

If nmod 4 ∕∈ {0, 1}, then removing one or two vertices yields a complete graph K ′

of order n′ with n′ mod 4 ∈ {0, 1}. As above, we obtain the existence of a Hamiltonian
cycle C ′ in K ′ with c0(C

′) "
"
3− 2

√
2
#
n′ − o(n′). Replacing one edge of C ′ with two

or three edges including the removed vertices into C ′ yields a Hamiltonian cycle C in K
with c0(C) "

"
3− 2

√
2
#
n′ − o(n′)− 4 =

"
3− 2

√
2
#
n− o(n). Hence, also in this case (4)

is at least
"
3− 2

√
2
#
n− o(n).

the electronic journal of combinatorics 30(1) (2023), #P1.35 5



Similarly, Theorem 1 implies that the suitably defined discrepancy of a fixed spanning
subgraph with m edges and maximum degree at most ∆ in a complete graph of order n is

at least
5

3−2
√
2

2∆+1
−O

"
1
n

#6
m.

2 Proofs

For an even integer n at least 4, let d∗(n) =
5

8n2−14n+3
25

6
/
"
n
2

#
. For an odd integer n at

least 5, let d∗(n) = d∗(n − 1). The value d∗(n) is non-decreasing as a function of n and
tends to 16

25
.

Proof of Theorem 1. Since n " 4, we have 1
2
! d∗(n) ! 16

25
.

First, we assume that n is even.
For d ! d∗(n), we have

n− 1

2
−

4

n2 − 2d

,
n

2

/
− n+

1

4
= n− 1

2
−

9:::;(1− d)n2 −
,
(1− d)n− 1

4

/

< => ?
!0

" n− 1

2
−

@
(1− d)n2.

For d > d∗(n), we have

1

4

74

8d

,
n

2

/
+ 1− 1

8
"

√
d

2
n− 1

2
;

in fact, subtracting the term on the right side of this inequality from the term on the
left side yields a term that is decreasing with respect to d for d in [d∗(n), 1], and that
equals 0 for d = 1. Therefore, by (3) applied to the spanning subgraph of K containing
all plus-edges of K, there is a perfect matching MK in K such that

|MK ∩ c−1(1)| "

0
1

2

"
1−

√
1− d

#
n− 1

2
, if d ! d∗(n), and

√
d
2
n− 1

2
, otherwise.

For p = |MK∩c−1(1)|
|MK | , this implies

p "

0
1

2
2− 2

√
1− d− 1

n
, if d ! d∗(n), and

√
d− 1

n
, otherwise.

(5)

Since G has maximum degree at most ∆, a simple greedy argument implies that a maxi-
mum matching M0

G in G satisfies

|M0
G| "

m(G)

2∆− 1
. (6)
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Let MG be a perfect matching in K = G ∪ G containing M0
G, that is, we extend M0

G by
addding edges from G.

Now, instead of choosing π from Sn uniformly at random, which leads to E[m+(Gπ)]
(1)
=

d ·m(G), we change the random choice of π as follows in order to exploit MK and MG:

• We bijectively assign the n
2
edges in MG uniformly at random to the n

2
edges in MK ,

that is, each of the
"
n
2

#
! assignments is equally likely.

• If an edge uv from MG is assigned to an edge xy from MK , then we choose π from Sn

such that (π(u), π(v)) = (x, y) or (π(u), π(v)) = (y, x) equally likely. Considering
all n

2
edges of the perfect matchings, this leads to 2

n
2 many possibilities.

Altogether, we choose the permutation π uniformly at random from a subset of
"
n
2

#
!2

n
2

permutations from Sn.
For uv ∈ M0

G, we obtain

P[c(π(u)π(v)) = 1] = p,

because the fraction of plus-edges in MK is exactly p.
For uv ∈ E(G) \M0

G, note that there are exactly
"
d
"
n
2

#
− pn

2

#
plus-edges in K −MK ,

and that π(u)π(v) equals each of these with probability
2(n

2
−2)!2

n
2 −2

(n
2 )!2

n
2

: In fact, for π(u)π(v)

to equal some plus-edge xy in K−MK , the two edges from MG containing u and v have to
be assigned to the two edges from MK containing x and y, and {π(u), π(v)} has to equal
{x, y}. There are exactly two possibilities for this. The remaining n

2
− 2 edges from MG

can be mapped onto the remaining n
2
− 2 edges from MK without any further restriction.

There are exactly
"
n
2
− 2

#
!2

n
2
−2 possibilities for this.

We obtain that

P[c(π(u)π(v)) = 1] =
2
"
n
2
− 2

#
!2

n
2
−2

"
n
2

#
!2

n
2

,
d

,
n

2

/
− pn

2

/
p"1

" d− 1− d

n− 2

d!0

" d− 1

n− 2

Note that

d !

0
1

2
2− 2

√
1− d , if d ! d∗(n), and

√
d , otherwise.

(7)

If d ! d∗(n), then linearity of expectation implies

E[m+(Gπ)] " p|M0
G|+

,
d− 1

n− 2

/"
m(G)− |M0

G|
#

(5)

"
,
2− 2

√
1− d− 1

n

/
|M0

G|+
,
d− 1

n− 2

/"
m(G)− |M0

G|
#

"
5
2− 2

√
1− d

6
|M0

G|+ d
"
m(G)− |M0

G|
#
− m(G)

n− 2
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(6),(7)

"
5
2− 2

√
1− d

6 m(G)

2∆+ 1
+ d

,
m(G)− m(G)

2∆+ 1

/
− m(G)

n− 2

=

,
d+

2− d− 2
√
1− d

2∆+ 1
− 1

n− 2

/
m(G).

Similarly, if d > d∗(n), then linearity of expectation and a similar estimation as above
imply

E[m+(Gπ)]
(5),(6),(7)

"
√
d
m(G)

2∆+ 1
+ d

,
m(G)− m(G)

2∆+ 1

/
− m(G)

n− 2

=

7
d+

√
d− d

2∆+ 1
− 1

n− 2

8
m(G),

which completes the proof in the case that n is even.
Now, let n be odd. There is a vertex x of K such that m+(K − x) " d

"
n−1
2

#
. Possibly

replacing G by an isomorphic copy, we may assume that x is a vertex of minimum degree
in G, that is, m(G− x) = m(G)− δ(G) "

"
1− 2

n

#
m(G). Therefore, applying the above

estimates to
"
K − x, c |E(K−x)

#
and G− x, and using d∗(n) = d∗(n− 1), we obtain

E[m+(Gπ)] "

0
A1

A2

5
d+ 2−d−2

√
1−d

2∆+1
− 1

n−3

6
(m(G)− δ(G)), if d ! d∗(n), and

5
d+

√
d−d

2∆+1
− 1

n−3

6
(m(G)− δ(G)), otherwise

"

0
A1

A2

5
d+ 2−d−2

√
1−d

2∆+1
− 1

n−3

6 "
1− 2

n

#
m(G), if d ! d∗(n), and

5
d+

√
d−d

2∆+1
− 1

n−3

6 "
1− 2

n

#
m(G), otherwise

"

0
A1

A2

5
d+ 2−d−2

√
1−d

2∆+1
− 3

n−3

6
m(G), if d ! d∗(n), and

5
d+

√
d−d

2∆+1
− 3

n−3

6
m(G), otherwise,

which completes the proof.

Proof of Theorem 2(i). Let G be the spanning subgraph of K formed by the plus-edges,
that is, the graph G equals (V (K), c−1(1)). In view of the desired statement, we may
assume that n " 10. It is easy to see that the desired statement is equivalent (up to the
specific choice of the o(n) term) to the existence of non-trivial disjoint paths P1, . . . , Pk

in G such that
m(P1) + · · ·+m(Pk) " 2n+ 3−

√
2n2 + 14n+ 1.

In fact, removing the minus-edges from a Hamiltonian cycle C as in the statement yields
such paths (as well as some isolated vertices), and, conversely, such paths (and the remain-
ing isolated vertices) can easily be concatenated with edges from K to form a Hamiltonian
cycle of K. Therefore, let the non-trivial disjoint paths P1, . . . , Pk in G be chosen such
that
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• m(H) is as large as possible, where H = P1 ∪ . . . ∪ Pk, and

• subject to the first condition, the number k of paths is as small as possible.

For a contradiction, we suppose that m(H) < 2n + 3 −
√
2n2 + 14n+ 1. For i ∈ {1, 2},

let Vi be the set of vertices that have degree i in H, and, let ni = |Vi|. Let V0 =
V (G) \ (V1 ∪ V2), and n0 = |V0|. Let Pi have the endvertices xi and yi for every i ∈ [k],
that is, V1 = {x1, y1, . . . , xk, yk}. Note that n1 = 2k, n2 = m(H)−k, and n0 = n−n1−n2 =
n−m(H)− k.

Claim 4. m(G[V0 ∪ V1]) ! k.

Proof. If uv is an edge of G[V0 ∪ V1] that does not belong to {xiyi : i ∈ [k]}, then
H + uv is the union of non-trivial disjoint paths in G with more edges than H, which is
a contradiction. Therefore, the edge set of G[V0 ∪ V1] is contained in {xiyi : i ∈ [k]}.

The components of H − V1 are paths Q1, . . . , Qℓ with ℓ ! k, where we may assume
that Qi = Pi − xi − yi. Note that a Qi may be trivial, that is, consist of just one vertex
only. If ℓ = 0, then V (K) = V0 ∪ V1, and Claim 4 implies m(G) = k ! n

2
< 1

2

"
n
2

#
, which

contradicts the hypothesis that c is balanced. Since G contains ℓ disjoint paths P1, . . . , Pℓ

of order at least 3, we have ℓ ! n
3
.

Claim 5. For every vertex u from V0, there are at most 1
2
(n2 − ℓ+2) edges in G between

u and V2, and u is adjacent to an endvertex in at most one of the paths Q1, . . . , Qℓ.

Proof. If u is adjacent to two consecutive vertices v and w of some Qi, then H − vw +
vu+uw is the union of non-trivial disjoint paths in G with more edges than H, which is a
contradiction. Hence, the vertex u has at most n(Qi)+1

2
many neighbors in V (Qi) for every

i in [ℓ]. If there are two distinct paths Qi and Qj such that u is adjacent to an endvertex
x′
i in Qi as well as an endvertex x′

j in Qj, then, by symmetry, we may assume that xi is
a neighbor of x′

i in H, and xj is a neighbor of x′
j in H, and H − xix

′
i − xjx

′
j + x′

iu+ x′
ju

is the union of less than k non-trivial disjoint paths in G with the same number of edges
as H, which is a contradiction. So, assuming that u is adjacent to an endvertex of Qi,
for every i′ ∈ [ℓ] \ {i}, the vertex u is adjacent to at most

n(Qi′ )−1

2
vertices of Qi′ . This

implies that the number of neighbors of u in V2 is at most

n(Qi) + 1

2
+

$

j∈[ℓ]\{i}

n(Qj)− 1

2
=

n2 − ℓ+ 2

2

Clearly, if u is not adjacent to any endvertex of a path Qi, this upper bound also holds.

Let d be the average number of neighbors in V2 of the vertices in V0, that is, there are
dn0 edges in G between V0 and V2 altogether. Claim 5 implies

d ! n2 − ℓ+ 2

2
! n2 + 1

2
. (8)

Claim 6. There are at least
"
d−1
2

#
non-edges in G[V2].
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Proof. By the definition of d, there is a vertex u from V0 that has at least d neighbors
in V2. By Claim 5, the vertex u is adjacent to an endvertex in at most one of the paths
Q1, . . . , Qℓ. Therefore, removing at most one of the neighbors of u in V2, which is an
endvertex of some Qi, yields a set N of at least d− 1 neighbors of u in V2 such that there
is an orientation of Q1 ∪ . . . ∪ Qℓ for which the set of in-neighbors N− of the vertices
from N satisfies |N−| = |N |, that is, every vertex in N has exactly one in-neighbor in
Q1 ∪ . . . ∪Qℓ. If v

−w− is an edge in G for two vertices v− and w− from N− that are the
in-neighbors of v and w from N , respectively, then H−vv−−ww−+v−w−+vu+uw is the
union of non-trivial disjoint paths in G with more edges than H, which is a contradiction.
Hence, the set N− is independent, which implies the claim.

Claim 7. If k " 2, then G contains at most 1
2
n1(n2 + ℓ) edges between V1 and V2.

Proof. Let i, j ∈ [k]. Let Pj : xju1 . . . upyj, that is, Qj is u1 . . . up. If there is some
q ∈ [p − 1] such that xi is adjacent to uq+1 and yi+1 is adjacent to uq, where we identify
yk+1 with y1, then H − uquq+1 + xiuq+1 + yi+1uq is the union of non-trivial disjoint paths
in G with more edges than H, which is a contradiction. Note that this is also true even
if j = i or j = i+1. Therefore, there are at most p+1 edges in G between {xi, yi+1} and
V (Qj), which easily implies the statement.

We are now in a position to estimate the total number m(G) of edges of G in order
to derive a contradiction.

First, we assume that k = 1. In this case, the claims imply

m(G) ! 1 + dn0 +

,
n2

2

/
−

,
d− 1

2

/
+ n1n2.

Considered as a quadratic function of d, the right hand side is maximized for d = n +
1
2
−m(H) > m(H)

2
, where the last inequality uses the upper bound on m(H). Hence, the

function is increasing for d
(8)

! n2+1
2

= m(H)
2

, and substituting d = m(H)
2

yields

m(G) ! −1

8
m(H)2 +

,
4n+ 6

8

/
m(H)− 1,

which, for m(H) < 2n+ 3−
√
2n2 + 14n+ 1, is strictly less than 1

2

"
n
2

#
, a contradiction.

Next, let k " 2. In this case, the claims imply

m(G) ! k + dn0 +

,
n2

2

/
−

,
d− 1

2

/
+

1

2
n1

5
n2 +

n

3

6
,

where the last term n1n2 has been improved using Claim 7 and ℓ ! n
3
.

We consider two cases according to the value of k.
First, we suppose that k ! 2n − 3m(H) + 2. In this case, considered as a quadratic

function of d, the upper bound on m(G) is maximized for d = n2+1
2

= m(H)−k+1
2

, where
we used (8). Substituting this value for d, we obtain

m(G) ! −1

8
k2 −

,
2n− 3m(H)− 6

12

/
k +

(4n−m(H)− 3)(m(H) + 1)

8
.
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Now, considered as a quadratic function of k, this upper bound is maximized for k = 2.
Substituting this value for k, we obtain

m(G) ! 1

6
n+

1

8
− 1

8
m(H)2 +

1

2
m(H)n,

which, for m(H) < 2n + 3 −
√
2n2 + 14n+ 1 and n " 10, is strictly less than 1

2

"
n
2

#
, a

contradiction.
Next, we suppose that k " 2n − 3m(H) + 3. In this case, considered as a quadratic

function of d, the upper bound on m(G) is maximized for d = n − m(H) − k + 3
2
.

Substituting this value for d, we obtain

m(G) ! 3

2
n+ km(H) +m(H)2 − nm(H)− 2

3
nk +

1

2
n2 +

1

8
− 2m(H).

Now, considered as a linear function of k, this upper bound is decreasing in k for m(H) <
2n+ 3−

√
2n2 + 14n+ 1. Hence, substituting k = 2n− 3m(H) + 3 yields

m(G) ! −5

6
n2 +

1

2
(6m(H)− 1)n− 2m(H)2 +m(H) +

1

8
,

which, for m(H) < 2n+ 3−
√
2n2 + 14n+ 1, is strictly less than 1

2

"
n
2

#
, a contradiction.

This completes the proof.

Proof of Theorem 2(ii). For (K, c) as in the statement, let C1, . . . , Ck with 3k = n be
the components of a C3-factor F of K. For j ∈ {0, 1, 2, 3}, let tj be such that tjn is the
number of i in [k] with m+(Ci) = j. In particular,

t0 + t1 + t2 + t3 =
1

3
. (9)

We assume that F is chosen in such a way that

• m+(F ) = m+(C1) + · · ·+m+(Ck) is as large as possible, and

• subject to the first condition, the value of t2 is as large as possible.

The choice of F allows to upper bound the number of plus-edges between any two of the
triangles in F . If Ci and Cj satisfy m+(Ci) = m+(Cj) = 0, then any plus-edge between
V (Ci) and V (Cj) allows to replace Ci and Cj within F by two triangles C ′

i and C ′
j such

that m+(Ci) +m+(Cj) " 1, which would contradict the choice of F . If Ci and Cj satisfy
m+(Ci) = 0 and m+(Cj) = 3, and there are at least 4 plus-edges between these two
triangles, then there are two such edges, say e and f , that are disjoint, and replacing Ci

and Cj within F by two triangles C ′
i and C ′

j such that C ′
i contains e and exactly one edge

from Ci, and C ′
j contains f and exactly one edge from Cj, yields a contradiction either

to the first condition or to the second condition within the choice of F . If Ci : xyzx and
Cj : x′y′z′x′ satisfy m+(Ci) = 2, c(xz) = −1, and m+(Cj) = 3, and there are at least
8 plus-edges between these two triangles, then, by symmetry, we may assume that all
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minus-edges between these two triangles are between {x, y} and {x′, y′}, and replacing Ci

and Cj within F by the two triangles x′y′zx′ and xyz′x, contradicts the choice of F . Now,
suppose that Ci : xyzx and Cj : x

′y′z′x′ satisfy m+(Ci) = 1, c(xz) = 1, m+(Cj) = 2, and
c(x′z′) = −1. Considering the two triangles xy′zx and x′yz′x′ implies that at most two of
the four edges xy′, y′z, x′y, and yz′ are plus-edges. Hence, if there are at least 4 plus-edges
between the two triangles, then, by symmetry, we may assume that xx′ is a plus-edge.
Considering the two triangles xx′zx and yz′y′y implies that all the three edges x′z, yy′,
and yz′ are minus-edges. Considering the two triangles xx′y′x and yzz′y implies that one
of the two edges xy′ and zz′ is a minus-edges. Finally, considering the two triangles xx′yx
and y′z′zy′ implies that one of the two edges x′y and y′z is a minus-edges. Altogether,
these observations yield at least 3 + 1 + 1 minus-edges between V (Ci) and V (Cj), which
implies that there are at most 4 plus-edges between these two triangles.

The following table summarizes the upper bounds on the number of plus-edges between
the different types of triangles in F . Since verifying the correctness of these values is
straightforward, we leave the remaining details to the reader.

(i, j) m+(Cj) = 0 m+(Cj) = 1 m+(Cj) = 2 m+(Cj) = 3

m+(Ci) = 0 0 0 3 3
m+(Ci) = 1 0 1 4 6
m+(Ci) = 2 3 4 5 7
m+(Ci) = 3 3 6 7 9

Since c is balanced, we obtain

,
1

4
− o(1)

/
n2 =

1

2

,
n

2

/
= m+(K)

! t1n+ 2t2n+ 3t3n+

,
t1n

2

/
+ 5

,
t2n

2

/
+ 9

,
t3n

2

/

+3t0n(t2n+ t3n) + 4t1nt2n+ 6t1nt3n+ 7t2nt3n

=

,
1

2
t21 +

5

2
t22 +

9

2
t23 + 3t0(t2 + t3) + 4t1t2 + 6t1t3 + 7t2t3 + o(1)

/
n2,

and, hence,

h(t0, t1, t2, t3) :=
1

2
t21 +

5

2
t22 +

9

2
t23 + 3t0(t2 + t3) + 4t1t2 + 6t1t3 + 7t2t3

" 1

4
− o(1). (10)

Since m+(F ) = (t1 + 2t3 + 3t3)n, in order to complete the proof, it suffices to show that

the optimum value of the following optimization problem is at least 3
√
2

4
− 1

2
− o(1):
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min t1 + 2t2 + 3t3

s.th. t0 + t1 + t2 + t3 = 1
3

h(t0, t1, t2, t3) " 1
4
− o(1)

t0, t1, t2, t3 " 0

(11)

Since ∂
∂t0

h(t0, t1, t2, t3) is strictly less than ∂
∂ti

h(t0, t1, t2, t3) for every i ∈ [3] and every
feasible solution (t0, t1, t2, t3) of (11), every optimum solution (t0, t1, t2, t3) of (11) satisfies
the inequality (10) with equality; otherwise, slightly inceasing t0 and decreasing t1+t2+t3
by the same amount would yield a better feasible solution. Note that ∂

∂t3
h(t0, t1, t2, t3)−

∂
∂t0

h(t0, t1, t2, t3) = 3t0+6t1+4t2+6t3 " 1 for every feasible solution (t0, t1, t2, t3) of (11),

that ∂
∂t3

h(t0, t1, t2, t3)− ∂
∂t1

h(t0, t1, t2, t3) = 3t0+5t1+3t2+3t3 " 1 for every feasible solution

(t0, t1, t2, t3) of (11), and that ∂
∂t3

h(t0, t1, t2, t3) − ∂
∂t2

h(t0, t1, t2, t3) = 2t1 + 2t2 + 2t3 "
2
3
for every feasible solution (t0, t1, t2, t3) of (11) with t0 = 0. This implies that, for

every optimum solution (t0, t1, t2, t3) of (11), possibly increasing t3 by o(1) and decreasing
t0 + t1 + t2 by the same amount without violating the condition t0, t1, t2 " 0, yields a
feasible solution for the following optimization problem (12), whose objective function
value is larger by at most o(1).

min t1 + 2t2 + 3t3

s.th. t0 + t1 + t2 + t3 = 1
3

h(t0, t1, t2, t3) = 1
4

t0, t1, t2, t3 " 0

(12)

Since the optimum value of (12) is at least the optimum value of (11), this implies that the
two optimal values differ only by o(1). Hence, in order to complete the proof, it suffices

to show that the optimum value of (12) is at least 3
√
2

4
− 1

2
.

The equation h(t0, t1, t2, t3) = 1
4
allows to express t0 in terms of t1, t2, and t3, and

substituting the corresponding expression into t0 + t1 + t2 + t3 = 1
3
, allows to express t2

in terms of t1 and t3. Substituting these expressions for t0 and t2, we obtain

t1 + 2t2 + 3t3 = 3t1 + 5t3 + 2−
3

8t21 + (32t3 + 8)t1 + 16t23 + 16t3 + 2 =: f(t1, t3).

It follows that the optimum value of (12) is at least the optimum value of the following
optimization problem, where we implicitly relax the conditions “t0 " 0” and “t2 " 0”:

min

-
f(t1, t3) : t1, t3 " 0 and t1 + t3 !

1

3

.
(13)

Since there is no point (t1, t3) in the interior of
B
(x, y) : x, y " 0 and x+ y ! 1

3

C
for which

∂
∂t1

f(t1, t3) =
∂
∂t3

f(t1, t3) = 0, the minimum (13) is assumed on the boundary.
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Since f(t1, 0) =
"
3− 2

√
2
#
t1 + 2−

√
2, we obtain

min

-
f(t1, 0) : 0 ! t1 !

1

3

.
= f(0, 0) = 2−

√
2 >

3
√
2

4
− 1

2
.

Since ∂
∂t3

f(0, t3) = 0 for t3 ∈
D
0, 1

3

E
only if t3 =

5
√
2

12
− 1

2
≈ 0.08, we obtain

min

-
f(0, t3) : 0 ! t3 !

1

3

.
= min

F
f(0, 0), f

7
0,

5
√
2

12
− 1

2

8
, f

,
0,

1

3

/G

=
3
√
2

4
− 1

2
.

Finally, since ∂
∂t1

f
"
t1,

1
3
− t1

#
= 0 for t1 ∈

D
0, 1

3

E
only if t1 =

5
√
6

18
− 1

2
, we obtain

min

-
f

,
t1,

1

3
− t1

/
: 0 ! t1 !

1

3

.

= min

F
f

,
0,

1

3

/
, f

7
5
√
6

18
− 1

2
,
5

6
− 5

√
6

18

8
, f

,
1

3
, 0

/G

=
14

3
− 5

√
6

3
>

3
√
2

4
− 1

2
.

Altogether, it follows that the optimum value of (13) is 3
√
2

4
− 1

2
, which implies that the

optimum value of (12) is also at least this value. This completes the proof.

It seems possible to apply a similar approach to other graphs whose components are
all isomorphic, such as, for instance, K4-factors or K1,3-factors.

3 Conclusion

An obvious task motivated by our results is to determine values c∆ more precisely; at
least, for small values of ∆. Furthermore, it seems straightforward to generalize Theorem
2 to not necessarily balanced edge labelings c.

There seem to be no immediate directed analogues of our results. If D is the complete
digraph with vertex set [2n], that is, between every two vertices of D, there are both
possible arcs, and c : A(D) → {±1} is such that c((u, v)) = 1 for all arcs (u, v) with
u ∈ [n], and c((u, v)) = −1 for all arcs (u, v) with u ∈ [2n] \ [n], then there are equally
many plus- and minus-arcs, but every directed Hamiltonian cycle has exactly n plus- and
n minus-arcs. Similarly, there are tournaments T with a unique directed Hamiltonian
cycle, which allows to force all plus-arcs or all minus-arcs in the directed Hamiltonian
cycle even though T has equally many plus- and minus-arcs.

The problems studied in this paper clearly relate to classical and new results concerning
extremal graph theory, Ramsey theory, and Hamiltonicity. Further directions that could
be pursued may be inspired by [1, 18].
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