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Abstract

A Hadamard matrix is balanced splittable if some subset of its rows has the prop-
erty that the dot product of every two distinct columns takes at most two values.
This definition was introduced by Kharaghani and Suda in 2019, although equiv-
alent formulations have been previously studied using different terminology. We
collate previous results phrased in terms of balanced splittable Hadamard matri-
ces, real flat equiangular tight frames, spherical two-distance sets, and two-distance
tight frames. We use combinatorial analysis to restrict the parameters of a bal-
anced splittable Hadamard matrix to lie in one of several classes, and obtain strong
new constraints on their mutual relationships. An important consideration in de-
termining these classes is whether the strongly regular graph associated with the
balanced splittable Hadamard matrix is primitive or imprimitive. We construct
new infinite families of balanced splittable Hadamard matrices in both the prim-
itive and imprimitive cases. A rich source of examples is provided by packings
of partial difference sets in elementary abelian 2-groups, from which we construct
Hadamard matrices admitting a row decomposition so that the balanced splittable
property holds simultaneously with respect to every union of the submatrices of the
decomposition.

Mathematics Subject Classifications: 15B34, 05B20, 42C15, 05B10

1 Introduction

Hadamard matrices are one of the central topics of combinatorial design theory, with
connections to symmetric designs, orthogonal arrays, transversal designs, and regular
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two-graphs. Hadamard matrices have many practical applications in experimental design,
spectroscopy, error correction, signal modulation and separation, signal correlation, and
cryptography [18]. We write In for the n× n identity matrix.

Definition 1. An n × n matrix H over {1,−1} is a Hadamard matrix of order n if
HTH = nIn.

Suppose H is a Hadamard matrix of order n. By definition, the columns of H are
pairwise orthogonal. Since H is square and 1

n
HT is a left inverse for H, we have 1

n
HHT =

In and so the rows of H are also pairwise orthogonal. It is straightforward to show that
n = 1, 2 or n ≡ 0 (mod 4). The Hadamard matrix conjecture, proposed by Paley [31] in
1933, states that these necessary conditions are also sufficient. The conjecture is known
to hold for n < 668 [23], but a proof remains elusive.

Several authors impose additional structure on a Hadamard matrix in order to better
understand the existence pattern and make connections with other combinatorial config-
urations [9, 39]. The following additional structure was proposed in 2019 by Kharaghani
and Suda [22], who established connections with strongly regular graphs, equiangular
lines, mutually unbiased Hadamard matrices, and commutative association schemes [22,
Sections 2 and 5].

Definition 2. Let H be a Hadamard matrix of order n, let H1 be an ℓ×n submatrix of H
where 1 ! ℓ ! n − 1, and let a, b be integers. Then H is a balanced splittable Hadamard
matrix with respect to H1 if the dot product of every two distinct columns of H1 lies
in {a, b}. In this case, we say that H is a BSHM(n, ℓ, a, b) with respect to H1.

We prefer “balanced splittable” to the expression “balancedly splittable” used in [22].
The central question in the study of balanced splittable Hadamard matrices is to

determine for which parameter sets (n, ℓ, a, b) there exists a BSHM(n, ℓ, a, b) with respect
to some ℓ × n submatrix. A secondary question (not considered in this paper) is to
determine whether a specified order n Hadamard matrix is a BSHM(n, ℓ, a, b) with respect
to some ℓ× n submatrix and for some a, b.

The remainder of this paper is organized as follows. In Section 2, we review some
elementary results on balanced splittable Hadamard matrices. We then summarize the
results given by Kharaghani and Suda [22], and review further results originally expressed
in the language of real flat equiangular tight frames and spherical two-distance sets. In
Section 3, we classify the parameters (n, ℓ, a, b) of a nontrivial BSHM(n, ℓ, a, b): apart
from those with ℓ ∈ {2, n − 2} (characterized in Lemma 4 (ii) and Corollary 34), there
are five classes as summarized in Table 1 below. In Section 4, we tabulate the param-
eter sets for the smallest open primitive cases. In Section 5, we construct new infinite
families of primitive balanced splittable Hadamard matrices via the character table of par-
tial difference sets in elementary abelian 2-groups. In particular, we determine for each
parameter set with n ∈ {64, 256} whether a primitive BSHM(n, ℓ, a, b) exists. We then
use packings of partial difference sets to produce infinite families of Hadamard matrices
that have the balanced splittable property with respect to multiple disjoint submatrices
simultaneously. In Section 6, we construct new infinite families of imprimitive balanced
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splittable Hadamard matrices by means of a Kronecker product construction, and further
constrain the possible parameter sets. In Section 7, we propose some open questions for
future research.

Table 1: Five classes for a BSHM(n, ℓ, a, b) satisfying 2 < ℓ < n − 2, and its associated
strongly regular graph G with parameters (v, k,λ, µ), up to application of the switching
transformation (2.4) and interchange of a, b and (for b = −a) negation of columns. (Types
1 and 2 are defined in Proposition 29, the associated graph is defined in Definition 23,
and primitive and imprimitive are defined in Definition 38.)

b = −a b ∕= −a
Type 1 Type 2

n > 2ℓ n > 2ℓ n ! 2ℓ
primitive imprimitive primitive imprimitive primitive

parameter n = ℓ2−a2

ℓ−a2 , (n, ℓ, a, b) = n =
(ℓ−a)(ℓ−b)

ℓ+ab
, (n, ℓ, a, b) = n =

(ℓ−a)(ℓ−b)
ℓ+ab−a−b

,

relations ℓ ≡ a (mod 4), (4rs, 4s− 1, 4s− 1,−1) ℓ ≡ a ≡ b (mod 4), (8rs, 4s, 4s, 0) ℓ ≡ a ≡ b (mod 4),
a > 0 (even) for r ! 2, s ! 1 a > 0 ! b for r, s ! 1 a > 0 ! b

G

v = n,

4sKr

v = n,

4sK2r

v = n,

k =
(n−1)a−ℓ

2a
+ c, k = ℓ−b+nb

b−a
, k =

ℓ−b+n(b−1)
b−a

,

λ =
(n−4)a+n−4ℓ

4a
+ c, λ = µ+

2(ℓ−b)−n
b−a

, λ = µ+
2(ℓ−b)−n

b−a
,

µ =
n(a−1)

4a
+ c µ =

nb(b+1)

(b−a)2
µ =

nb(b−1)

(b−a)2

for c = 0 and c = n
2a

integers ℓ
a

(odd), n
4a

ℓ−b
b−a

, n
b−a

, ℓ−b
b−a

, n
b−a

,

n(b+1)
2(b−a)

,
nb(b+1)

(b−a)2
n(b−1)
2(b−a)

,
nb(b−1)

(b−a)2

2 Previous results

In this section, we summarize the previous state of knowledge for the existence of a
BSHM(n, ℓ, a, b). Section 2.1 contains some elementary results. Section 2.2 reviews the
results presented by Kharaghani and Suda [22]. Section 2.3 contains results originally
phrased in terms of real flat equiangular tight frames, and Section 2.4 contains results
originally phrased in terms of spherical two-distance sets and two-distance tight frames.

We write Jn for the n × n all-ones matrix, 0n×m for the n × m all-zeroes matrix,
and 1 for the all-ones column vector and 0 for the all-zeroes column vector (with length
determined by context).

2.1 Elementary results

Remark 3. Suppose that H is a BSHM(n, ℓ, a, b) with respect to H1. The (i, j) entry of
HT

1 H1 is the dot product of columns i and j of H1, so

HT
1 H1 = ℓIn + aA+ b(Jn − In − A) (2.1)
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where A = (Ai,j) is the n× n symmetric matrix over {0, 1} with zero diagonal given by

Ai,j =

!
1 if i ∕= j and the dot product of columns i and j of H1 equals a,

0 otherwise.
(2.2)

By orthogonality of the rows of H,

H1H
T
1 = nIℓ and H2H

T
2 = nIn−ℓ and H1H

T
2 = 0ℓ×(n−ℓ). (2.3)

Lemma 4.

(i) A BSHM(n, ℓ, a, b) with respect to a submatrix H1 is also a BSHM(n, ℓ, b, a) with
respect to H1.

(ii) The matrix H =

"
H1

H2

#
is a BSHM(n, ℓ, a, b) with respect to H1 if and only if H is

a BSHM(n, n− ℓ,−a,−b) with respect to H2.

(iii) The parameters of a BSHM(n, ℓ, a, b) satisfy |a|, |b| ! min{ℓ, n− ℓ}.

Proof. (i) and (ii) and the relation −ℓ ! a, b ! ℓ follow directly from Definition 2. Then
(iii) follows from (ii).

Remark 5.

(i) By Lemma 4 (i), we may interchange the parameters a and b of a BSHM(n, ℓ, a, b);
we shall usually follow the convention of [22] by taking a " b. By Lemma 4 (ii), we
may also apply the “switching transformation”

H1 ↔ H2 and (ℓ, a, b) ↔ (n− ℓ,−a,−b), (2.4)

and we shall usually do so in order that ℓ ! n/2 holds.

(ii) We can easily characterize the case ℓ = 1: a Hadamard matrix

"
H1

H2

#
of order n > 2

is a BSHM(n, 1, a, b) with respect to H1 if and only if either (a, b) = (1, 1) and
H1 = ±1T , or else {a, b} = {1,−1} and H1 ∕= ±1T . We therefore regard the case
ℓ = 1 (and by (i) the case ℓ = n − 1) as trivial. Throughout the rest of the paper
we shall consider a BSHM(n, ℓ, a, b) only in the nontrivial cases 1 < ℓ < n− 1 (and
then n ≡ 0 (mod 4)).

(iii) Two Hadamard matrices are equivalent if one can be transformed into the other
by permutation and negation of some rows and columns. The balanced splittable
property of a Hadamard matrix is preserved under row and column permutation,
and under row negation, but not necessarily under column negation (except in the
case b = −a).
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2.2 Results from Kharaghani and Suda [22]

We firstly exclude the case b = a.

Result 6 ([22, Proposition 2.4]). Suppose that H is a nontrivial BSHM(n, ℓ, a, b). Then
b ∕= a.

We next distinguish the cases b = −a and b ∕= −a. The following result, for the case
b = −a, follows from [22, Propositions 2.13, 2.14, 2.16, 2.17]. A Hadamard matrix H of
order n is regular if 1TH = c

√
n1T for c ∈ {1,−1}. Two Hadamard matrices H and L of

order n are unbiased if each entry of HLT lies in
$√

n,−
√
n
%
.

Result 7. Suppose H =

"
H1

H2

#
is a nontrivial BSHM(n, ℓ, a,−a) with respect to H1.

Then:

(i) a is even and ℓ ≡ a (mod 4)

(ii) If (n, ℓ) = (4a2, 2a2 ± a), then H is equivalent to a regular Hadamard matrix and
L := 1

2a
(HT

1 H1 − HT
2 H2) is a Hadamard matrix such that L and H are unbaised.

Conversely, if L is a Hadamard matrix, then (n, ℓ) = (4a2, 2a2 ± a).

The following constructions for b ∕= −a are given by [22, Theorems 3.1, 3.2, 3.3, 3.4,
3.7, 3.8] and Lemma 4 (ii). Those described in Result 8 (i)–(iv) involve the Kronecker
product of Hadamard matrices, whereas those described in Result 8 (v),(vi) are direct
constructions. A Hadamard matrix of the form H = C + Iq+1, where CT = −C, is called
skew-type.

Result 8. Suppose there exist Hadamard matrices of orders n and s. Then there exists:

(i) a BSHM(n2, 2n− 2, n− 2,−2) for n " 2

(ii) a BSHM(n2, 2n− 1, n− 1,−1) for n " 4

(iii) a BSHM(ns, n, n, 0) for n " 2

(iv) a BSHM(22m, 2m−1(2m − 1), 2m−1,−2m−1) for m " 2

(v) a BSHM(n, 2, 2, 0) for n " 4

(vi) a BSHM(q(q+1), q, q,−1) for q " 3, where q+1 is the order of a skew-type Hadamard
matrix.

A Hadamard matrix can have the balanced splittable property with respect to multiple
disjoint submatrices simultaneously. For an m×n matrix A = (aij) and a matrix B, write
A⊗ B for the Kronecker product

&

'(
a11B . . . a1nB
...

. . .
...

am1B . . . amnB

)

*+ .

the electronic journal of combinatorics 30(1) (2023), #P1.37 5



Let S1 =

"
1 1
1 −1

#
, and define Sr = S1 ⊗ Sr−1 recursively for r " 2. Then Sr is the

Sylvester-type Hadamard matrix of order 2r. The following refinement of Result 8 (iv) is
given by [22, Theorem 3.7]; we shall greatly extend this construction in Corollary 61.

Result 9. The Sylvester-type Hadamard matrix H of order 22m can be partitioned into
submatrices H1, H2, H3 of size 2m × 22m, 2m−1(2m − 1) × 22m, 2m−1(2m − 1) × 22m,
respectively, such that H is simultaneously a BSHM(22m, 2m, 2m, 0) with respect to H1, and
is a BSHM(22m, 2m−1(2m − 1), 2m−1,−2m−1) with respect to H2 and with respect to H3.

The following result on the existence of a BSHM(16, 6, 2,−2) is given by [22, Remark
2.15, Examples 2.18, 2.19, 2.20].

Result 10. Exactly three of the five inequivalent Hadamard matrices of order 16 are
equivalent to a BSHM(16, 6, 2,−2).

The following nonexistence results are derived in [22, Proposition 2.21] using careful
analysis and computer search. We shall recover and extend these results theoretically in
Corollary 35.

Result 11. There is no BSHM(36, ℓ, a, b) for the following parameters:

(i) (ℓ, a, b) = (10, 4,−2).

(ii) (ℓ, a, b) = (25, 1,−5).

(iii) (ℓ, a, b) = (14, 2,−4).

(iv) (ℓ, a, b) = (20, 2,−4).

2.3 Real flat equiangular tight frames

Equiangular tight frames are widely studied in communications, coding theory, and sparse
approximation [12, 15, 30, 36, 37, 38].

Definition 12. Let S be an ℓ× n matrix with complex entries and S∗ be the conjugate
transpose of S. The matrix S is a tight frame if SS∗ = nIℓ. A tight frame S is real if
its entries are all real, and flat if its entries all have magnitude 1 (and so is real flat if its
entries all lie in {1,−1}). A tight frame S is an equiangular tight frame (ETF) if all the
off-diagonal entries of the Gram matrix S∗S have constant magnitude. An ℓ× n ETF is
a Hadamard ETF if it is a submatrix of an order n Hadamard matrix.

If S is an ℓ×n real flat ETF with columns s1, . . . , sn, then by considering the eigenval-

ues of the Gram matrix S∗S one can derive that the dot product of si and sj is ±
,

ℓ(n−ℓ)
n−1

for all distinct i, j [36, Theorem 2.3], [37, Proposition 2]. Therefore a Hadamard ma-

trix H =

"
H1

H2

#
is a BSHM(n, ℓ, a,−a) with respect to H1 if and only if H1 is an ℓ × n
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Hadamard ETF (and then a = ±
,

ℓ(n−ℓ)
n−1

), as noted in [22, Proposition 2.12]. This im-

plies the following necessary conditions for a BSHM(n, ℓ, a,−a), as consequences of [37,
Theorems A, C and Corollary 14].

Result 13. Suppose there exists a nontrivial BSHM(n, ℓ, a,−a). Then:

(i) ℓ ∕= n
2

(ii)
,

ℓ(n−1)
n−ℓ

and
,

(n−ℓ)(n−1)
ℓ

are odd integers

(iii) (n− 2ℓ)
,

n−1
ℓ(n−ℓ)

is an integer

(iv) n ! min{ ℓ(ℓ+1)
2

, (n−ℓ)(n−ℓ+1)
2

}.

We rephrase the elegant construction of a Hadamard ETF in [14, Theorem 2] as the
following result, which signficantly extends Result 8 (iv).

Result 14. Suppose there exists a Hadamard matrix of order n. Then there exists a
BSHM(4n2, 2n2 − n, n,−n).

We next describe a characterization of a real flat ETF involving quasi-symmetric
balanced incomplete block designs, and some resulting restrictions on the parameters of
a BSHM(n, ℓ, a,−a).

Definition 15. A (v, k,λ, r, b) balanced incomplete block design (BIBD) is a pair (V,B),
where V is a set of v points and B is a collection of k-subsets (blocks) of V with |B| = b,
such that each element of V is contained in exactly r blocks and each 2-subset of V is
contained in exactly λ blocks. A (v, k,λ, r, b, x, y) quasi-symmetric BIBD is a (v, k,λ, r, b)
BIBD for which every two distinct blocks intersect in either x or y points, where 0 ! x < y.

Result 16. [14, Theorem 3] An ℓ×n real flat ETF exists if and only if a (v, k,λ, r, b, x, y)
quasi-symmetric BIBD exists with parameters

a =

-
ℓ(n− ℓ)

n− 1
, v = ℓ, k =

ℓ− a

2
, λ =

(n− 1)(ℓ− a)(ℓ− a− 2)

4ℓ(ℓ− 1)
,

r =
(n− 1)(ℓ− a)

2ℓ
, b = n− 1, x =

ℓ− 3a

4
, y =

ℓ− a

4
.

In particular, if a BSHM(n, ℓ, a,−a) exists then each of these expressions is a nonnegative
integer.
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2.4 Spherical two-distance sets and two-distance tight frames

Many authors have studied finite sets of points over the unit sphere of Rn having a small
number of distinct distances among the points [1, 12, 16]; when this number is two, the
sets are called spherical two-distance sets [2, 3, 4, 8, 11, 24, 25, 29, 30].

Definition 17. Let S = {s1, . . . , sn} be a subset of Rℓ, where ||si|| is constant over i.
The set S is a spherical two-distance set with values a, b if si · sj takes only the values a
and b over all distinct i, j. A spherical two-distance set S with values a, b is regular if the
number of j, other than i, for which si · sj = a holds is constant over i.

It follows from Definition 17 that if H =

"
H1

H2

#
is a BSHM(n, ℓ, a, b) with respect to

H1, then the columns ofH1 form a spherical two-distance set over {1,−1}ℓ with values a, b.
We shall see in Proposition 25 that a BSHM(n, ℓ, a,−a) can be transformed, by negating
columns as necessary, so that its corresponding spherical two-distance set is regular; and
in Proposition 29 that the spherical two-distance set corresponding to a BSHM(n, ℓ, a, b)
with b ∕= −a is necessarily regular. We thereby obtain the following constraints from the
cited results on spherical two-distance sets.

Result 18.

(i) A BSHM(n, ℓ, a, b) with n > 2ℓ+ 1 " 5 and ℓ > a > b satisfies ℓ−a
ℓ−b

= m−1
m

for some

integer m " 2. In particular, when b = −a we have ℓ
a
= 2m − 1 ([24, Theorem 2],

[30, Theorem 2]).

(ii) A BSHM(n, ℓ, a, b) with ℓ > max{a, b} satisfies

n !

.
///////////0

///////////1

5 if ℓ = 2,

6 if ℓ = 3,

10 if ℓ = 4,

16 if ℓ = 5,

27 if ℓ = 6,
ℓ(ℓ+1)

2
if ℓ " 7 and ℓ ∕= (2k + 1)2 − 3 for each k " 1,

ℓ(ℓ+3)
2

if ℓ " 7 and ℓ = (2k + 1)2 − 3 for some k " 1

([3, Theorem 1.1],[16, Theorem 1]).

(iii) A BSHM(n, ℓ, a, b) with ℓ > max{a, b} satisfies ab ! 0 ([8, Theorem 2.14]).

A two-distance tight frame is a real flat tight frame whose columns form a spherical
two-distance set. A two-distance tight frame with values a, b where b = −a is a real flat
ETF, as characterized in Result 16. A two-distance tight frame with values a, b where
b ∕= −a will be characterized in Theorem 20, subject to an additional condition, using the
following definition. (Theorem 20 is not a previous result, but is included as a counterpart
to Result 16.)
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Definition 19. A (v, {k1, k2},λ) pairwise balanced design is a pair (V,B) where V is a set
of v points and B is a collection of subsets (blocks) each of size k1 or k2, such that every
2-subset of V is contained in exactly λ blocks. The incidence matrix of a (v, {k1, k2},λ)
pairwise balanced design is the v× |B| matrix whose (i, j) entry is 1 if point i is contained
in block j, and is 0 otherwise.

The following characterization of a two-distance tight frame S assumes that the first
column of S is 1 and that S1 = 0. The first assumption is readily satisfied, by negating
rows of S as necessary. We shall show in Proposition 29 that for b ∕= −a, a nontrivial
BSHM(n, ℓ, a, b) with respect to a submatrix H1 can be transformed, using the switching
transformation (2.4) if necessary, so that H11 = 0; we may then apply Theorem 20 with
S = H1.

Theorem 20. Let S be an ℓ × n matrix having first column 1 and satisfying S1 = 0,
and write S =

2
1 J − 2X

3
where J is the ℓ × (n − 1) all-ones matrix. Then S is a

two-distance tight frame with values a, b if and only if X is the incidence matrix of an
(ℓ, { ℓ−a

2
, ℓ−b

2
}, n

4
) pairwise balanced design with n − 1 blocks for which every two distinct

blocks have intersection size lying in { ℓ−a
4
, ℓ−b

4
, ℓ+a−2b

4
, ℓ+b−2a

4
}.

Proof. The ℓ × n matrix S is over {1,−1} if and only if the ℓ × (n − 1) matrix X is
over {0, 1}. and let V and B be the point set and block set corresponding to X.

Let X have rows yT
1 , . . . ,y

T
ℓ . Since S1 = 0, we have yi · 1 = n

2
for each i. The rows of

S are pairwise orthogonal if and only if (1−2yi) ·(1−2yj) = −1 for all distinct i, j, which
is therefore equivalent to yi · yj =

n
4
for all distinct i, j, or equivalently every 2-subset of

V is contained in exactly n
4
blocks.

Let X have columns x1, . . . ,xn−1, so the columns of S are 1,1 − 2x1, . . . ,1 − 2xn−1.
The dot product of columns 1 and 1− 2xi of S lies in {a, b} for all i if and only if

2xi · 1 ∈ {ℓ− a, ℓ− b} for each i, (2.5)

or equivalently each block of B has size ℓ−a
2

or ℓ−b
2
. The dot product of columns 1− 2xi

and 1− 2xj of S lies in {a, b} for all distinct i, j if and only if

(1− 2xi) · (1− 2xj) ∈ {a, b} for all distinct i, j,

which using (2.5) is equivalent to

4xi · xj ∈ {ℓ− a, ℓ− b, ℓ+ a− 2b, ℓ+ b− 2a} for all distinct i, j,

or equivalently every two distinct blocks of B have intersection size lying in

4
ℓ− a

4
,
ℓ− b

4
,
ℓ+ a− 2b

4
,
ℓ+ b− 2a

4

5
.
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3 Parameter constraints for a nontrivial BSHM(n, ℓ, a, b)

In this section, we restrict the parameters of a nontrivial BSHM(n, ℓ, a, b) and obtain
strong new constraints on their mutual relationships. Apart from the case ℓ = 2, whose
parameters are characterized completely in Corollary 34, we identify five parameter classes
in Section 3.6 as summarized in Table 1. A key step in the analysis is to significantly
simplify and extend the result of [22, Proposition 2.6], as Proposition 25 for b = −a
and as Proposition 29 for b ∕= −a. The parameter relations b = −a and b ∕= −a differ
fundamentally as a result of the observation in Remark 5 (iii). We obtain additional new
parameter relations in Section 3.4.

3.1 Associated Strongly Regular Graph

Strongly regular graphs are among the most well-studied graphs in algebraic graph the-
ory [6]. We shall associate a BSHM(n, ℓ, a, b) with a strongly regular graph if b ∕= −a,
and with two strongly regular graphs if b = −a.

Definition 21. A strongly regular graph with parameters (v, k,λ, µ) is a graph with v
vertices, each of degree k, such that every two adjacent vertices have exactly λ common
neighbors and every two non-adjacent vertices have exactly µ common neighbors.

Remark 22.

(i) Let A be the adjacency matrix of a (v, k,λ, µ) strongly regular graph. Then

A2 = kIv + λA+ µ(Jv − Iv − A).

(ii) If G is a (v, k,λ, µ) strongly regular graph, then its complement G is a (v, k,λ, µ)
strongly regular graph, where

(k, λ, µ) = (v − k − 1, v − 2k + µ− 2, v − 2k + λ). (3.1)

Definition 23. Let H be a BSHM(n, ℓ, a, b) with respect to a submatrix H1. The graph
G associated with H has vertex set {1, 2, . . . , n}, and vertices i and j are adjacent when
the ith and jth columns of H1 have dot product a.

Suppose H =

"
H1

H2

#
is a BSHM(n, ℓ, a, b) with respect to H1, and let G be its associ-

ated graph. Interchanging a and b according to Lemma 4 (i) interchanges G with its com-
plementG, whereas applying the switching transformation (2.4) according to Lemma 4 (ii)
leaves G unchanged.

We shall use the following definition in Propositions 25 and 29.

Definition 24. Let H be a BSHM(n, ℓ, a, b) with respect to a submatrix H1. Write ka(i)
for the number of columns in H1, other than column i, whose dot product with column i
is a.
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3.2 The case b = −a

By Remark 5 (iii), we may negate columns of a BSHM(n, ℓ, a,−a) in order to produce
an all-ones row. This leads to the structural result of Proposition 25.

Proposition 25. Suppose H =

"
H1

H2

#
is a nontrivial BSHM(n, ℓ, a,−a) with respect

to H1. Then:

(1) n(ℓ− a2) = ℓ2 − a2

(2) a is even and ℓ
a
is an odd integer and n

4a
is an integer

(3) H can be transformed, by negating columns as necessary, to a matrix H ′ =

&

(
H ′

1

1T

H ′
2

)

+

where H ′
1 has size ℓ× n, and then

(i) H ′ is a BSHM(n, ℓ, a,−a) with respect to H ′
1, and H ′

11 = 0

(ii) ka(i) (defined in relation to H ′
1) is a constant k′

a independent of i, and the graph
G associated with H ′ is strongly regular with parameters

(v, k,λ, µ) = (n, k′
a,λ

′, µ′) =
6
n,

(n− 1)a− ℓ

2a
,
n− 4

4
+

n− 4ℓ

4a
,
n(a− 1)

4a

7

(4) H can be transformed, by negating columns as necessary, to a matrix H ′′ =

&

(
H ′′

1

1T

H ′′
2

)

+

where H ′′
1 has size (ℓ− 1)× n, and then

(i) H ′′ is a BSHM(n, ℓ, a,−a) with respect to

"
H ′′

1

1T

#
, and H ′′

21 = 0

(ii) ka(i) (defined in relation to

"
H ′′

1

1T

#
) is a constant k′′

a independent of i, and the

graph G associated with H ′′ is strongly regular with parameters

(v, k,λ, µ) =
6
n, k′

a +
n

2a
, λ′ +

n

2a
, µ′ +

n

2a

7

=
6
n,

(n− 1)a+ n− ℓ

2a
,
n− 4

4
+

3n− 4ℓ

4a
,
n(a+ 1)

4a

7
.

Proof. We shall prove that (1), (2), (3) hold when H is transformed to H ′; the proof that
(1), (2), (4) hold when H is transformed to H ′′ is similar.

Negation of a column of H leaves the dot product of distinct columns of the upper
ℓ × n submatrix in {−a, a}, and so H ′ is a BSHM(n, ℓ, a,−a) with respect to H ′

1. Row
orthogonality in H ′ then gives H ′

11 = 0. This proves (3)(i).
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Let H ′
1 = (hst) and let the ith column of H ′

1 be ci. For each i, we have

n8

j=1

ci · cj = ka(i)a+ (n− 1− ka(i))(−a) + ℓ

by Definition 24 for ka(i), and also

n8

j=1

ci · cj =
n8

j=1

ℓ8

s=1

hsihsj =
ℓ8

s=1

hsi

n8

j=1

hsj = 0

using H ′
11 = 0. Equate these two expressions to show that ka(i) = k′

a is independent of i
and that

k′
a =

(n− 1)a− ℓ

2a
. (3.2)

Similarly

n8

j=1

(ci · cj)2 = k′
aa

2 + (n− 1− k′
a)(−a)2 + ℓ2 =

n8

j=1

ℓ8

s=1

hsihsj

ℓ8

t=1

htihtj

=
ℓ8

s=1

ℓ8

t=1

hsihti

n8

j=1

hsjhtj = n
ℓ8

s=1

h2
si = nℓ,

using row orthogonality in H ′ to show that
9n

j=1 hsjhtj = 0 for s ∕= t. Therefore (1) holds.
Let A be the adjacency matrix of G. By (2.1) and (2.2) and Definition 23, we have

H ′T
1 H ′

1 = ℓIn + aA− a(Jn − In − A) = (ℓ+ a)In + 2aA− aJn. (3.3)

Square both sides of (3.3) and simplify the resulting expressions using H ′
1H

′T
1 = nIℓ from

(2.3) and (3.3) again and AJn = JnA = k′
aJn and (3.2) and (1) to show that

A2 =
(n− 1)a− ℓ

2a
In +

6n− 4

4
+

n− 4ℓ

4a

7
A+

n(a− 1)

4a
(Jn − In − A).

By Remark 22 (i), G is therefore a strongly regular graph with the parameters (v, k,λ, µ)
given in (3)(ii), and the proof of (3) is complete.

It remains to prove (2). We have that a is even by Result 7 (i). Since k′
a is an integer

and n ≡ 0 (mod 4), we see from (3.2) that ℓ
a
is an odd integer. Since λ is an integer, n

4a

is then an integer.

Remark 26.

(i) Proposition 25 recovers Result 13. By Proposition 25 (2), we have ℓ ∕= n
2
. We

may assume that a > 0, by interchanging a and −a if necessary and noting from
Proposition 25 (1) that a ∕= 0. By Proposition 25 (1), we can then simplify the

quantities
,

ℓ(n−1)
n−ℓ

and
,

(n−ℓ)(n−1)
ℓ

and (n − 2ℓ)
,

n−1
ℓ(n−ℓ)

as ℓ
a
and n−ℓ

a
and n

a
− 2ℓ

a
,

the electronic journal of combinatorics 30(1) (2023), #P1.37 12



respectively, and the conditions on these quantities stated in Result 13 then follow
from Proposition 25 (2).

Furthermore, it follows from Proposition 25 (1) that 0 < a2 ! ℓ− 1. Since a is even
by Proposition 25 (2), we obtain 4 ! a2 ! ℓ−1. Now a2 ∕= ℓ−1, otherwise ℓ

a
= a+ 1

a

is not an integer in contradiction to Proposition 25 (2). Therefore 4 ! a2 ! ℓ − 2,
so n = ℓ2−a2

ℓ−a2
! ℓ2−a2

2
! ℓ2−4

2
which implies the first inequality in Result 13. The

second inequality in Result 13 is then implied by interchanging H1 and H2.

(ii) Proposition 25 recovers the additional integer constraints described in Result 16.
By Proposition 25 (2) (and also by Result 7 (i)), both x and y are integers. By
Proposition 25 (1), we can write λ = n

4
− n

2a
+ 1

2
( ℓ
a
− 1) and r = (n

a
− ℓ

a
)1
2
( ℓ
a
− 1),

which are both integers by Proposition 25 (2).

3.3 The case b ∕= −a

We shall prove the structural result of Proposition 29 for the case b ∕= −a (as a counterpart
to Proposition 25 for the case b = −a). We first establish two preliminary results. Propo-
sition 27 concerns the eigenspaces of the matrix HT

1 H1, and Lemma 28 is an elementary
result about the dot product of two vectors over {1,−1}.

Proposition 27. Suppose that H =

"
H1

H2

#
is a nontrivial BSHM(n, ℓ, a, b) with respect

to H1. Then the eigenvalues of HT
1 H1 are n with corresponding eigenspace Row(H1), and

0 with corresponding eigenspace Row(H2).

Proof. By (2.3) we have (HT
1 H1)H

T
2 = HT

1 (H1H
T
2 ) = 0n×(n−ℓ), so the n × n matrix

HT
1 H1 has eigenvalue 0 and the corresponding eigenspace contains Row(H2). We also

have (HT
1 H1)H

T
1 = HT

1 (H1H
T
1 ) = HT

1 (nIℓ) = nHT
1 , so HT

1 H1 has eigenvalue n and the
corresponding eigenspace contains Row(H1). The result is now given by rank(H1) =
rank(H1H

T
1 ) = rank(nIℓ) = ℓ and similarly rank(H2) = n− ℓ.

Write nu for the number of −1 entries in a vector u over {1,−1}.

Lemma 28. Let u = (ui), v = (vi) be vectors of length ℓ over {1,−1}, and let s be the
number of i for which ui = vi = −1. Then

u · v = ℓ− 2(nu + nv) + 4s ≡ ℓ− 2(nu + nv) (mod 4).

Furthermore, if u · v = u · 1 = v · 1 = 0, then 4 | ℓ and s = ℓ
4
.

Proof. We calculate

u · v = s− (nu − s)− (nv − s) + (ℓ− nu − nv + s)

= ℓ− 2(nu + nv) + 4s (3.4)

≡ ℓ− 2(nu + nv) (mod 4).

Now suppose u · 1 = v · 1 = 0, so that nu = nv = ℓ
2
. Then (3.4) shows that u · v = 0

implies s = ℓ
4
.
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Proposition 29. Suppose H =

"
H1

H2

#
is a nontrivial BSHM(n, ℓ, a, b) with respect to H1,

where b ∕= −a. Let G be the graph associated with H. Then ka(i) = ka is independent of
i, and the matrix H has exactly one of Types 1 and 2.

H has Type 1

(A1) H11 = 0 and (H21)
T (H21) = n2, and if H2 does not contain the all-ones

row 1T then n2 is the sum of n− ℓ integer squares none of which is n2

(A2) n(ℓ+ ab) = (ℓ− a)(ℓ− b) and ab ! 0

(A3) ℓ−b
b−a

and n
b−a

and n(b+1)
2(b−a)

and nb(b+1)
(b−a)2

are integers

(A4) ka =
ℓ−b
b−a

+ nb
b−a

, and G is strongly regular with parameters

(v, k,λ, µ) =
6
n, ka,

nb(b+ 1)

(b− a)2
+

2(ℓ− b)

b− a
− n

b− a
,
nb(b+ 1)

(b− a)2

7
.

H has Type 2

(B1) H21 = 0 and (H11)
T (H11) = n2, and if H1 does not contain the all-ones

row 1T then n2 is the sum of ℓ integer squares none of which is n2

(B2) n(ℓ+ ab− a− b) = (ℓ− a)(ℓ− b) and ab ! 0

(B3) ℓ−b
b−a

and n
b−a

and n(b−1)
2(b−a)

and nb(b−1)
(b−a)2

are integers

(B4) ka =
ℓ−b
b−a

+ n(b−1)
b−a

, and G is strongly regular with parameters

(v, k,λ, µ) =
6
n, ka,

nb(b− 1)

(b− a)2
+

2(ℓ− b)

b− a
− n

b− a
,
nb(b− 1)

(b− a)2

7
.

Furthermore,

"
H1

H2

#
is a BSHM(n, ℓ, a, b) of Type 1 with respect to H1 if and only if

"
H2

H1

#

is a BSHM(n, n−ℓ,−a,−b) of Type 2 with respect to H2, and the switching transformation
(2.4) maps between these two matrices.

Proof. Relabel the rows and columns of H if necessary so that the (1, 1) entry of H is 1.
Let the ith column of H1 be ci. Using row orthogonality in H, a similar derivation to that
in the proof of Proposition 25 gives

n8

j=1

(ci · cj)2 = ka(i)a
2 +

2
n− 1− ka(i)

3
b2 + ℓ2 = nℓ for all i.

Therefore ka(i) = ka is independent of i, and

ka =
ℓ(n− ℓ)− b2(n− 1)

a2 − b2
(3.5)
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using that b ∕= −a by assumption and that b ∕= a by Result 6.
Let A be the adjacency matrix of G, so that A1 = ka1 and

HT
1 H1 = ℓIn + aA+ b(Jn − In − A)

= (ℓ− b)In + (a− b)A+ bJn. (3.6)

Multiplication on the right by 1 gives

HT
1 H11 = c(ℓ, a, b, ka)1, (3.7)

where
c(ℓ, a, b, ka) = ℓ− b+ (a− b)ka + bn, (3.8)

and so c(ℓ, a, b, ka) is an eigenvalue of HT
1 H1. Then by Proposition 27,

c(ℓ, a, b, ka) = 0 or n. (3.9)

By Lemma 4 (ii), H is a BSHM(n, ℓ′, a′, b′) with respect to H2, where (ℓ′, a′, b′) =
(n − ℓ,−a,−b). By (3.5) and (3.8) we have c(ℓ′, a′, b′, ka′) = n − c(ℓ, a, b, ka). Therefore
the transformation (2.4) maps between the two cases specified in (3.9). Since the claimed
conditions for H having Type 2 are obtained from those for H having Type 1 under the
transformation (2.4), we may restrict attention to the case c(ℓ, a, b, ka) = 0 for the rest of
the proof. The final statement of the theorem will then follow from Lemma 4 (ii).

Substitute c(ℓ, a, b, ka) = 0 in (3.7) to give HT
1 H11 = 0. Multiply on the left by 1T to

give (H11)
T (H11) = 0, so that H11 = 0. Since n2 = 1THTH1 = 1T

2
HT

1 H1 +HT
2 H2

3
1,

we then obtain (H21)
T (H21) = n2. Therefore, if H2 does not contain the all-ones row 1T

then n2 is the sum of n− ℓ integer squares none of which is n2. This proves (A1).
Substitute c(ℓ, a, b, ka) = 0 in (3.8) to give

ka =
ℓ− b

b− a
+

nb

b− a
. (3.10)

Equate this expression with (3.5) to give

n(ℓ+ ab) = (ℓ− a)(ℓ− b).

Rearrange as ab(n− 1) = ℓ(ℓ− a− b− n) and use the relation ℓ− a− b− n ! −b from
Lemma 4 (iii) and ℓ < n− 1 to show that ab ! 0. This proves (A2).

Square both sides of (3.6) and simplify the resulting expressions using H1H
T
1 = nIℓ

and (3.6) again and AJn = JnA = kaJn and (3.10) and (A2) to show that

A2 =
6 ℓ− b

b− a
+

nb

b− a

7
In +

62(ℓ− b)

b− a
− n

b− a
+

nb(b+ 1)

(b− a)2

7
A+

nb(b+ 1)

(b− a)2
(Jn − In − A).

Therefore G is a strongly regular graph with the parameters (v, k,λ, µ) given in (A4),
completing the proof of (A4).
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We claim that n(b+1)
2(b−a)

is an integer. Since each of the parameters k,λ, µ is an integer,

this implies that 2n(b+1)
b−a

+ λ− µ− 2k = n
b−a

is an integer, and then (A3) follows.
It remains to prove the claim. Let H1 = (hst) and let I = {j : h1j = −1}. Since

H11 = 0 by (A1), each row of H1 has dot product 0 with 1, and |I| = n
2
. For s ∕= 1,

row orthogonality in H1 and Lemma 28 show that the number of j for which (h1j, hsj) =
(−1,−1) is n

4
and so the number of j for which (h1j, hsj) = (−1, 1) is also n

4
. Therefore

8

j∈I

hsj =
8

j:h1j=−1

hsj =

!
0 for s ∕= 1,

−n
2

for s = 1,
(3.11)

and so
8

j∈I

c1 · cj =
8

j∈I

ℓ8

s=1

hs1hsj =
ℓ8

s=1

hs1

8

j∈I

hsj = −n
2

(3.12)

using (3.11) and the initial assumption that h11 = 1.
Now let

Ia = {j ∈ I : c1 · cj = a},

and then 8

j∈I

c1 · cj =
8

j∈Ia

c1 · cj +
8

j∈Ib

c1 · cj = |Ia|a+ (n
2
− |Ia|)b.

Equate this expression to (3.12) to show that |Ia| = n(b+1)
2(b−a)

, which must be an integer.
This proves the claim.

Remark 30.

(i) Suppose that H is a BSHM(n, ℓ, a, b) with b ∕= −a. We may apply the switching
transformation (2.4) if necessary so that ℓ ! n

2
. In fact, by Proposition 29, we may

apply (2.4) so that either ℓ < n
2
and H has Type 1, or else ℓ ! n

2
and H has Type 2.

(ii) The graph G does not change under the switching transformation (2.4) (and so its
parameters do not change), even though the graph parameters for Type 2 take a
different form from those for Type 1.

(iii) The equality in Proposition 29 (A2),(B2) and the expression for ka in Proposi-
tion 29 (A4), (B4) were also derived in the context of two-distance finite unit-norm
tight frames [2, Theorem 2.4].

(iv) Proposition 29 (A3),(B3), together with Proposition 25 (2), recovers Result 18 (i).
Proposition 29 (A2),(B2) strengthens Result 18 (iii) by removing the condition that
ℓ > max{a, b}.
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3.4 Further Parameter Relations

We now derive further relations among the four parameters n, ℓ, a, b of a balanced split-
table Hadamard matrix (both when b = −a and when b ∕= −a). Recall the notation nu

for the number of −1 entries in a vector u over {1,−1}.

Proposition 31. Suppose there exists a nontrivial BSHM(n, ℓ, a, b). Then:

(i) ℓ ≡ a ≡ b (mod 2)

(ii) ℓ ≡ a (mod 4) or ℓ ≡ b (mod 4).

Proof. Let H be a nontrivial BSHM(n, ℓ, a, b) with respect to a submatrix H1, and let the
ith column of H1 be ci.

(i) By Lemma 28, we have ci · cj ≡ ℓ (mod 2) for all distinct i, j. By Result 6, both a
and b are attained as dot products of distinct columns of H1 and therefore ℓ ≡ a ≡ b
(mod 2).

(ii) Since n > 2, there are distinct i, j for which nci ≡ ncj (mod 2). For this i, j, by
Lemma 28 we have ci · cj ≡ ℓ (mod 4). Since ci · cj ∈ {a, b}, this gives ℓ ≡ a
(mod 4) or ℓ ≡ b (mod 4).

Recall the quantity ka(i) introduced in Definition 24, and the result of Proposition 29
that ka(i) = ka is independent of i when b ∕= −a. We now use Proposition 31 to determine
the value of ka in terms of n only when a ∕≡ b (mod 4).

Proposition 32. Suppose there exists a nontrivial BSHM(n, ℓ, a, b), where a ∕≡ b (mod 4).
Then b ∕= −a and, up to interchange of a and b, we have ℓ ≡ a (mod 4) and ka =

n
2
− 1.

Proof. Let H be a nontrivial BSHM(n, ℓ, a, b) with respect to a submatrix H1, where a ∕≡ b
(mod 4). Then b ∕= −a by Result 7 (i), and so Proposition 29 applies.

After interchanging a and b if necessary, we have (a, b) ≡ (ℓ, ℓ+2) (mod 4) by Propo-
sition 31 (i). Then by Lemma 28, for all distinct i, j we have

ci · cj =
!
a for nci ≡ ncj (mod 2),

b for nci ∕≡ ncj (mod 2).
(3.13)

Since b is attained as a dot product of distinct columns of H1, we may relabel the columns
of H if necessary so that nc1 ≡ 0 (mod 2) and nc2 ≡ 1 (mod 2). Then from Definition 24
and (3.13) we obtain

ka(1) =
::{t ∕= 1 : nct ≡ 0 (mod 2)}

::,
ka(2) =

::{t ∕= 2 : nct ≡ 1 (mod 2)}
::,

and so ka(1) + ka(2) = n − 2. Since ka(1) = ka(2) = ka by Proposition 29, we conclude
that ka =

n
2
− 1.
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Theorem 33. Suppose H is a nontrivial BSHM(n, ℓ, a, b), where a ∕≡ b (mod 4). Then,
up to application of the switching transformation (2.4) and interchange of a and b, the
matrix H is a Type 2 BSHM(n, 2, 2, 0).

Proof. By Proposition 32, we have b ∕= −a (and so Proposition 29 applies) and we may
interchange a and b if necessary so that ℓ ≡ a (mod 4) and ka = n

2
− 1. Apply the

switching transformation (2.4) if necessary so that either ℓ < n
2
and H has Type 1, or else

ℓ ! n
2
and H has Type 2.

Suppose firstly that ℓ ! n
2
andH has Type 2. Combine ka =

n
2
−1 and ka =

ℓ−b
b−a

+ n(b−1)
b−a

from Proposition 29 (B4) to obtain

n− ℓ+ a =
n

2
(a+ b) . (3.14)

Since 0 ! n− ℓ+ a ! n by Lemma 4 (iii), we find that a+ b ∈ {0, 1, 2}. Since a+ b ∕= 1
by Proposition 31 (i), and b ∕= −a, this implies that a+ b = 2. Then ℓ = a from (3.14), so
Proposition 29 (B2) gives b = 0, and therefore a = ℓ = 2. The resulting parameter values
are (ℓ, a, b) = (2, 2, 0), and the condition ℓ ! n

2
is satisfied because H is nontrivial.

Otherwise ℓ < n
2
and H has Type 1. By applying the transformation (2.4) to the

above analysis, we find ℓ = n− 2. This does not satisfy the condition ℓ < n
2
because H is

nontrivial.

We can now characterize the parameters of a nontrivial BSHM(n, 2, a, b), in Corol-
lary 34 (i). We restate in Corollary 34 (ii) the associated Result 8 (v) (derived from [22,
Theorem 3.4]) and include a short proof.

Corollary 34.

(i) Suppose H is a nontrivial BSHM(n, 2, a, b). Then, up to application of the switch-
ing transformation (2.4) and interchange of a and b, the matrix H is a Type 2
BSHM(n, 2, 2, 0).

(ii) A Hadamard matrix of order n " 4 is equivalent to a Type 2 BSHM(n, 2, 2, 0).

Proof.

(i) We have a ≡ b ≡ 0 (mod 2) by Proposition 31 (i). Since |a|, |b| ! 2 by Lemma 4 (iii),
this implies a, b ∈ {−2, 0, 2}. Now b ∕= a by Result 6, and b ∕= −a by Proposi-
tion 25 (1). Therefore a ∕≡ b (mod 4), and the result follows from Theorem 33.

(ii) Suppose H is a Hadamard matrix of order n " 4. Transform H, by negating its
columns as necessary, to a Hadamard matrix H ′ whose first row is the all-ones row.
Then H ′ is a BSHM(n, 2, 2, 0) with respect to its upper 2× n submatrix.

In view of Corollary 34, from now on we shall consider a BSHM(n, ℓ, a, b) only in the
cases 2 < ℓ < n− 2.
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Corollary 35. Suppose there exists a BSHM(n, ℓ, a, b), where 2 < ℓ < n − 2. Then
ℓ ≡ a ≡ b (mod 4).

Proof. By Proposition 31 (ii), we have ℓ ≡ a (mod 4) or ℓ ≡ b (mod 4). Since H is
nontrivial, by Theorem 33 we have a ≡ b (mod 4) (otherwise ℓ ∈ {2, n − 2}). Therefore
ℓ ≡ a ≡ b (mod 4).

Remark 36. The nonexistence results of Result 11, found by computer search, all occur
as special cases of Corollary 35.

3.5 Primitive and Imprimitive

A strongly regular graph G is primitive if both G and its complement G are connected;
otherwise G is imprimitive. We write tKm for the union of t disjoint copies of the complete
graph Km. We then have the following characterization of imprimitive strongly regular
graphs.

Lemma 37 ([6, p. 117]). Suppose G is a (v, k,λ, µ) strongly regular graph, and let (k, λ, µ)
be as in (3.1). Then G is imprimitive if and only if µ = 0 or µ = 0. If µ = 0, then
G = tKm where (v, k,λ, µ) = (tm, m − 1, m − 2, 0). If µ = 0, then G = tKm where
(v, k, λ, µ) = (tm, m− 1, m− 2, 0).

The association of a strongly regular graph to a balanced splittable Hadamard matrix
given in Definition 23 motivates the following definition.

Definition 38. A balanced splittable Hadamard matrix is primitive or imprimitive ac-
cording to whether its associated graph G is primitive or imprimitive, respectively.

In the case b = −a, we may take a nontrivial BSHM(n, ℓ, a, b) to be primitive.

Proposition 39. Suppose H is a nontrivial BSHM(n, ℓ, a,−a). Then, up to negation of
columns, H is primitive.

Proof. Negate columns of H as necessary so that its associated graph is strongly regular
with parameters (v, k,λ, µ) as given in Proposition 25 (3) (or alternatively as in Proposi-
tion 25 (4)). Suppose, for a contradiction, that H is imprimitive. By interchanging a and
−a (which interchanges G and G) if necessary, by Lemma 37 we may take µ = 0. Then
a = 1 from Proposition 25 (3) (or alternatively a = −1 from Proposition 25 (4)), which
contradicts that a is even from Proposition 25 (2).

In the case b ∕= −a, we use Proposition 29 to greatly restrict the possible parameters of
an imprimitive BSHM(n, ℓ, a, b). We shall study these parameter sets further in Section 6.

Proposition 40. Suppose H is an imprimitive BSHM(n, ℓ, a, b), where 2 < ℓ < n−2 and
b ∕= −a. Let G be the graph associated with H. Then, up to application of the switching
transformation (2.4) and interchange of a and b, one of the following holds:
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(i) H is a Type 1 BSHM(4rs, 4s − 1, 4s − 1,−1) for some integers r " 2, s " 1, and
G = 4sKr

(ii) H is a Type 2 BSHM(8rs, 4s, 4s, 0) for some integers r, s " 1, and G = 4sK2r.

Proof. By Proposition 29, the graph G is strongly regular and its parameters (v, k,λ, µ)
are given by (A4) or (B4). Up to interchange of a and b (which interchanges G and G),
by Lemma 37 we may take µ = 0. Apply the switching transformation (2.4) if necessary
so that either ℓ < n

2
and H has Type 1 (in Proposition 29), or else ℓ ! n

2
and H has

Type 2.
Suppose firstly that ℓ < n

2
and H has Type 1. The expression for µ in (A4) gives b ∈

{0,−1}. We cannot have b = 0, otherwise a = ℓ−n by (A2) and then ℓ−b
b−a

= ℓ
n−ℓ

is not an
integer because ℓ < n

2
, contrary to (A3). Therefore b = −1, and then (ℓ−a)(n−ℓ−1) = 0

by (A2). Since ℓ < n− 2, this gives a = ℓ. Then by Corollary 35 we may write ℓ = 4s− 1
for some integer s " 1. Since n

b−a
= − n

4s
is an integer by Proposition 29 (A3) and ℓ < n

2
by

assumption, we may write n = 4rs for some integer r " 2. Comparison of the parameters
v, k in (A4) and Lemma 37 then gives G = 4sKr. This satisfies the conditions for (i).

Otherwise ℓ ! n
2
and H has Type 2. The expression for µ in (B4) gives b ∈ {0, 1}.

We cannot have b = 1, otherwise a = ℓ − n by (B2) and then n
b−a

= n
n−ℓ+1

is not an
integer because 2 < ℓ ! n

2
, contrary to (B3). Therefore b = 0, and a = ℓ by (B2). By

Corollary 35, we may write ℓ = 4s for some integer s " 1. Since n(b−1)
2(b−a)

= n
8s

is an integer by

Proposition 29 (B3), we may then write n = 8rs for some integer r " 1, and comparison
of (B4) and Lemma 37 gives G = 4sK2r. This satisfies the conditions for (ii).

3.6 Table 1 classification

We now combine the results of this section to restrict a BSHM(n, ℓ, a, b) satisfying 2 <
ℓ < n− 2 to lie in one of five classes.

Theorem 41. Suppose H is a BSHM(n, ℓ, a, b), where 2 < ℓ < n − 2, and let G be
the graph associated with H. Then, up to application of the switching transformation
(2.4) and interchange of a, b and (for b = −a) negation of columns, one of the five cases
displayed in the columns of Table 1 holds.

Proof. Distinguish the cases b = −a and b ∕= −a.

Case b = −a Apply the switching transformation (2.4) if necessary so that ℓ ! n
2
, and

interchange a and b if necessary so that a > 0 (noting that a = 0 is excluded by
Proposition 25 (1)). Then a is even and ℓ

a
is an odd integer and n

4a
is an integer, by

Proposition 25 (2). This implies that ℓ ≡ a (mod 4) and ℓ ∕= n
2
. Proposition 25 (1)

shows that ℓ ∕= a2, and so n = ℓ2−a2

ℓ−a2
. Proposition 39 shows that, up to negation

of columns, H is primitive. This establishes the conditions for the first column of
Table 1.

Case b ∕= −a Distinguish the cases H is imprimitive and H is primitive.
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Case H is imprimitive Proposition 40 shows that the conditions are satisfied for
the second and fourth columns of Table 1.

Case H is primitive Since ab ! 0 by Proposition 29 (A2) and (B2), we may
interchange a and b if necessary so that a > 0 " b (noting that a = b = 0 is
excluded by Result 6). Apply the switching transformation (2.4) if necessary
so that either ℓ < n

2
and H has Type 1, or else ℓ ! n

2
and H has Type 2.

Case ℓ < n
2
and H has Type 1 Proposition 29 (A2) shows that ℓ+ab ∕= 0,

otherwise (a, b) = (ℓ,−1) and then µ = 0 by Proposition 29 (A4) and so

H is imprimitive. Therefore n = (ℓ−a)(ℓ−b)
ℓ+ab

from Proposition 29 (A2), and
ℓ−b
b−a

and n
b−a

and n(b+1)
2(b−a)

and nb(b+1)
(b−a)2

are integers from Proposition 29 (A3).

Corollary 35 shows that ℓ ≡ a ≡ b (mod 4). This establishes the condi-
tions for the third column of Table 1.

Case ℓ ! n
2
and H has Type 2 Proposition 29 (B2) shows that ℓ+ab−a−

b ∕= 0, otherwise (a, b) = (ℓ, 0) and then µ = 0 by Proposition 29 (B4) and

soH is imprimitive. Therefore n = (ℓ−a)(ℓ−b)
ℓ+ab−a−b

from Proposition 29 (B2), and
ℓ−b
b−a

and n
b−a

and n(b−1)
2(b−a)

and nb(b−1)
(b−a)2

are integers from Proposition 29 (B3).

Corollary 35 shows that ℓ ≡ a ≡ b (mod 4). This establishes the condi-
tions for the fifth column of Table 1.

4 Open primitive cases

In this section, we tabulate parameter sets (n, ℓ, a, b) for small n for which the existence
of a nontrivial primitive BSHM(n, ℓ, a, b) is not determined by the results presented so
far. We indicate which of these open cases will be settled by the results of Section 5.

From Table 1, there are three possibilities for a nontrivial primitive BSHM(n, ℓ, a, b)
H: the case b = −a (first column), the case b ∕= −a where H has Type 1 (third column),
and the case b ∕= −a where H has Type 2 (the fifth column). In each of these cases,
there is at most one possible value of n for each triple (ℓ, a, b); this contrasts with the
imprimitive cases in which infinitely many values of n are possible.

The following procedures identify all parameter sets for which the existence of a non-
trivial primitive BSHM(n, ℓ, a, b) H is not ruled out by the constraints presented in Ta-
ble 1.

Case b = −a Fix an even value of ℓ > 1. For each a for which 0 < a <
√
ℓ and a ≡ ℓ

(mod 4) and ℓ
a
is an odd integer, calculate n = ℓ2−a2

ℓ−a2
. Retain the parameter values

(n, ℓ, a,−a) provided that n
4a

is an integer and n > 2ℓ.

The 16 parameter sets (n, ℓ, a,−a) with n ! 1296 retained under this procedure
are displayed in Table 2. Existence for five of these parameter sets is given by
Result 14. Nonexistence for the parameter set (96, 20, 4,−4) is given by the nonex-
istence of the associated strongly regular graph in Proposition 25 (3) (as well as that
in Proposition 25 (4)) [5]. Existence for the remaining ten parameter sets remains
open.
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Table 2: Parameter sets (n, ℓ, a,−a) satisfying the constraints in Table 1 for a nontrivial
BSHM(n, ℓ, a,−a) with n ! 1296, and the parameter set (v, k,λ, µ) of the associated
strongly regular graph under each of the transformations of Proposition 25 (3) and (4).

(n, ℓ, a,−a) (v, k,λ, µ) (v, k,λ, µ) BSHM exists? reason
under Prop. 25 (3) under Prop. 25 (4)

(16, 6, 2,−2) (16, 6, 2, 2) (16, 10, 6, 6) yes Result 14
(64, 28, 4,−4) (64, 28, 12, 12) (64, 36, 20, 20) yes Result 14
(96, 20, 4,−4) (96, 45, 24, 18) (96, 57, 36, 30) no [5]
(144, 66, 6,−6) (144, 66, 30, 30) (144, 78, 42, 42) open
(256, 120, 8,−8) (256, 120, 56, 56) (256, 136, 72, 72) yes Result 14
(288, 42, 6,−6) (288, 140, 76, 60) (288, 164, 100, 84) open
(320, 88, 8,−8) (320, 154, 78, 70) (320, 174, 98, 90) open

(400, 190, 10,−10) (400, 190, 90, 90) (400, 210, 110, 110) open
(560, 130, 10,−10) (560, 273, 140, 126) (560, 301, 168, 154) open
(576, 276, 12,−12) (576, 276, 132, 132) (576, 300, 156, 156) yes Result 14
(640, 72, 8,−8) (640, 315, 170, 140) (640, 355, 210, 180) open

(784, 378, 14,−14) (784, 378, 182, 182) (784, 406, 210, 210) open
(1008, 266, 14,−14) (1008, 494, 250, 234) (1008, 530, 286, 270) open
(1024, 496, 16,−16) (1024, 496, 240, 240) (1024, 528, 272, 272) yes Result 14
(1200, 110, 10,−10) (1200, 594, 318, 270) (1200, 654, 378, 330) open
(1296, 630, 18,−18) (1296, 630, 306, 306) (1296, 666, 342, 342) open

Case b ∕= −a where H has Type 1 Fix a value of ℓ > 2. For each a, b for which
ℓ " a > 0 " b " −ℓ and b ∕= −a and a ≡ b ≡ ℓ (mod 4) and ab > −ℓ and
ℓ−b
b−a

is an integer, calculate n = (ℓ−a)(ℓ−b)
ℓ+ab

. Retain the parameter values (n, ℓ, a, b)

provided that n
b−a

and n(b+1)
2(b−a)

and nb(b+1)
(b−a)2

are integers and n > 2ℓ, and provided
that the existence of the associated strongly regular graph G is not ruled out in
Brouwer’s tables of parameters of strongly regular graphs [5], and provided that the
parameters λ, µ given by (3.1) for the complementary graph are both non-negative.

The 30 parameter sets (n, ℓ, a, b) with n ! 256 obtained via this procedure are
displayed in Table 3. Nonexistence for the parameter set (96, 19, 3,−5) is given by
the nonexistence of the associated strongly regular graph. Existence for 16 of the
29 remaining parameter sets will be demonstrated in Section 5.

Case b ∕= −a where H has Type 2 Fix a value of ℓ > 2. For each a, b for which
ℓ " a > 0 " b " −ℓ and b ∕= −a and a ≡ b ≡ ℓ (mod 4) and ab − a − b > −ℓ and
ℓ−b
b−a

is an integer, calculate n = (ℓ−a)(ℓ−b)
ℓ+ab−a−b

. Retain the parameter values (n, ℓ, a, b)

provided that n
b−a

and n(b−1)
2(b−a)

and nb(b−1)
(b−a)2

are integers and n " 2ℓ, and provided that

the existence of the associated strongly regular graph G is not ruled out by [5], and
provided that the parameters λ, µ given by (3.1) for the complementary graph are
both non-negative.
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Table 3: Parameter sets (n, ℓ, a, b) satisfying the constraints in Table 1 for a nontrivial
primitive BSHM(n, ℓ, a, b) of Type 1 with b ∕= −a and n ! 256, and the parameters
(v, k,λ, µ) of the associated strongly regular graph.

(n, ℓ, a, b) (v, k,λ, µ) BSHM exists? reason
(16, 5, 1,−3) (16, 10, 6, 6) yes Corollary 45
(64, 14, 6,−2) (64, 14, 6, 2) yes Corollary 53 (i)
(64, 18, 2,−6) (64, 45, 32, 30) yes Corollary 53 (ii)
(64, 21, 5,−3) (64, 21, 8, 6) yes Corollary 53 (i)
(64, 27, 3,−5) (64, 36, 20, 20) yes Corollary 45
(96, 19, 3,−5) (96, 57, 36, 30) no [5]
(96, 38, 2,−10) (96, 76, 60, 60) open
(96, 45, 9,−3) (96, 20, 4, 4) open
(120, 51, 3,−9) (120, 85, 60, 60) open
(120, 56, 8,−4) (120, 35, 10, 10) open
(144, 22, 10,−2) (144, 22, 10, 2) open
(144, 33, 9,−3) (144, 33, 12, 6) open
(144, 39, 3,−9) (144, 104, 76, 72) open
(144, 44, 8,−4) (144, 44, 16, 12) open
(144, 52, 4,−8) (144, 91, 58, 56) open
(144, 55, 7,−5) (144, 55, 22, 20) open
(144, 65, 5,−7) (144, 78, 42, 42) open
(216, 40, 4,−8) (216, 140, 94, 84) open
(216, 43, 7,−5) (216, 86, 40, 30) open
(256, 30, 14,−2) (256, 30, 14, 2) yes Corollary 53 (i)
(256, 45, 13,−3) (256, 45, 16, 6) yes Corollary 53 (i)
(256, 51, 3,−13) (256, 204, 164, 156) yes Corollary 53 (v)
(256, 60, 12,−4) (256, 60, 20, 12) yes Corollary 53 (i)
(256, 68, 4,−12) (256, 187, 138, 132) yes Corollary 53 (iii)
(256, 75, 11,−5) (256, 75, 26, 20) yes Corollary 53 (i)
(256, 85, 5,−11) (256, 170, 114, 110) yes Corollary 53 (v)
(256, 90, 10,−6) (256, 90, 34, 30) yes Corollary 53 (i)
(256, 102, 6,−10) (256, 153, 92, 90) yes Corollary 53 (v)
(256, 105, 9,−7) (256, 105, 44, 42) yes Corollary 53 (i)
(256, 119, 7,−9) (256, 136, 72, 72) yes Corollary 45

The 30 parameter sets (n, ℓ, a, b) with n ! 256 obtained via this procedure are
displayed in Table 4. The apparent relationship between the entries in Tables 3
and 4 will be explained in Proposition 43. Nonexistence for the parameter set
(96, 21, 5,−3) is given by the nonexistence of the associated strongly regular graph.
Existence for 16 of the 29 remaining parameter sets will be demonstrated in Sec-
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tion 5.

Table 4: Parameter sets (n, ℓ, a, b) satisfying the constraints in Table 1 for a nontrivial
primitive BSHM(n, ℓ, a, b) of Type 2 with b ∕= −a and n ! 256, and the parameters
(v, k,λ, µ) of the associated strongly regular graph.

(n, ℓ, a, b) (v, k,λ, µ) BSHM exists? reason
(16, 7, 3,−1) (16, 6, 2, 2) yes Corollary 45
(64, 15, 7,−1) (64, 14, 6, 2) yes Corollary 53(i)
(64, 19, 3,−5) (64, 45, 32, 30) yes Corollary 53(ii)
(64, 22, 6,−2) (64, 21, 8, 6) yes Corollary 53(i)
(64, 29, 5,−3) (64, 28, 12, 12) yes Corollary 45
(96, 21, 5,−3) (96, 45, 24, 18) no [5]
(96, 39, 3,−9) (96, 76, 60, 60) open
(96, 46, 10,−2) (96, 20, 4, 4) open
(120, 52, 4,−8) (120, 85, 60, 60) open
(120, 57, 9,−3) (120, 35, 10, 10) open
(144, 23, 11,−1) (144, 22, 10, 2) open
(144, 34, 10,−2) (144, 33, 12, 6) open
(144, 40, 4,−8) (144, 104, 76, 72) open
(144, 45, 9,−3) (144, 44, 16, 12) open
(144, 53, 5,−7) (144, 91, 58, 56) open
(144, 56, 8,−4) (144, 55, 22, 20) open
(144, 67, 7,−5) (144, 66, 30, 30) open
(216, 41, 5,−7) (216, 140, 94, 84) open
(216, 44, 8,−4) (216, 86, 40, 30) open
(256, 31, 15,−1) (256, 30, 14, 2) yes Corollary 53(i)
(256, 46, 14,−2) (256, 45, 16, 6) yes Corollary 53(i)
(256, 52, 4,−12) (256, 204, 164, 156) yes Corollary 53(v)
(256, 61, 13,−3) (256, 60, 20, 12) yes Corollary 53(i)
(256, 69, 5,−11) (256, 187, 138, 132) yes Corollary 53(iii)
(256, 76, 12,−4) (256, 75, 26, 20) yes Corollary 53(i)
(256, 86, 6,−10) (256, 170, 114, 110) yes Corollary 53(v)
(256, 91, 11,−5) (256, 90, 34, 30) yes Corollary 53(i)
(256, 103, 7,−9) (256, 153, 92, 90) yes Corollary 53(v)
(256, 106, 10,−6) (256, 105, 44, 42) yes Corollary 53(i)
(256, 121, 9,−7) (256, 120, 56, 56) yes Corollary 45
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5 Constructions for the primitive case

In this section, we develop the study of primitive balanced splittable Hadamard matrices.
In Section 5.1, we show that we can regard a balanced splittable Hadamard matrix H as
having both parameter sets (n, ℓ, a, b) and (n, ℓ+1, a+1, b+1), provided that H contains
the all-ones row. In Section 5.2, we use partial difference sets in elementary abelian
2-groups to construct new infinite families of primitive balanced splittable Hadamard
matrices.

5.1 Inclusion or exclusion of the all-ones row

Inspection of the open parameter sets (n, ℓ, a, b) and (v, k,λ, µ) appearing in Tables 2
to 4 reveals some relationships. Each parameter set (n, ℓ, a,−a) in Table 2 has two
associated strongly regular graph parameter sets (v, k1,λ1, µ1) and (v, k2,λ2, µ2). For
n ! 256, there are corresponding parameter sets (n, ℓ− 1, a− 1,−a− 1) and (v, k2,λ2, µ2)
in Table 3, and corresponding parameter sets (n, ℓ + 1, a + 1,−a + 1) and (v, k1,λ1, µ1)
in Table 4. Furthermore, all other entries (n, ℓ, a, b) and (v, k,λ, µ) in Table 3 are in
one-to-one correspondence with entries (n, ℓ + 1, a + 1, b + 1) and (v, k,λ, µ) in Table 4.
These apparent relationships are all explained by Proposition 43, based on the following
remark.

Remark 42. Let H =

&

(
H1

1T

H2

)

+, where H1 and H2 each contain at least one row. Then the

following are equivalent:

(i) H is a BSHM(n, ℓ, a, b) with respect to H1 and has associated graph G

(ii) H is a BSHM(n, ℓ+1, a+1, b+1) with respect to

"
H1

1T

#
and has associated graph G.

Proposition 43.

(i) Suppose there exists a BSHM(n, ℓ, a,−a), where 2 < ℓ < n − 2. Then there exists
a Type 1 BSHM(n, ℓ − 1, a − 1,−a − 1) containing the all-ones row and having
the same associated graph as some BSHM(n, ℓ, a,−a), and there exists a Type 2
BSHM(n, ℓ + 1, a + 1,−a + 1) containing the all-ones row and having the same
associated graph as some BSHM(n, ℓ, a,−a).

(ii) Let 1 < ℓ < n−2 and b ∕∈ {−a,−a−2}. Then there exists a Type 1 BSHM(n, ℓ, a, b)
containing the all-ones row and having associated graph G if and only if there exists
a Type 2 BSHM(n, ℓ+1, a+1, b+1) containing the all-ones row and having associated
graph G.

Proof.
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(i) Let H be a BSHM(n, ℓ, a,−a). By Proposition 25 (4), H can be transformed to

a matrix H ′′ =

&

(
H ′′

1

1T

H ′′
2

)

+ that is a BSHM(n, ℓ, a,−a) with respect to

"
H ′′

1

1T

#
; let

its associated graph be G′′. Then H ′′ is a BSHM(n, ℓ − 1, a − 1,−a − 1) with
respect to H ′′

1 and has associated graph G′′ by Remark 42, and H ′′ has Type 1 by
Proposition 29 (A1).

By Proposition 25 (3), H can instead be transformed to a matrix H ′ =

&

(
H ′

1

1T

H ′
2

)

+ that

is a BSHM(n, ℓ, a,−a) with respect to H ′
1; let its associated graph be G′. Then H ′

is a BSHM(n, ℓ+ 1, a+ 1,−a+ 1) with respect to

"
H ′

1

1T

#
and has associated graph

G′ by Remark 42, and H ′ has Type 2 by Proposition 29 (B1).

(ii) Let H =

"
H1

H2

#
be a Type 1 BSHM(n, ℓ, a, b) with respect to H1 containing the all-

ones row 1T and having associated graph G. By Proposition 29 (A1), the all-ones

row is contained in H2 and so we can write H =

&

(
H1

1T

H ′
2

)

+. Then H is a BSHM(n, ℓ+

1, a+1, b+1) with respect to

"
H1

1T

#
and has associated graph G by Remark 42, and

H has Type 2 by Proposition 29 (B1) (noting that b+1 ∕= −(a+1) by assumption).

The converse is similar.

Remark 44.

(i) Proposition 43 (i) extends [22, Remark 2.8 (2)].

(ii) The equivalence described in Proposition 43 (ii) relies on the presence of the all-ones
row. In general, one cannot assume that a BSHM(n, ℓ, a, b) contains the all-ones row.
Proposition 43 (i) describes an exception in the case b = −a, when negation of a
column of the matrix leaves all column dot products of the upper ℓ × n submatrix
in {−a, a} (see Proposition 25). Proposition 69 will describe a further exception in
the case (n, ℓ, a, b) = (4rs, 4s, 4s, 0). Remark 71 describes an example of a result
that holds in the presence of the all-ones row but otherwise fails.

Application of Proposition 43 (i) to Result 14 gives the following result.

Corollary 45. Suppose n > 1 is the order of a Hadamard matrix. Then there exists a Type
1 BSHM(4n2, 2n2−n−1, n−1,−n−1) and a Type 2 BSHM(4n2, 2n2−n+1, n+1,−n+1).
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5.2 Constructions from partial difference sets

In this subsection, we use partial difference sets in elementary abelian 2-groups to con-
struct several new infinite families of primitive balanced splittable Hadamard matrices.
In particular, we determine for each parameter set with n ∈ {64, 256} whether a nontriv-
ial primitive BSHM(n, ℓ, a, b) exists. We then use packings of partial difference sets to
produce infinite families of Hadamard matrices that have the balanced splittable property
with respect to multiple disjoint submatrices simultaneously.

We begin by defining a partial difference set and reviewing its basic properties. For a
subset D of a multiplicative group, we write D(−1) = {d−1 | d ∈ D}.
Definition 46. Let D be an ℓ-subset of a multiplicative group G of order v. The subset
D is a (v, ℓ,α, β) partial difference set in G if the multiset {xy−1 | x, y ∈ D, x ∕= y}
contains each nonidentity element of D exactly α times and each nonidentity element of
G \D exactly β times. The partial difference set is regular if 1G /∈ D and D = D(−1).

The parameters of a partial difference set are usually written as (v, k,λ, µ), but we have
instead written (v, ℓ,α, β) to avoid confusion with the strongly regular graph parameters
(v, k,λ, µ) used in Propositions 25 and 29. The condition D = D(−1) in Definition 46 is
guaranteed to hold when α ∕= β [26, Prop. 1.2]. In that case, the condition 1G /∈ D is not
restrictive: if D is a partial difference set and D = D(−1) and 1G ∈ D, then D \ {1G} is a
regular partial difference set [26, p. 222].

Let G be a finite abelian group. The exponent exp(G) of G is the smallest positive
integer n for which gn = 1G for each g ∈ G. A character χ of G is a group homomorphism
from G to the multiplicative group of the complex field C. The image of a character χ
is therefore the multiplicative group of complex (exp(G))th roots of unity. The set of

characters of G forms a group ;G under the operation (χ1 ◦ χ2)(s) = χ1(s)χ2(s) for all

s ∈ G, and the groups G and ;G are isomorphic. We may therefore index the elements
of ;G as {χg : g ∈ G}, and since there is an isomorphism mapping each g to χg we have
χg ◦ χh = χgh for all g, h ∈ G. Therefore χg(s)χh(s) = χgh(s) for all g, h, s ∈ G. The

principal character χ1G of G is the identity element of ;G, satisfying χ1G(s) = 1 for each

s ∈ G. All other characters of G are nonprincipal. For a subset D of G and χ ∈ ;G, the
character sum of χ on D is χ(D) =

9
d∈D χ(d). See [19, Section 2] for an introduction

to the use of characters of finite abelian groups, and for example [35, Chapter 1] for a
comprehensive treatment.

A partial difference set satisfying D = D(−1) can be characterized in terms of the
values of its nonprincipal character sums.

Proposition 47 ([26, Corollary 3.3]). Let G be an abelian group of order v, and let D be
an ℓ-subset of G satisfying D = D(−1). Then the following are equivalent:

(i) D is a (v, ℓ,α, β) partial difference set in G

(ii) α, β are nonnegative integers satisfying ℓ2 = γ + (α− β)ℓ+ βv, where

γ =

!
ℓ− β if 1G ∕∈ D,

ℓ− α if 1G ∈ D,
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and

χ(D) = 1
2

6
α− β ±

<
(α− β)2 + 4γ

7
for all nonprincipal characters χ of G.

Proposition 47 implies that the nonprincipal character sums χ(D) of a (v, ℓ,α, β)
partial difference set D in G satisfying D = D(−1) take the values a and b if and only if

(α, β) =

!
(ℓ+ ab+ a+ b, ℓ+ ab) if 1G ∕∈ D

(ℓ+ ab, ℓ+ ab− a− b) if 1G ∈ D.
(5.1)

See the survey article [26] for a detailed treatment of partial difference sets, and [20] for
some recent constructions.

Definition 48. Let S be a subset of a finite abelian group G. The character table C(S)
of S in G is the matrix with rows indexed by elements of S and columns indexed by
elements of G, whose (s, g) entry is χg(s) for s ∈ S and g ∈ G.

Lemma 49. Let S be a subset of a finite abelian group G, let C(S) be the character table
of S in G, and let g, h ∈ G. Then the dot product of the columns of C(S) indexed by g
and h is χgh(S).

Proof. Let the column of C(S) indexed by g ∈ G be cg. Then

cg · ch =
8

s∈S

χg(s)χh(s) =
8

s∈S

χgh(s) = χgh(S).

We now show how to form a balanced splittable Hadamard matrix from a partial
difference set in Zr

2, via the character table of Zr
2.

Theorem 50. Let D be a subset of Zr
2. Then C(Zr

2) contains the all-ones row, and
D = D(−1), and the following are equivalent:

(i) C(Zr
2) is a BSHM(2r, ℓ, a, b) with respect to C(D), having Type 1 if 1Zr

2
∕∈ D and

b ∕= −a and having Type 2 if 1Zr
2
∈ D and b ∕= −a

(ii) D is a partial difference set of cardinality ℓ in Zr
2 whose nonprincipal character sums

take the values a and b (and whose parameters α, β are given by (5.1) with G = Zr
2).

Proof. Since exp(Zr
2) = 2, each character of Zr

2 takes values in {1,−1}. Therefore C(Zr
2)

is an order 2r matrix over {1,−1}, and contains the all-ones row (namely the row indexed
by 1Zr

2
). This row is contained in the |D|× 2r submatrix C(D) if and only if 1Zr

2
∈ D.

Since h = h−1 for each h ∈ Zr
2, we have D = D(−1) and we may replace χgh by χgh−1

when applying Lemma 49 with G = Zr
2. Take S = Zr

2 in Lemma 49. Then the dot
product of distinct columns of C(Zr

2) indexed by g and h is χgh−1(Zr
2), which equals 0
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because χgh−1 is nonprincipal for g ∕= h. Therefore C(Zr
2) is a Hadamard matrix. Now

take S = D in Lemma 49, and let the column of C(D) indexed by g ∈ Zr
2 be cg. Then

{cg · ch : g, h ∈ Zr
2 are distinct} = {χgh−1(D) : g, h ∈ Zr

2 are distinct}
= {χ(D) : χ is nonprincipal on Zr

2}.

This, together with Proposition 47 and Proposition 29 (A1),(A2),(B2), establishes the
equivalence of (i) and (ii).

Remark 51.

(i) In the special case b = −a, Theorem 50 demonstrates the equivalence of a difference
set in Zr

2 with a real harmonic ETF over {1,−1}, as has been shown in [13, 40]; see
also [37, Section 2.3].

(ii) A connection between a partial difference set and a biangular (two-distance) tight
frame was noted in [7, Theorem 4.24]; however, the partial difference set must be
restricted to lie in an elementary abelian 2-group in order to obtain a balanced
splittable Hadamard matrix according to Theorem 50.

(iii) The construction of Theorem 50 employs a similar technique to that used in [17]
to construct a set of mutually unbiased bases from a semiregular relative difference
set.

(iv) All parameter constraints on a BSHM(2r, ℓ, a, b) (in particular, Proposition 29 and
Corollary 34) apply via Theorem 50 to partial difference sets of cardinality ℓ in Zr

2

whose nonprincipal character sums take the values a and b.

Corollary 52. Let 1 < ℓ < 2r−2 and b ∕∈ {−a,−a−2}. Suppose D is a partial difference
set of cardinality ℓ in Zr

2 whose nonprincipal character sums take the values a and b, and
that 1Zr

2
∕∈ D. Then there exists a Type 1 BSHM(2r, ℓ, a, b) and there exists a Type 2

BSHM(2r, ℓ+ 1, a+ 1, b+ 1).

Proof. By Theorem 50, C(Zr
2) is a Type 1 BSHM(2r, ℓ, a, b) with respect to C(D) that

contains the all-ones row. Then by Proposition 43 (ii), there exists a Type 2 BSHM(2r, ℓ+
1, a+ 1, b+ 1).

We now apply Corollary 52 to families of regular partial difference sets in elementary
abelian 2-groups (obtained in each case from the indicated reference) in order to construct
new infinite families of balanced splittable Hadamard matrices. This result was used to
determine existence for 14 of the 29 entries in each of Tables 3 and 4, leaving no open
cases for the existence of a primitive BSHM(n, ℓ, a, b) with n ∈ {64, 256}.

Corollary 53. There exists a Type 1 BSHM(n, ℓ, a, b) and a Type 2 BSHM(n, ℓ+ 1, a+
1, b + 1) for each of the following parameter sets (n, ℓ, a, b), provided 1 < ℓ < n − 2 and
b ∕∈ {−a,−a− 2}:
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(i) (22m, s(2m − 1), 2m − s,−s), where m " 1 and 1 ! s ! 2m + 1 [26, Example 2.3.3]

(ii)
2
23m, (2m+s − 2m + 2s)(2m − 1), 2m − 2s, 2m − 2s − 2m+s

3
, where 1 ! s < m [26,

Example 9.4]

(iii)
2
22sm, 2(s−1)m(2m−1 − 1)(2sm − 1), 2(s−1)m(2m−1 + 1), −2(s−1)m(2m−1 − 1)

3
and2

22sm, 2(s−1)m(2m−1 − 1)(2sm + 1), 2(s−1)m(2m−1 − 1), −2(s−1)m(2m−1 + 1)
3
, where

s,m " 1 [26, Example 9.6]

(iv)
2
212m, t(22m− 1)(22m+2m+1)(26m+1), t(22m− 1)(22m+2m+1), t(22m− 1)(22m+
2m + 1)− 26m

3
, where m " 1 and 1 ! t ! 2m(2m − 1) [26, Theorem 9.7]

(v)
2
2(4s+2)m, t (2

(2s+1)m−1)(2(2s−1)m+1)
2m+1

, 2(2s+1)m − t2
(2s−1)m+1
2m+1

, −t2
(2s−1)m+1
2m+1

3
and

2
24sm, t2

4sm−1
2m+1

, t2
2sm−1
2m+1

, 22sm(t−1−2m)−t
2m+1

3
, where s,m " 1 and 1 ! t ! 2m + 1 [26,

Example 10.5]

(vi)
2
2(4s+2)m, 2m(22sm−1)

2m+1
(2(2s+1)m + 1), 2m(22sm−1)

2m+1
, −2m(2(2s+1)m+1)

2m+1

3
, where s,m " 1 [27,

p. 282]

(vii)
2
24sm, (22sm−1)2

t
, (t−1)22sm+1

t
, −22sm−1

t

3
and

2
24sm, 24sm−1

t
, 22sm−1

t
, − (t−1)22sm+1

t

3
,

where m " 2 and t " 3 is odd and s (if it exists) is the smallest positive inte-
ger for which t | (2s + 1) [28, Corollary 3.7]

(viii)
2
22m, (2m−s − 1)(2m − 1), −2m−s + 1 + 2m, 1− 2m−s

3
and2

22m, (2m−s − 1)(2m + 1), 2m−s − 1, 2m−s − 1 − 2m
3
, where m " 3 and s | m [28,

Corollary 3.8].

Call a representation of a matrix H in the form

&

'''(

H1

H2
...

Hw

)

***+
a row decomposition of H into

submatrices H1, H2, . . . Hw. Result 9 demonstrates the existence of a family of Hadamard
matrices H admitting a row decomposition into submatrices H1, H2, H3 so that H has the
balanced splittable property with respect to each Hi. We shall significantly extend this
result by making a connection to special packings of partial difference sets: groups whose
nonzero elements can be partitioned into subsets so that every subset, and every union of
subsets, is a partial difference set.

Definition 54. Let G be a finite abelian group. A (δ, t) partial difference set packing
of G with respect to (a1, . . . , at) is a partition of G \ {1G} into subsets D1, . . . , Dt such
that each Di is a partial difference set in G with nonprincipal character sums ai or δ+ ai,
and for each subset I of {1, . . . , t} the set

=
i∈I Di is a partial difference set in G with

nonprincipal character sums
9

i∈I ai or δ +
9

i∈I ai.
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Theorem 55. Suppose D1, . . . , Dt is a (δ, t) partial difference set packing in Zr
2 with

respect to (a1, . . . , at). Partition {1, . . . , t} into subsets I1 . . . , Iw, and for each u in

{1, . . . , w} let ℓu =
9

i∈Iu |Di| and αu =
9

i∈Iu ai and Hu = C
6=

i∈Iu Di

7
. Let j ∈

{1, . . . , w}. Then the order 2r matrix C(Zr
2) admits a row decomposition into submatrices2

1T
3
, H1, . . . , Hw such that the matrix C(Zr

2) is simultaneously a BSHM(2r, ℓj + 1,αj +

1, δ+αj +1) with respect to

"
1T

Hj

#
and a BSHM(2r, ℓu,αu, δ+αu) with respect to Hu for

each u ∕= j.

Proof. By Definition 54, we have 1Zr
2
∕∈ Du for each u. Therefore by Definition 48,

the matrix C(Zr
2) admits a row decomposition into submatrices

2
1T

3
, H1, . . . , Hw. By

Definition 54 and Theorem 50, the matrix C(Zr
2) is a BSHM(2r, ℓu,αu, δ+αu) with respect

to Hu for each u in {1, . . . , w}. Apply Remark 42.

Remark 56. By Theorem 50, the balanced splittable Hadamard matrices constructed in
Theorem 55 for u ∕= j have Type 1 provided αu ∕= −(δ+αu), and that for u = j has Type
2 provided αj + 1 ∕= −(δ + αj + 1).

The LP-packings and NLP-packings of partial difference sets introduced in [20] provide
examples of (δ, t) partial difference set packings.

Definition 57. [20, Definition 3.1 and Lemma 2.5] Let t > 1 and c > 0 be integers. Let
G be an abelian group of order t2c2, and let U be a subgroup of G of order tc. A (c, t)
LP-packing in G relative to U is a partition of G \ U into t partial difference sets in G,
each of which have cardinality c(tc− 1) and nonprincipal character sums −c or (t− 1)c.

Lemma 58. [20, Lemma 3.9] Suppose that D1, . . . , Dt is a (c, t) LP-packing in an abelian
group G of order t2c2 relative to a subgroup U of order tc. Then U \ {1G}, D1, . . . , Dt is
a (tc, t+ 1) partial difference set packing in G with respect to (−1,−c,−c, . . . ,−c).

Definition 59. [20, Definition 6.1 and Lemma 2.5] Let t > 1 and c > 0 be integers.
Let G be an abelian group of order t2c2. A (c, t − 1) NLP-packing in G is a partition of
G \ {1G} into t partial difference sets in G, of which t− 1 have cardinality c(tc + 1) and
nonprincipal character sums c or −(t − 1)c, and one has cardinality (c − 1)(tc + 1) and
nonprincipal character sums c− 1 or −tc+ c− 1.

Lemma 60. [20, Lemma 6.4 and Remark 6.5(i)] Suppose that D0, D1, . . . , Dt−1 is a (c, t−
1) NLP-packing in an abelian group G of order t2c2, where D0 is the exceptional subset.
Then D0, D1, . . . , Dt−1 is a (−tc, t) partial difference set packing in G with respect to
(c− 1, c, c, . . . , c).

We now apply Theorem 55 to (δ, t) partial difference set packings drawn from the
literature [20, 33, 34] in order to produce infinite families of Hadamard matrices admitting
a row decomposition so that the balanced splittable property holds simultaneously with
respect to every union of the submatrices of the decomposition. We believe this approach
to the construction of balanced splittable Hadamard matrices (or equivalent objects) to
be entirely new.
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Corollary 61. Let w, t be positive integers, and let m and a1, . . . , at be integers. Let
I1, . . . , Iw be a partition of {1, . . . , t}, and let j ∈ {1, . . . , w}. Then, for the parameter
values in each of the cases (i) to (v) displayed below, the order 2r matrix C(Zr

2) admits a
row decomposition into submatrices

2
1T

3
, H1, . . . , Hw such that C(Zr

2) is simultaneously

a BSHM(2r, ℓj+1,αj+1, δ+αj+1) with respect to

"
1T

Hj

#
and a BSHM(2r, ℓu,αu, δ+αu)

with respect to Hu for each u ∕= j.

r t (a1, . . . , at) αu ℓu δ
(i) m ! 1 2m 2m + 1 (−1, . . . ,−1) −|Iu| (2m − 1)|Iu| 2m

(ii) m = 0 or m ! 2 2m+ 4 4 (2m − 1, 2m, 2m, 2m)
!

i∈Iu
ai (2m+2 + 1)αu −2m+2

(iii) m ! 3 2m+ 4 4 (2m + 2, 2m − 1, 2m − 1, 2m − 1)
!

i∈Iu
ai (2m+2 + 1)αu −2m+2

(iv) m ! 3 2m+ 4 4 (2m, 2m + 1, 2m − 1, 2m − 1)
!

i∈Iu
ai (2m+2 + 1)αu −2m+2

(v) 6 3 (2, 2, 3)
!

i∈Iu
ai 9αu −8

Proof. For each of the displayed sets of parameter values, we provide a (δ, t) partial
difference set packing in Zr

2 with respect to (a1, . . . , at), calculate αu =
9

i∈Iu ai and
ℓu =

9
i∈Iu |Di|, and apply Theorem 55.

(i) By [20, Theorem 5.3], there is a (1, 2m) LP-packing in Z2m
2 relative to Zm

2 . Therefore
by Lemma 58, there is a (2m, 2m + 1) partial difference set packing D1, . . . , D2m+1

in Z2m
2 with respect to (a1, . . . , a2m+1) = (−1,−1, . . . ,−1), where |Di| = 2m − 1 for

each i. Then αu =
9

i∈Iu ai = −|Iu| for each u and ℓu =
9

i∈Iu |Di| = (2m − 1)|Iu|.

(ii) By [20, Corollary 6.13 (i)], there is an (2m, 3) NLP-packing in Z2m+4
2 . Therefore

by Lemma 60, there is a (−2m+2, 4) partial difference set packing D1, D2, D3, D4 in
Z2m+4

2 with respect to (a1, a2, a3, a4) = (2m−1, 2m, 2m, 2m), where |Di| = (2m+2+1)ai
for each i. Then ℓu =

9
i∈Iu |Di| = (2m+2 + 1)αu for each u.

(iii) By [33, Corollary 6.1 and page 276 lines 1–3] and Proposition 47, there is a (−2m+2, 4)
partial difference set packing D1, D2, D3, D4 in Z2m+4

2 with respect to (a1, a2, a3, a4)
= (2m + 2, 2m − 1, 2m − 1, 2m − 1), where |Di| = (2m+2 + 1)ai for each i. Then
ℓu = (2m+2 + 1)αu for each u.

(iv) By [33, Corollary 6.2 and page 277 lines 1–3] (and a clarification provided in [32]) and
Proposition 47, there is a (−2m+2, 4) partial difference set packing D1, D2, D3, D4

in Z2m+4
2 with respect to (a1, a2, a3, a4) = (2m, 2m + 1, 2m − 1, 2m − 1), where |Di| =

(2m+2 + 1)ai for each i. Then ℓu = (2m+2 + 1)αu for each u.

(v) By [34, Example 3.1] and Proposition 47, there is a (−8, 3) partial difference set
packing D1, D2, D3 in Z6

2 with respect to (a1, a2, a3) = (2, 2, 3), where |Di| = 9ai for
each i. Then ℓu = 9αu for each u.

Remark 62.
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(i) The construction of Result 9, involving a Sylvester-type Hadamard matrix of order
22m, occurs as the special case w = 3, j = 1, |I1| = 1, |I2| = |I3| = 2m−1 of
Corollary 61 (i).

(ii) The result of Corollary 53 (i) (which is obtained from [26, Example 2.3.3]) is implied
by the result of Corollary 61 (i) with respect to a single submatrix Hu, by taking
|Iu| = s for u ∕= j.

6 Constructions and restrictions for the imprimitive case

In this section, we develop the study of imprimitive balanced splittable Hadamard matri-
ces. Propositions 39 and 40 show that, up to application of the switching transformation
(2.4) and interchange of a, b and (for b = −a) negation of columns, we need consider only
two cases for an imprimitive balanced splittable Hadamard matrix H:

(i) H is a Type 1 BSHM(4rs, 4s− 1, 4s− 1,−1) for some integers r " 2, s " 1

(ii) H is a Type 2 BSHM(8rs, 4s, 4s, 0) for some integers r, s " 1.

We examine case (ii) in Section 6.1, using a Kronecker product construction to obtain
new infinite families. We examine case (i) in Section 6.2, using a connection to case (ii)
to construct new infinite families and then using structural constraints to further restrict
the possible parameter values when r is odd.

6.1 Type 2 BSHM(8rs, 4s, 4s, 0)

Recall the notation A⊗B for the Kronecker product of matrices A and B (see Section 2.2).

Proposition 63. Suppose H =

"
H1

H2

#
is a BSHM(8rs, 4s, 4s, 0) with respect to H1. Then

there exists a Hadamard matrix L of order 4s, and the columns of H can be reordered so
that H1 = 1T ⊗ L.

Proof. By Proposition 29 (B4) with (a, b) = (4s, 0), we have k4s = 2r − 1. Therefore by
Definition 24 each column of H1 has length 4s and is identical to (has dot product 4s
with) exactly 2r−1 other columns of H1, and is orthogonal to (has dot product 0 with) all
other columns of H1. Therefore H1 has exactly

8rs
2r

= 4s distinct column types c1, . . . , c4s,
each occurring with multiplicity 2r. The columns c1, . . . , c4s are mutually orthogonal and
so form a Hadamard matrix L of order 4s, and the columns of H can be reordered so that
H1 = 1T ⊗ L =

2
L L . . . L

3
> ?@ A

2r

.

The following construction modifies the Kronecker product construction used to es-
tablish Result 8 (iii).

Proposition 64. Suppose there exists a BSHM(n, ℓ, ℓ, 0) and a Hadamard matrix of or-
der m. Then there exists a BSHM(nm, ℓm, ℓm, 0).
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Proof. Let H be a BSHM(n, ℓ, ℓ, 0) with respect to a submatrix H1, and let K be an order
m Hadamard matrix. We shall show that H ⊗K is a BSHM(nm, ℓm, ℓm, 0) with respect
to H1 ⊗K.

The matrix H1 ⊗ K is an ℓm × nm submatrix of the order nm Hadamard matrix
H ⊗K. By Remark 3, we have HT

1 H1 = ℓ(In + A), where A is a symmetric matrix over
{0, 1} with zero diagonal. Therefore

(H1 ⊗K)T (H1 ⊗K) = ℓ(In + A)⊗mIm,

and all off-diagonal entries of the symmetric matrix (In + A)⊗ Im lie in {0, 1}.
Theorem 65. There exists a BSHM(8rs, 4s, 4s, 0) in each of the following cases:

(i) there exist Hadamard matrices of order 2r and 4s

(ii) there exist Hadamard matrices of order 4r and 2s.

Proof.

(i) Apply Result 8 (iii) to Hadamard matrices of order 2r and 4s.

(ii) Apply Result 8 (v) to a Hadamard matrix of order 4r to obtain a BSHM(4r, 2, 2, 0).
Combine this with a Hadamard matrix of order 2s using Proposition 64.

Remark 66. All parameter sets for which a BSHM(8rs, 4s, 4s, 0) is known to exist are
constructed in Theorem 65. Those in (i) were previously known from Result 8 (iii),
whereas those in (ii) are new.

Table 5 shows the parameter sets for which the existence of a BSHM(8rs, 4s, 4s, 0) is
not determined by Theorem 65, for r, s ! 8.

Table 5: Open cases for a BSHM(8rs, 4s, 4s, 0) with r, s ! 8.

r s (8rs, 4s, 4s, 0)
3 3 (72, 12, 12, 0)
5 3 (120, 12, 12, 0)
3 5 (120, 20, 20, 0)
7 3 (168, 12, 12, 0)
3 7 (168, 28, 28, 0)
5 5 (200, 20, 20, 0)
7 5 (280, 20, 20, 0)
5 7 (280, 28, 28, 0)
7 7 (392, 28, 28, 0)

Assuming the Hadamard matrix conjecture holds (see Section 1), Theorem 65 gives
the following result.

Corollary 67. Assume the Hadamard matrix conjecture holds. Then there exists a
BSHM(8rs, 4s, 4s, 0) for all positive integers r, s except possibly when r, s are both odd
and greater than 1.
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6.2 Type 1 BSHM(4rs, 4s − 1, 4s − 1,−1)

We begin with a structural result similar to that of Proposition 63.

Proposition 68. Suppose H =

"
H1

H2

#
is a BSHM(4rs, 4s − 1, 4s − 1,−1) with respect

to H1. Then there exists a Hadamard matrix

"
1T

L

#
of order 4s, and the columns of H

can be reordered so that H1 = 1T ⊗ L.

Proof. We are given that (a, b) = (4s−1,−1), and so the dot product of every two distinct

columns of the 4s × 4rs matrix H ′
1 =

"
1T

H1

#
lies in {4s, 0}. By Proposition 29 (A4) we

have k4s−1 = r − 1, and therefore each column of H ′
1 is identical to (has dot product 4s

with) exactly r−1 other columns of H ′
1, and is orthogonal to (has dot product 0 with) all

other columns of H ′
1. Therefore H

′
1 has exactly

4rs
r

= 4s distinct column types c1, . . . , c4s,
each occurring with multiplicity r. The columns c1, . . . , c4s are mutually orthogonal and

so form a Hadamard matrix

"
1T

L

#
of order 4s, and the columns of

"
H ′

1

H2

#
can be reordered

so that H ′
1 = 1T ⊗

"
1T

L

#
=

"
1T

1T ⊗ L

#
. Therefore the columns of H can be reordered so

that H1 = 1T ⊗ L =
2
L L . . . L

3
> ?@ A

r

.

We now consider the construction of a BSHM(4rs, 4s − 1, 4s − 1,−1). We shall see
that the cases r even and r odd behave differently. We begin with a relation between a
BSHM(4rs, 4s, 4s, 0) and a BSHM(4rs, 4s− 1, 4s− 1,−1), making use of Remark 42.

Proposition 69. For positive integers r, s, there exists a BSHM(4rs, 4s, 4s, 0) if and only
if there exists a BSHM(4rs, 4s− 1, 4s− 1,−1) containing the all-ones row.

Proof. It is sufficient to prove the implication in the forward direction, because the re-

verse direction follows directly from Proposition 43 (ii). Suppose that H =

"
H1

H2

#
is a

BSHM(4rs, 4s, 4s, 0) with respect to H1. By Proposition 63, we may reorder the columns
ofH so thatH1 = 1T⊗L for some order 4s Hadamard matrix L having columns c1, . . . , c4s.
Transform L, by negating its columns as necessary, to an order 4s Hadamard matrix"
L′

1T

#
. Then the matrix K1 = 1T ⊗

"
L′

1T

#
is obtained from H1 by either negating or leav-

ing unchanged all r occurrences of ci (for each i independently), and so the dot product
of two distinct columns of K1 is identical to the dot product of the same two columns of

H1 (namely 4s or 0). Therefore, writing K1 =

"
H ′

1

1T

#
, the matrix

"
K1

H2

#
=

&

(
H ′

1

1T

H2

)

+ is a

BSHM(4rs, 4s, 4s, 0) with respect to K1. This matrix contains the all-ones row, and by
Remark 42 is a BSHM(4rs, 4s− 1, 4s− 1,−1) with respect to H ′

1.
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Proposition 69 allows us to transform each imprimitive balanced splittable Hadamard
matrix with b = 0 constructed in Theorem 65 to an imprimitive balanced splittable
Hadamard matrix with b = −1.

Corollary 70.

(i) There exists a BSHM(4rs, 4s− 1, 4s− 1,−1) in each of the following cases:

(a) there exist Hadamard matrices of order r and 4s

(b) there exist Hadamard matrices of order 2r and 2s.

(ii) Let r be odd. Then there is no BSHM(4rs, 4s−1, 4s−1,−1) containing the all-ones
row.

Proof.

(i) Apply Proposition 69 to Theorem 65.

(ii) By Proposition 40, a BSHM(4rs, 4s, 4s, 0) does not exist for r odd. Apply Proposi-
tion 69.

Remark 71. Corollary 70 (ii) does not hold if the condition on the presence of the all-ones
row is removed: by Result 8 (vi), a BSHM(4s(4s− 1), 4s− 1, 4s− 1,−1) exists provided
4s is the order of a skew-type Hadamard matrix. A conjecture attributed to Seberry
[9, p. 274] states that a skew-type Hadamard matrix exists for each order 4s, and the
conjecture is known to hold for all s < 47 [9, p. 275].

We now derive some further parameter restrictions when r is odd.

Proposition 72. Suppose H =

"
H1

H2

#
is a nontrivial BSHM(4rs, 4s− 1, 4s− 1,−1) with

respect to H1, where r is odd. Then r2 is the sum of 4rs − 4s + 1 odd squares, and
r " 4s− 1.

Proof. By Proposition 68, the columns of H can be reordered so that

H1 =
2
L L . . . L

3
> ?@ A

r

for some (4s− 1)× 4s matrix L. For 1 ! i ! r, let

"
ui

ci

#
be the (4is+ 1)th column of H,

where ui is contained in H1 and ci is contained in H2. The repeating structure of H1

gives
ui · uj = 4s− 1 for all i, j.

Since the columns of the Hadamard matrix H are orthogonal, this gives the following
relationship between the columns of H2:

ci · cj =
!
4rs− 4s+ 1 for i = j,

−(4s− 1) for i ∕= j.
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Now let v =
9r

i=1 ci. Then

v · v =
r8

i=1

ci · ci +
8

i ∕=j

ci · cj

= r(4rs− 4s+ 1)− r(r − 1)(4s− 1)

= r2.

Each of the 4rs − 4s + 1 entries of v is the sum of r terms ±1, and so is odd because r
is odd by assumption. Therefore v · v = r2 is the sum of 4rs− 4s+ 1 odd squares. This
implies that r2 " 4rs− 4s+ 1, which rearranges as

(r − 1)(r + 1− 4s) " 0.

Since H is nontrivial, we have r " 1 and therefore r " 4s− 1.

Remark 73. The bound on r in Proposition 72 is tight, by the construction of Result 8 (vi).

Table 6 shows the parameter sets for which the existence of a BSHM(4rs, 4s− 1, 4s−
1,−1) is not determined by Result 8 (vi) and Corollary 70 and Proposition 72, for 2 !
r ! 12 and s ! 8.

Table 6: Open cases for a BSHM(4rs, 4s− 1, 4s− 1,−1) with 2 ! r ! 12 and s ! 8.

r s (4rs, 4s− 1, 4s− 1,−1)
5 1 (20, 3, 3,−1)
7 1 (28, 3, 3,−1)
9 1 (36, 3, 3,−1)
11 1 (44, 3, 3,−1)
9 2 (72, 7, 7,−1)
6 3 (72, 11, 11,−1)
11 2 (88, 7, 7,−1)
10 3 (120, 11, 11,−1)
6 5 (120, 19, 19,−1)
6 7 (168, 27, 27,−1)
10 5 (200, 19, 19,−1)
10 7 (280, 27, 27,−1)

Result 8 (vi) and Corollary 70 and Proposition 72 combine to give the following result.
(The existence of a skew-type Hadamard matrix is discussed in Remark 71.)

Corollary 74. Assume the Hadamard matrix conjecture holds. Then the existence of a
BSHM(4rs, 4s− 1, 4s− 1,−1) for integers r " 2 and s " 1 is determined by:
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r = 2 or r ≡ 0 (mod 4) exists
r ≡ 2 (mod 4) and r > 2 exists if s = 1 or s even,

otherwise open
r odd does not exist if r < 4s− 1,

exists if r = 4s− 1 and 4s is order of skew-type Hadamard matrix,
otherwise open

7 Open questions

We propose some open questions for future research.

(i) Propositions 25 and 29 show that a balanced splittable Hadamard matrix is asso-
ciated with a strongly regular graph, and we have restricted the possible forms of
these graphs as summarized in Table 1. We are grateful to a reviewer for proposing
the converse question: under what conditions can a given strongly regular graph be
associated with a balanced splittable Hadamard matrix?

(ii) Does there exist a BSHM(n, ℓ, a,−a) where (n, ℓ, a) do not take the form (4u2, 2u2−
u, u) for some integer u (as in Result 14)? From Table 2, the smallest open case
occurs at (n, ℓ, a) = (288, 42, 6). As noted after Definition 12, a BSHM(n, ℓ, a,−a)
is equivalent to an ℓ× n real flat ETF that is a submatrix of an order n Hadamard
matrix. It is therefore interesting to note the existence of a real flat ETF with size
not of the form (2u2 − u)× 4u2, as discussed in [14, p. 297].

(iii) A BSHM(4u2, 2u2 − u, u,−u) exists when u is the order of a Hadamard matrix
(Result 14), but does not exist when u is odd (Result 7 (i)). Does there exist a
BSHM(4u2, 2u2−u, u,−u) for u ≡ 2 (mod 4) and u > 2? From Table 2, the smallest
open case occurs at u = 6, for a BSHM(144, 66, 6,−6) (see also [21, p. 2050]). We
note that a real flat 66× 144 ETF is known to exist [14, Corollary 1].

(iv) By Results 13 and 18 (ii), the parameter n for a BSHM(n, ℓ, a, b) is bounded from
above by a quadratic function in ℓ. These results were derived for matrices with
real entries, not necessarily restricted to lie in {1,−1}. Can the growth rate of the
upper bound be improved by including the condition that the entries of a balanced
splittable Hadamard matrix must lie in {1,−1}?

(v) Corollary 61 uses (δ, t) partial difference set packings with respect to (a1, . . . , at)
in an elementary abelian 2-group, in order to construct Hadamard matrices hav-
ing the balanced splittable property with respect to multiple disjoint submatrices
simultaneously. Are there further examples of such partial difference set packings?
Constraints on the possible parameters δ, t, a1, . . . , at are given in [10, Theorem 1],
expressed in the language of amorphic association schemes.

(vi) Result 8 (vi) describes a direct construction (not involving a Kronecker product) of
an infinite family of imprimitive balanced splittable Hadamard matrices. Are there
further such constructions?
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