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Abstract

LetG be an n-vertex graph with adjacency matrix A, andW = [e,Ae, . . . , An−1e]
be the walk matrix of G, where e is the all-one vector. In Wang [J. Combin. Theory,
Ser. B, 122 (2017): 438-451], the author showed that any graph G is uniquely
determined by its generalized spectrum (DGS) whenever 2−⌊n/2⌋ detW is odd and
square-free. In this paper, we introduce a large family of graphs

Fn = {n-vertex graphs G : 2−⌊n/2⌋ detW = p2b and rank W = n− 1 over Z/pZ},

where b is odd and square-free, p is an odd prime and p ∤ b. We prove that any graph
in Fn either is DGS or has exactly one generalized cospectral mate up to isomor-
phism. Moreover, we show that the problem of finding the generalized cospectral
mate for a graph in Fn is equivalent to that of generating an appropriate rational
orthogonal matrix from a given integral vector. This equivalence essentially depends
on a surprising property of graphs in terms of generalized spectra, which states that
any symmetric integral matrix generalized cospectral with the adjacency matrix of
some graph must be an adjacency matrix. Based on this equivalence, we develop an
efficient algorithm to decide whether a given graph in Fn is DGS and further to find
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the unique generalized cospectral mate when it is not. We give some experimental
results on graphs with at most 20 vertices, which suggest that Fn may have a posi-
tive density (nearly 3%) and possibly almost all graphs in Fn are DGS as n → ∞.
This gives supporting evidence for Haemers’ conjecture that almost all graphs are
determined by their spectra.

Mathematics Subject Classifications: 05C50

1 Introduction

All graphs considered in this paper are simple and undirected. The spectrum of a graph G,
denoted by σ(G), is the multiset of all eigenvalues of its adjacency matrix. The generalized
spectrum of a graph G is defined to be the pair (σ(G), σ(Ḡ)), where Ḡ is the complement
of G. Two graphs are generalized cospectral if they share the same generalized spectrum.
Clearly, isomorphic graphs are generalized cospectral, but the converse is not true in
general. Two graphs G and H are called a pair of generalized cospectral mates if they
are generalized cospectral but nonisomorphic. A graph G is determined by generalized
spectrum (or DGS for short) if it has no generalized cospectral mates, that is, all graphs
having the same generalized spectrum as G are isomorphic to G. We remark that in
the context of the classical adjacency spectrum, the corresponding notions have received
considerable attention. We refer the readers to [1, 2].

We are mainly concerned with the generalized spectra of graphs in this paper. For
a given graph G, a natural problem is to determine whether G is DGS or not, or more
subtly, to find some or all (if any) generalized cospectral mates of G. The problem turns
out to be very difficult in general. Nevertheless, Wang [12, 13] found a strong connection
between this problem and the properties of walk matrices of graphs. For a graph G with
n vertices, the walk matrix of G, denoted by W (G) or simply W , is the n × n matrix
[e, Ae, . . . , An−1e], where A is the adjacency matrix of G and e is the all-one column vector
of dimension n. The following simple arithmetic condition on detW for a graph G being
DGS was obtained in [13].

Theorem 1 ([13]). If 2−⌊n
2
⌋ detW (which is always an integer) is odd and square-free,

then G is DGS.

The condition of Theorem 1 is the best possible in the sense that if detW has a
multiple odd prime factor then G may not be DGS. A small counterexample can be found
in [12]. The general idea hidden in that counterexample was revealed by the following
theorem. For an integral matrix M and a prime p, we use rankpM to denote the rank of
M over the finite field Fp = Z/pZ.

Theorem 2 ([11]). Let p be an odd prime. Suppose that detW ∕= 0 and the following
conditions hold:
(i) p2 | detW ;
(ii) rankpW = n− 1;
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(iii) WTz ≡ 0 (mod p) has a solution (permuting the entries, or equivalently reordering
the vertices, if necessary) of the form

(−1,−1, . . . ,−1! "# $
p

, 1, 1, . . . , 1! "# $
p

, 0, 0, . . . , 0)T.

Then G is not DGS. Furthermore, G has a generalized cospectral mate whose adjacency
matrix is similar to A via a rational orthogonal matrix

Q =

%

&
1
p

'
pIp − J J

J pIp − J

(

In−2p

)

* , (1)

where I and J are the identity matrix and the all-one matrix, respectively.

The key point of Theorem 2 is that, under the stated assumptions, the matrix QTAQ
must be a symmetric (0, 1)-matrix with vanishing diagonal, that is, an adjacency matrix.
We remark that the established pair of generalized cospectral mates also has a clear
meaning from the viewpoint of edge switchings. This kind of switching is referred to as
generalized GM-switching, which, as an analogue to the original GM-switching method
introduced in [3], can be used to construct some new pairs of generalized cospectral mates;
see [6, 7] for some recent application of the generalized GM-switching in constructing
cospectral strongly regular graphs.

The main weakness of the above theorem is the third condition. The required solution
seems so special that it can rarely be satisfied. A natural question is whether there exist
some other kinds of solutions to guarantee the existence of a generalized cospectral mate
for G. What is the exact relationship between the DGS-property of G and the solutions
to WTz ≡ 0 (mod p)?

In this paper, we shall introduce a large family of graphs closely related to the first
two conditions of Theorem 2. The main discovery is that for this family of graphs, the
DGS-property of a graph can be completely determined from any nontrivial solution to
the equation WTz ≡ 0 (mod p). To give the definition, we first recall some basic facts
about the Smith normal form of an integral matrix.

Two n×n integral matrices M1 and M2 are integrally equivalent if M2 can be obtained
from M1 by a sequence of the following operations: row permutation, row negation,
addition of an integer multiple of one row to another and the corresponding column
operations. Any integral invertible matrix M is integrally equivalent to a diagonal matrix
diag [d1, d2, . . . , dn], known as the Smith normal form of M , in which d1, d2, . . . , dn are
positive integers with di | di+1 for i = 1, . . . , n− 1. We are mainly interested in the Smith
normal form of an invertible walk matrix. A particularly interesting example is the walk
matrix for graphs satisfying the condition of Theorem 1.

Theorem 3 ([13]). If 2−⌊n
2
⌋ detW = b for some odd and square-free integer b, then the

Smith normal form of W is

diag [1, 1, . . . , 1! "# $
⌈n
2
⌉

, 2, 2, . . . , 2, 2b! "# $
⌊n
2
⌋

].
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Now we introduce a family of graphs using Smith normal forms of walk matrices.

Definition 4. For a positive integer n, we use Fn to denote the family of all graphs G of
order n such that the Smith normal form of W (G) is

diag [1, 1, . . . , 1! "# $
⌈n
2
⌉

, 2, 2, . . . , 2, 2p2b! "# $
⌊n
2
⌋

],

where b is odd and square-free, p is an odd prime and p ∤ b.
Remark 5. The unique odd prime p satisfying p2 | detW is a crucial parameter for a
graph G ∈ Fn. We shall use the notation Fp

n = {G ∈ Fn : p2 | detW}.
We note that graphs in Fn can also be equivalently defined as graphs satisfying (i)

2−⌊n/2⌋ detW = p2b and (ii) rankpW = n− 1 simultaneously, with the same assumptions
on b and p as in Definition 4. In particular, every graph in Fn clearly satisfies the first
two conditions of Theorem 2. Compared the Smith normal form in Definition 4 with
that in Theorem 3, the only difference is the last invariant factor. For graphs in Fn, the
last invariant contains exactly one square factor. Intuitively, since a graph in Fn almost
satisfies the condition of Theorem 1, it may be almost determined by its generalized
spectrum. Indeed, we shall prove the following theorem.

Theorem 6. Every graph in Fn has at most one generalized cospectral mate.

We shall prove Theorem 6 in Section 2.2. We relate any possible generalized cospectral
mates of G ∈ Fp

n to a particular kind of orthogonal matrices, which we call primitive
matrices. We show that for a fixed graph G ∈ Fp

n not being DGS, all possible primitive
matrices related to G are unique up to column permutations. In Section 2.3, we further
establish the equivalence between the existence of a generalized cospectral mate for a
graph and the existence of a primitive matrix.

In order to give a complete criterion to distinguish two different kinds (DGS v.s.
non-DGS) of graphs in Fn, in Section 3 we develop a procedure to generate all possible
primitive matrices from a given vector. When it succeeds, it finds a generalized cospectral
mate; when it fails, it indicates that the given graph is DGS. Using the proposed algorithm,
we conduct a numerical experiment on graphs with at most 20 vertices, which suggests
that, for not too small n, while Fn may have a stable positive density (nearly 3%), almost
none of Fn has a generalized cospectral mate. This gives some evidence for Haemers’
conjecture that almost all graphs are determined by their spectra.

2 Existence and uniqueness of generalized cospectral mates

2.1 Preliminaries

An orthogonal matrix Q is called regular if Qe = e (or equivalently, QTe = e). An
old result of Johnson and Newman [8] states that two graphs G and H are generalized
cospectral if and only if there exists a regular orthogonal matrix Q such that QTA(G)Q =
A(H). A graph G is controllable if W (G) is invertible. For controllable graphs, the
corresponding matrix Q is unique and rational [10].
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Lemma 7 ([8, 10]). Let G be a controllable graph of order n and H be a graph general-
ized cospectral with G. Then H is controllable and there exists a unique regular rational
orthogonal matrix Q such that QTA(G)Q = A(H). Moreover, the unique Q satisfies
Q = W (G)W−1(H) and hence is rational.

For a rational matrix Q, the level of Q, denoted by ℓ(Q), or simply ℓ, is the smallest
positive integer k such that kQ is an integral matrix. For a controllable graph G, define
Q(G) to be the set of all regular rational orthogonal matrices Q such that QTA(G)Q is
an adjacency matrix. It is easy to show that for any Q ∈ Q(G), the level ℓ(Q) must
be a factor of dn, the last invariant factor of W (G). It turns out that under some mild
assumptions on W , some factors of dn can never be realized as levels for any Q ∈ Q(G).
For nonzero integers n, m and positive integer k, we use mk || n to indicate that mk

precisely divides n, i.e., mk | n but mk+1 ∤ n.

Lemma 8 ([12]). Let Q ∈ Q(G) with level ℓ, and p be an odd prime. Suppose that
rankpW = n− 1 and p || detW (or equivalently, p || dn). Then p ∤ ℓ and hence ℓ | dn

p
.

Lemma 9 ([13]). Let Q ∈ Q(G) with level ℓ. Suppose that rank2W = ⌈n/2⌉ and 2⌊n/2⌋ ||
detW (or equivalently, 2 || dn). Then 2 ∤ ℓ and hence ℓ | dn

2
.

Both of the above lemmas have been strengthened in a recent paper by Qiu et al.
[9], using a new and unified approach. We need the following improvement of Lemma 8,
which is an easy consequence of [9, Theorem 1.2].

Lemma 10 ([9]). Let Q ∈ Q(G) with level ℓ, and p be an odd prime. Suppose that
rankpW = n − 1 and pk || detW (or equivalently pk || dn) for some positive integer k.
Then pk ∤ ℓ and hence ℓ | dn

p
.

The following corollary is immediate.

Corollary 11. Let G ∈ Fp
n. Then ℓ(Q) = 1 or ℓ(Q) = p for any matrix Q ∈ Q(G).

Note that any regular rational orthogonal matrix with level one is a permutation
matrix. Since permutation matrices generate isomorphic graphs, we shall be mainly con-
cerned with the case ℓ(Q) = p.

Lemma 12. Let G ∈ Fp
n and Q ∈ Q(G). If ℓ(Q) = p then rankp(pQ) = 1.

Proof. Let H be the graph such that QTA(G)Q = A(H). Then QTW (G) = W (H), or
equivalently, WT(G)Q = WT(H). Write Q̂ = pQ. We have WT(G)Q̂ = pWT(H) ≡ 0
(mod p). As G ∈ Fp

n, we see that rankpW (G) = n − 1 and hence rankpW
T(G) = n − 1.

Therefore, the solution space of WT(G)z ≡ 0 (mod p) is one dimensional. Consequently,
rankpQ̂ ! 1. On the other hand, since ℓ(Q) = p, the minimality of ℓ(Q) means that Q̂

contains at least one entry which is nonzero over Fp. Thus rankpQ̂ " 1. This proves that

rankpQ̂ = 1, as desired.
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2.2 Primitive matrix and its uniqueness

We always assume that p is an odd prime.

Definition 13. A regular rational orthogonal matrix Q of level p is called a primitive
matrix if rankp(pQ) = 1.

Example 14. Consider a regular rational orthogonal matrix

Q =
1

3

%

++&

−1 2 0 2
0 0 3 0
2 −1 0 2
2 2 0 −1

)

,,* . (2)

One can see that ℓ(Q) = 3 and rank3(3Q) = 1. Thus, Q is a primitive matrix.

Removing the second row and the third column from Q, the resulting submatrix is also
a primitive matrix, each entry of which is nonintegral. The following lemma summarizes
this phenomenon in a slightly different manner.

Lemma 15. Let Q be a primitive matrix of order n. If there exists some entry which
is integral, then after necessary row permutations and column permutations, Q has the
quasi-diagonal form diag [Q0, I], where Q0 is a primitive matrix containing no integral
entries.

Proof. Clearly for any primitive matrix Q, the integral entry of Q can only be 0 or 1.
Moreover, we claim that Q contains 0 if and only if Q contains 1. The ‘if’ part is clear
since each row (and column) of Q has length one in Rn. Let the (i, j)-entry qi,j of Q

be zero. Write Q̂ = pQ. Then either the i-th row or the j-th column of Q̂ is the zero
vector over Fp since otherwise one would easily find a 2 × 2 invertible submatrix in Q̂,

contradicting the fact that rankp(Q̂) = 1. Clearly, in either case, Q̂ contains p as an entry,
i.e., Q contains 1 as an entry.

Suppose that Q has exactly k entries equal to one. Then these k entries clearly lie in
different rows and columns in Q, and all other entries in the involved rows and columns
are necessarily zero. Thus, by some obvious row and column permutations, we can change
Q into a quasi-diagonal form diag [Q0, Ik]. Clearly Q0 is a primitive matrix. Finally, as
Q0 does not contain 1 as an entry, it does not contain 0 as an entry. Thus, Q0 contains
no integral entries.

Definition 16. Let v be an n-dimensional integral vector and Q be a primitive matrix.
We say Q can be generated from v (or v can generate Q) if each column of pQ is a multiple
of v over Fp.

Remark 17. If a primitive matrix Q can be generated from v and v′ is an integral vector
such that v′ ≡ cv (mod p) for some c ∕≡ 0 (mod p), then Q can also be generated from
v′.
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Now we can give a necessary condition for a graph in Fn to have a generalized cospec-
tral mate.

Proposition 18. Let G ∈ Fp
n. If G is not DGS then any nontrivial solution to WTz ≡ 0

(mod p) can generate some primitive matrix.

Proof. As G is not DGS, we see that Q(G) contains a matrix which is not a permutation
matrix. Let Q be such a matrix in Q(G). Then by Corollary 11, we have ℓ(Q) = p.
Moreover, by Lemma 12, we see that rankp(pQ) = 1 and hence Q is a primitive matrix.
From the proof of Lemma 12, we find that the column space of pQ coincides with the
(one-dimensional) solution space of WTz ≡ 0 (mod p). The proposition follows.

Remark 19. Under the assumption of Proposition 18, each matrix Q ∈ Q(G) that is not
a permutation matrix can be generated from a nontrivial solution to WTz ≡ 0 (mod p).

Suppose Q is a primitive matrix generated from v. By the very definition, we know
that all matrices obtained from Q by column permutations can also be generated from
v. A key result of this section is to show the reversed direction: Every primitive matrix
generated from v can be obtained from Q by some column permutations.

The following lemma plays a fundamental role in this paper.

Lemma 20. Let u and v be two n-dimensional integral column vectors with each entry
nonzero modulo p. Suppose that (i) u and v are linearly dependent over Fp; (ii) u ∕= ±v;
and (iii) uTu = vTv = p2. Then uTv = 0.

Proof. Since u and v are linearly dependent over Fp, there exist two integers a and b, not
both zero in Fp, such that

au+ bv ≡ 0 (mod p). (3)

We claim that neither a nor b is zero. Actually, if a ≡ 0 (mod p) then b ∕≡ 0 (mod p)
and hence we obtain v ≡ 0 (mod p) by (3). This contradicts our assumption on v. Thus
a ∕≡ 0 (mod p). Similarly, we also have b ∕≡ 0 (mod p). This proves the claim.

By (3) we have (au+bv)T(au+bv) ≡ 0 (mod p2), that is, a2uTu+2abuTv+b2vTv ≡ 0
(mod p2), which can be reduced to

2abuTv ≡ 0 (mod p2), (4)

as uTu = vTv = p2. Since 2ab ∕≡ 0 (mod p), Eq. (4) can be further reduced to uTv ≡ 0
(mod p2).

By the Cauchy-Schwarz inequality, we have |uTv| !
√
uTu

√
vTv with the equality

holding if and only if u and v are linearly dependent over R. From the last two conditions
of this lemma, one clearly sees that u and v are not linearly dependent over R. Therefore,
we must have |uTv| < p2, which, together with the established congruence uTv ≡ 0
(mod p2), implies uTv = 0. This completes the proof.

Theorem 21. Let Q be a primitive matrix generated from v. Then every primitive matrix
generated from v can be obtained from Q by some column permutations.
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Proof. Let Q′ be any primitive matrix generated from v. We use αi and βi respectively
to denote the i-th column of pQ and pQ′, for i = 1, 2, . . . , n. We first consider the case
that each entry of v is nonzero modulo p.

We claim that Q (and similarly Q′) contains no integral entries. Suppose to the
contrary that Q contains an integral entry. Then Q contains one as an entry, say qi,j = 1.
Let αk be the k-th column such that αk ∕≡ 0 (mod p). Then we have αk = cv (mod p)
for some integer c. Since αk contains at least one entry which is nonzero modulo p, we
see that c ∕≡ 0 (mod p). Consequently, as we assume that each entry of v is nonzero
modulo p, we find that each entry of αk is nonzero modulo p, that is each entry of αk/p is
nonintegral. But, as qi,j = 1, the i-th row of Q must be a standard unit vector and hence
at least one entry of αk/p is integral. This contradiction proves the claim.

We next claim that either αi = βj or αT
i βj = 0 for each pair (possibly equal) i and

j. We may assume αi ∕= βj. Noting that eTαi = eTβj = p, it can never happen that
αi ∕= −βj. Thus, αi ∕= ±βj. Moreover, as Q and Q′ contains no integral entries, both αi

and βj are nonzero multiples of v over Fp. Thus, αi and βj are linearly dependent over
Fp, and each entry of αi and βj is nonzero modulo p. Of course, αT

i αi = βT
j βj = p2 by the

orthogonality of Q and Q′. Therefore, all conditions of Lemma 20 for u = αi and v = βj

are satisfied and we can obtain αT
i βj = 0, as claimed. Now we fix βj and consider all

possible αi’s. Note that {α1,α2, . . . ,αn} constitutes a basis of Rn. Since βj is a nonzero
vector in Rn, the equality αT

i βj = 0 cannot hold for all i simultaneously. Thus, by the
claim, βj = αi for some i. That is, the j-th column of pQ′ must appear as a column of
pQ. Noting that all columns of pQ′ are pairwise different, we see that pQ′ can be obtained
from pQ, or equivalently, Q′ can be obtained from Q, by some column permutations.

It remains to consider that case that v contains at least one entry which is zero
modulo p. For convenience, we make a similar assumption on v as in the proof of Lemma
15. Assume all nonzero entries of v appear as the first k entries and write

v =

'
v1
v2

(
,

where v1 is the k-dimensional column vector consisting of the first k entries and v2 is the
(n− k)-dimensional zero vector. We remark that this assumption corresponds to the row
permutations in Lemma 15. Next we forbid row permutations and continue to use only
column permutations to transform Q and Q′ into quasi-diagonal forms. It is not difficult
to see that Q and Q′ have similar quasi-diagonal forms, say diag [Q0, I] and diag [Q′

0, I],
where both Q0 and Q′

0 have order k, the number of nonzero entries in v. Moreover,
both Q0 and Q′

0 can be generated from v1. Using the conclusion for the first case, we
see that Q′

0 can be obtained from Q0 by some column permutations. Clearly, taking the
same column permutations on diag [Q0, I] will result in diag [Q′

0, I]. Since diag [Q0, I]
and diag [Q′

0, I] are obtained from Q and Q′ by some column permutations, we find that
Q′ can be obtained from Q by some column permutations.

Before presenting the proof of Theorem 6, we would like to record the following fact
from the above proof.
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Remark 22. If each entry of v is nonzero (mod p) and Q is a primitive matrix generated
from v, then each entry of Q is nonintegral (or equivalently, nonzero).

Proof of Theorem 6. Let G ∈ Fp
n. We may assume that G is not DGS. Let H1 and H2

be any two generalized cospectral mates of G. It suffices to show that H1 and H2 are
isomorphic. Let Q1 and Q2 be the corresponding matrices such that QT

1A(G)Q1 = A(H1)
and QT

2A(G)Q2 = A(H2). Let v be a nontrivial solution to WT(G)z ≡ 0 (mod p). Then
by Corollary 18 and Remark 19, we see that both matrices Q1 and Q2 can be generated
from v. It follows from Theorem 21 that Q2 = Q1P for some permutation matrix P .
Now, we have A(H2) = QT

2A(G)Q2 = QT
2Q1A(H1)Q

T
1Q2 = PTA(H1)P , indicating that

H1 and H2 are isomorphic. This completes the proof of Theorem 6.

2.3 0-1 property of QTAQ

The main aim of this subsection is to show that the converse of Proposition 18 is also
true. We need an interesting and somewhat unexpected result on the adjacency matrix
of a simple graph, which may have independent interests. Roughly speaking, among
all integral symmetric matrices, the subsets of all adjacency matrices are ‘closed’ under
generalized cospectrality. Here, the generalized spectrum of a matrix A naturally refers
to the spectrum of A together with the spectrum of J − I − A.

Lemma 23. Let A be an adjacency matrix and B be an integral symmetric matrix. If A
and B are generalized cospectral then B must also be an adjacency matrix.

Proof. For any n × n matrix M and integer k ∈ {1, . . . , n}, we use ck(M) to denote the
coefficient of the term xn−k in the characteristic polynomial det(xI − M) of M . Define
ξ(M) = c2(M) + c2(J − I − M). It is well known that (−1)kck(M) equals the sum of
its principal minors of size k; see e.g. [5, Theorem 1.2.16]. When k = 2 and M is an
adjacency matrix, c2(M) equals the opposite of the number of edges in the corresponding
graph. Since the total number of edges in a graph and its complement is the constant-
n
2

.
, we have

ξ(A) = −
'
n

2

(
. (5)

Write B = (bi,j)n×n. Note that tr(A) = 0 as each diagonal entry of A is zero. Since A
and B are cospectral, we have tr(B) = 0, that is,

/

1!k!n

bk,k = 0. (6)

Next we estimate ξ(B), the sum of c2(B) and c2(J − I−B). Noting that B is symmetric,
we have

c2(B) =
/

1!i<j!n

0000
bi,i bi,j
bj,i bj,j

0000 =
/

1!i<j!n

bi,ibj,j −
/

1!i<j!n

b2i,j, (7)
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and similarly,

c2(J − I − B) =
/

1!i<j!n

0000
−bi,i 1− bi,j
1− bj,i −bj,j

0000 =
/

1!i<j!n

bi,ibj,j −
/

1!i<j!n

(1− bi,j)
2. (8)

Adding the above two equalities and using (6), we find

ξ(B) = 2
/

1!i<j!n

bi,ibj,j −
/

1!i<j!n

-
b2i,j + (1− bi,j)

2
.

=

1
/

1!k!n

bk,k

22

−
/

1!k!n

b2k,k −
/

1!i<j!n

1
2

'
bi,j −

1

2

(2

+
1

2

2

! −
/

1!i<j!n

1
2

'
bi,j −

1

2

(2

+
1

2

2
, (9)

where equality holds in (9) if and only if
3

1!k!n b
2
k,k = 0, i.e., all diagonals of B are zero.

Consider the quadratic function f(x) = 2(x − 1/2)2 + 1/2, x ∈ Z. It is easy to see
that f(x) " 1 for all x ∈ Z, and the equality holds if and only if x ∈ {0, 1}. Since B is
integral, we have

−
/

1!i<j!n

1
2

'
bi,j −

1

2

(2

+
1

2

2
! −

/

1!i<j!n

1 = −
'
n

2

(
, (10)

with equality holding if and only if each non-diagonal entry bi,j is 0 or 1. Finally, as A
and B are generalized cospectral, we must have ξ(A) = ξ(B) and hence ξ(B) = −

-
n
2

.
by

(5). This means that the equalities must hold in (9) and (10) simultaneously. Using the
established conditions for these two equalities, we find that the symmetric matrix B is a
(0, 1)-matrix with vanishing diagonal. This completes the proof of this lemma.

Lemma 24 ([11]). Let G be a controllable graph with n vertices. Let p be an odd prime.
Suppose that p2 | detW and rankpW = n − 1. Let v be a nontrivial integral solution to
WTz ≡ 0 (mod p). If there exists a primitive matrix Q generated from v, then QTAQ is
an integral matrix.

Now we can show that the necessary condition for G to have a generalized cospectral
mate is also sufficient.

Theorem 25. Let G ∈ Fp
n. Then G is not DGS if and only if any nontrivial solution to

WTz ≡ 0 (mod p) can generate some primitive matrix.

Proof. It suffices to show the sufficiency part. Let v be a nontrivial solution to WTv ≡ 0
(mod p). Let Q be a primitive matrix generated from v. Clearly, G satisfies the condition
of Lemma 24. Thus, QTAQ is an integral matrix. Note that QTAQ is generalized cospec-
tral with A. It follows from Lemma 23 that QTAQ is the adjacency matrix of some graph,
say H. Noting that G is controllable but Q is not a permutation matrix, Lemma 7 implies
that G is nonisomorphic to H and hence G is not DGS. This proves the theorem.
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3 Finding generalized cospectral mates

We shall develop an algorithm to determine whether a given graph G ∈ Fp
n is DGS. And

when the graph G is not DGS, the algorithm will find its (unique) generalized cospectral
mate. The overall idea is based on Theorem 25. We pick an arbitrary nontrivial solution
v of WT(G)z ≡ 0 (mod p) and try to generate a primitive matrix. By Lemma 15, it
suffices to consider the restricted case that every entry of v is nonzero modulo p. Indeed,
for general v, we use v∗ to denote the vector obtained from v by deleting the zero entries.
Then it is easy to see that v can generate a primitive matrix if and only if v∗ can do so.
To generate a primitive matrix Q from v with t zero entries, we first use v∗ to generate
a primitive matrix Q0 of order n − t. Then we can obtain an n × n primitive matrix Q
from Q0 by adding t 1’s and appropriate number of 0’s naturally as in Example 14.

3.1 Criterion for a vector to generate a primitive matrix

The following lemma gives a simple necessary condition for an integral vector to generate
some primitive matrix. It essentially appeared in [10]. We include its short proof here.

Lemma 26 ([10]). Let v be an n-dimensional integral vector. If v can generate some
primitive matrix Q, then vTe ≡ 0 (mod p) and vTv ≡ 0 (mod p).

Proof. Let Q̂ = pQ and u be a column of Q̂ such that u ∕≡ 0 (mod p). By the condition
of this lemma, there exists an integer c such that u ≡ cv (mod p). As u ∕≡ 0 (mod p), we
must have c ∕≡ 0 (mod p). Let d be an integer such that cd ≡ 1 (mod p). Then we have
v ≡ du (mod p). Noting that Q̂Te = pQTe = pe and Q̂TQ̂ = p2I, we have uTe = p and
uTu = p2. Thus, vTe ≡ duTe ≡ 0 (mod p) and vTv ≡ d2uTu ≡ 0 (mod p). This proves
the lemma.

Definition 27. For two integral vectors v and w, we call w a perfect p-representative of
v if w satisfies (i) w ≡ v (mod p), (ii) wTe = p, and (iii) wTw = p2.

Proposition 28. Let v be an integral vector with each entry nonzero modulo p. Let c1
and c2 be two distinct integers in {1, 2, . . . , p− 1}. Then the followings hold:
(i) Any two distinct perfect p-representatives u1 and u2 of c1v are orthogonal in Rn.
(ii) Any two perfect p-representatives w1 and w2 of c1v and c2v respectively are distinct
and orthogonal in Rn.

Proof. Note that u1 ≡ u2 ≡ c1v (mod p). The assumptions on v and c1 imply that each
entry of u1 and u2 is nonzero modulo p. As u1 ≡ u2 (mod p), we see that u1 and u2 are
clearly linearly dependent over Fp. Since uT

1 e = uT
2 e = p, we must have u1 ∕= −u2 and

hence u1 ∕= ±u2 as u1 and u2 are distinct. Noting that uT
1 u1 = uT

2 u2 = p2 and using
Lemma 20 we have uT

1 u2 = 0. This proves (i).
By the assumptions on v, c1 and c2, we see that c1v ∕≡ c2v (mod p). Noting that

w1 ≡ c1v and w2 ≡ c2v, we have w1 ∕≡ w2 and hence w1 ∕= w2. Now, (ii) holds by a similar
argument as in (i).
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Theorem 29. Let v be an m-dimensional integral vector with each entry nonzero modulo
p. For each k ∈ {1, 2, . . . , p−1}, let Rk denote the collection of all perfect p-representatives
of kv. Then v can generate a primitive matrix if and only if

3p−1
k=1 |Rk| = m.

Proof. Suppose Q is a primitive matrix generated from v. Since every entry of v is nonzero
(mod p), we see from Remark 22 that Q contains no integral entries. Let z be any column
of pQ. Then each entry of z is nonzero modulo p and of course z ∕≡ 0 (mod p). Thus
z ≡ kv (mod p) for some k ∈ {1, 2, . . . , p − 1}. Consequently, by the regularity and
orthogonality of Q, we find that z is a perfect p-representative of kv, i.e., z ∈ Rk. Thus,
we have

3p−1
k=1 |Rk| " m. By Proposition 28, all these p− 1 sets Rk’s are disjoint and any

two vectors in ∪p−1
k=1Rk are orthogonal in Rm. Thus the strict inequality

3p−1
k=1 |Rk| > m

can never hold and hence
3p−1

k=1 |Rk| = m.

Suppose
3p−1

k=1 |Rk| = m. We construct an integral matrix Q̂ using all the m vectors

in ∪p−1
k=1Rk. Using Definition 27 and Proposition 28, we can check that 1

p
Q̂ is a primitive

matrix and 1
p
Q̂ is generated by v.

3.2 Constructing all perfect p-representatives

Definition 30. For two integral vectors v and w, we call w the shortest p-representative
of v if w ≡ v (mod p) and |wi| ! p−1

2
for each entry wi of w.

Remark 31. For a given integral vector v, there may be no, unique or many perfect p-
representatives of v. Nevertheless, the shortest p-representative of v always exists and is
unique. Also note that the shortest p-representative of v has the shortest Euclidian length
among all vectors that are congruent to v modulo p.

Example 32. Let n = 6, p = 3,

v =

%

++++++&

2
2
2
1
1
1

)

,,,,,,*
and Q̂ =

%

++++++&

2 −1 −1 1 1 1
−1 2 −1 1 1 1
−1 −1 2 1 1 1
1 1 1 2 −1 −1
1 1 1 −1 2 −1
1 1 1 −1 −1 2

)

,,,,,,*
.

Then the shortest 3-representative of v is (−1,−1,−1, 1, 1, 1)T. All the first 3 columns
of Q̂ are perfect 3-representatives of v, while the remaining three columns are perfect
3-representatives of 2v.

The next lemma indicates that all perfect p-representatives of a vector v are very
close to its shortest p-representative in the sense of Hamming distance. Recall that the
Hamming distance of two vectors is the number of positions in which they differ.

Lemma 33. For an integral vector v with each entry nonzero modulo p, let w be a perfect
p-representative and u be the shortest p-representative of v. Then the Hamming distance
of w and u is at most 3. Moreover, for any index i such that wi ∕= ui, either (i) wi = ui+p
and ui < 0, or (ii) wi = ui − p and ui > 0.
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Proof. Let i be an index such that wi ∕= ui. As wi ≡ ui (mod p) and |ui| ! p−1
2
, it is not

difficult to see that |wi| " p+1
2

and consequently, w2
i >

p2

4
. Therefore, there are at most 3

different such indices as wTw = p2. This proves the first part of this lemma. Note that
wi = ui + kp for some integer k. It is easy to verify the remaining part using the obvious
restriction that |wi| < p.

The following proposition is immediate from Lemma 33.

Proposition 34. For an integral vector v with each entry nonzero modulo p, let u be
the shortest p-representative of v. If v has at least one perfect p-representative, then
|uTe− p| ! 3p and uTu ! p2.

Using the entry sum of the shortest p-representative of a vector v, we can know more
about its perfect p-representatives. Let ei denote the i-th standard unit vector in Rn.

Lemma 35. For an integral vector v with each entry nonzero modulo p, let u be the
shortest p-representative of v. Suppose that uTe − p = sp for some s ∈ {−3,−2, . . . , 3}
and uTu ! p2. Then any perfect p-representative w of v can be written as

w = u+
/

i∈I

pei −
/

j∈D

pej, (11)

where I and D are disjoint (possibly empty) subsets of {1, 2, . . . , n} satisfying the following
conditions:
(i) |I|+ |D| ! 3;
(ii) |D|− |I| = s;
(iii) ui < 0 for each i ∈ I and uj > 0 for j ∈ D; and
(iv)

3
k∈I∪D |uk| = 1

2p
uTu+ p

2
(|I|+ |D|− 1).

Proof. By Lemma 33, we know that w can be expressed as in (11) where I and D are
disjoint subsets of {1, 2, . . . , n} satisfying (i) and (iii). By (11), we have

wTe = uTe+ p(|I|− |D|) = p+ sp+ p(|I|− |D|).

Thus, wTe = p is equivalent to (ii). It remains to check (iv). Due to (iii), we can rewrite
(11) as

w = u− p
/

k∈I∪D

sgn(uk)ek. (12)

Since ek’s are standard unit vectors, we have

wTw = uTu+ p2
/

k∈I∪D

eTk ek − 2p
/

k∈I∪D

sgn(uk)u
Tek = uTu+ p2(|I|+ |D|)− 2p

/

k∈I∪D

|uk|.

(13)
Now it is straightforward to see that wTw = p2 if and only if (iv) holds.
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The following table gives a more visual description of Lemma 35. We may call the
desired set I (resp. D) an increasing subset (resp. decreasing subset). For any s ∈
{−3,−2, . . . , 3}, all possible pairs (|I|, |D|) for the sizes of I and D are rather restricted
due to (i) and (ii). For example, when s = −3, we must have (|I|, |D|) = (3, 0); when
s = −1, we have (|I|, |D|) = (1, 0), or (2, 1). In Table 1, we use

↑ · · · ↑! "# $
a

↓ · · · ↓! "# $
b

'
1

2p
uTu+

p

2
(a+ b− 1)

(

to denote an adjustment strategy corresponding to the case (|I|, |D|) = (a, b), that is,
a negative entries of u are increased by p while b positive entries of u are decreased by
p, with the requirement that the sum of the absolute values of all these a + b entries is
1
2p
uTu+ p

2
(a+ b− 1). For example, ‘↑↑↑ ( 1

2p
uTu+ p)’ corresponds to the case (|I|, |D|) =

(3, 0) with the restriction that
3

k∈I |uk| = 1
2p
uTu + p. The symbol ‘−−’ at the middle

of Table 1 means I = D = ∅. This only happens when the length of the shortest p-
representative is exactly p.

Table 1: Generating all possible perfect p-representatives from the shortest one

1
p
(uTe− p) adjustment strategy

−3 ↑↑↑( 1
2p
uTu+ p)

−2 ↑↑( 1
2p
uTu+ p

2
)

−1 ↑( 1
2p
uTu) or ↑↑↓( 1

2p
uTu+ p)

0 −−( 1
2p
uTu− p

2
= 0) or ↑↓( 1

2p
uTu+ p

2
)

1 ↓( 1
2p
uTu) or ↑↓↓( 1

2p
uTu+ p)

2 ↓↓( 1
2p
uTu+ p

2
)

3 ↓↓↓( 1
2p
uTu+ p)

3.3 The algorithm

Now we can summarize the above discussions in Algorithm 1. We give two examples for
illustrations.
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Algorithm 1 Finding generalized cospectral mate

Input: a graph G ∈ Fp
n.

Output: DGS or the unique generalized cospectral mate of G.

1: Compute any nontrivial solution v to WTz ≡ 0 (mod p).
2: if vTv ≡ 0 (mod p) then
3: Set S := {i : vi ≡ 0 (mod p)}.
4: Remove zero entries vi, i ∈ S from v to obtain a vector v∗.
5: Set R := ∅.
6: for k from 1 to p− 1 do
7: Compute the shortest p-representative u of kv∗.
8: if |1

p
(uTe− p)| ! 3 and uTu ! p2 then

9: Find all possible perfect p-representatives from u by Table 1.
10: Update R by appending all perfect p-representatives of kv∗.
11: if |R| = n− |S| then
12: Construct a primitive matrix Q using R and unit vectors ei’s, i ∈ S.
13: return graph H with adjacency matrix QTA(G)Q.

14: return DGS.

Example 36. Let n=16 and G be the graph with adjacency matrix

A =

%

+++++++++++++++&

0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0
1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0
1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1
1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1
1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0
0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0

)

,,,,,,,,,,,,,,,*

.

Using Mathematica, we can find that G ∈ Fp
n for p = 5. Indeed, the last invariant factor

of W is
dn = 2× 52 × 11× 41× 28573× 260723× 71447889577.

A nontrivial solution to WTz ≡ 0 (mod 5) is v = (4, 0, 0, 0, 0, 0, 2, 1, 2, 1, 0, 0, 2, 2, 0, 1)T.
Clearly, vTv ≡ 0 (mod 5). Now S = {2, 3, 4, 5, 6, 11, 12, 15}, the indices for the zero
entries of v. Removing these zero entries we obtain v∗ = (4, 2, 1, 2, 1, 2, 2, 1)T. Table 2
illustrates the iterations of the for loop.

When k = 1, we have u = (−1, 2, 1,−3, 1, 2, 2, 1)T and hence s = 1
5
(uTe − 5) = 1.

According to Table 1 and noting that 1
2p
uTu = 2 and 1

2p
uTu+ p = 7, all potential perfect

p-representatives of u must be obtained from u either by the strategy ‘↓ (2)’, or ‘↑↓↓ (7)’.
As there are exactly four entries equal to 2, we can obtain four perfect p-representatives by
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Table 2: Sufficient perfect 5-representatives

k shortest 5-representative u 1
5(u

Te− 5) uTu perfect 5-representatives

1 (−1, 2, 1, 2, 1, 2, 2, 1)T 1 20

(−1,−3, 1, 2, 1, 2, 2, 1)T

(−1, 2, 1,−3, 1, 2, 2, 1)T

(−1, 2, 1, 2, 1,−3, 2, 1)T

(−1, 2, 1, 2, 1, 2,−3, 1)T

2 (−2,−1, 2,−1, 2,−1,−1, 2)T −1 20 (3,−1, 2,−1, 2,−1,−1, 2)T

3 (2, 1,−2, 1,−2, 1, 1,−2)T −1 20

(2, 1, 3, 1,−2, 1, 1,−2)T

(2, 1,−2, 1, 3, 1, 1,−2)T

(2, 1,−2, 1,−2, 1, 1, 3)T

the strategy ‘↓ (2)’. No perfect p-representatives can be obtained by the strategy ‘↑↓↓ (7)’
since otherwise u would contain one negative entry uj1 together with two positive entries
uj2 and uj3 satisfying

33
t=1 |ujt | = 7, which is clearly impossible. Thus, |R| = 4 after the

first iteration of the for loop.
In the third iteration, |R| reaches 8, which is the dimension of v∗. Now, using R and

S, we can construct

Q =
1

5

%

+++++++++++++++&

−1 −1 −1 −1 3 2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0
−3 2 2 2 −1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 2 3 −2 −2 0 0 0 0 0 0 0 0
2 −3 2 2 −1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 2 −2 3 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0
2 2 −3 2 −1 1 1 1 0 0 0 0 0 0 0 0
2 2 2 −3 −1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
1 1 1 1 2 −2 −2 3 0 0 0 0 0 0 0 0

)

,,,,,,,,,,,,,,,*

.

Now QTAQ gives the adjacency matrix for the generalized cospectral mate of G. Indeed,
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direct computation shows that

QTAQ =

%

+++++++++++++++&

0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0
0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1
0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0
0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1
1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0
1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1
0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0
1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0
1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0

)

,,,,,,,,,,,,,,,*

.

Example 37. Let n=16 and G be the graph with adjacency matrix

A =

%

+++++++++++++++&

0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1
1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0
0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1
0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0
1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1
1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 1
1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1
0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1
1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1
1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0
1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0
1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0
1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0

)

,,,,,,,,,,,,,,,*

.

This graph is in Fn, according to the standard prime decomposition dn = 2 × 52 ×
7 × 63689 × 3118319 × 2740960403. Now v = (2, 3, 0, 1, 1, 4, 0, 4, 3, 1, 1, 0, 0, 0, 4, 1)T is
a nontrivial solution to WTz ≡ 0 (mod 5). Removing all zero entries, we obtain v∗ =
(2, 3, 1, 1, 4, 4, 3, 1, 1, 4, 1)T. Table 3 summarizes the execution of Algorithm 1. As the

Table 3: Insufficient perfect 5-representatives

k shortest 5-representative u 1
5 (u

Te− 5) uTu perfect 5-representatives

1 (2,−2, 1, 1,−1,−1,−2, 1, 1,−1, 1)T −1 20
(2, 3, 1, 1,−1,−1,−2, 1, 1,−1, 1)T

(2,−2, 1, 1,−1,−1, 3, 1, 1,−1, 1)T

2 (−1, 1, 2, 2,−2,−2, 1, 2, 2,−2, 2)T 0 35

3 (1,−1,−2,−2, 2, 2,−1,−2,−2, 2,−2)T −2 35

4 (−2, 2,−1,−1, 1, 1, 2,−1,−1, 1,−1)T −1 20 (3, 2,−1,−1, 1, 1, 2,−1,−1, 1,−1)T

total number of perfect p-representatives is less than the number of nonzero entries in v,
the graph is DGS.
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Table 4 gives some experimental results on the DGS-property of graphs with at most
20 vertices. Using Mathematica, for each n ∈ {10, 11, . . . , 20}, we randomly generate
10,000 graphs. The second column records the number of graphs that are in Fn, while the
last column records further the number of graphs which are not DGS, using Algorithm 1.
It seems that the density of Fn is nearly stable (about 3%), while the density of non-DGS
graphs in Fn decreases dramatically as n increases.

Haemers [1, 4] conjectured that almost all graphs are determined by their spectra. A
weaker version of Haemers’ conjecture is that almost all graphs are DGS. We note that
the observed phenomenon of the decreasing density of non-DGS graphs is consistent with
the prediction of the weaker version of Haemers’ conjecture, and therefore provides some
evidence for it.

Table 4: Fn and Non-DGS graphs in Fn

n # Fn # Non-DGS

10 278 52

11 280 41

12 296 30

13 323 22

14 323 23

15 330 7

16 344 3

17 353 4

18 347 2

19 300 0

20 335 2

4 A conjecture

In this paper, we have presented an algorithm to check whether a graph G ∈ Fn is DGS
or not. The key ingredient of the algorithm is to decide whether a vector can generate a
primitive matrix. Although this can be done algorithmically, it is still very desirable to
give some more ‘evident’ conditions either for guaranteeing a vector to generate a primitive
matrix, or for ruling out such a possibility. Inspired by some numerical experiments using
Algorithm 1, we propose the following conjecture for further study.
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Conjecture 38. Let v be an n-dimensional integral vector with each entry nonzero mod-
ulo p. Suppose that vTe ≡ 0 (mod p) and vTv ≡ 0 (mod p). Then
(i) If n ! 8 then v can always generate some primitive matrix.
(ii) If n " 2p+ 1 then v cannot generate any primitive matrix.

We remark that if Conjecture 38 is true, then the final results of Examples 36 and 37
can be easily predicted once the nontrivial solutions of WTz ≡ 0 (mod p) were found.
Indeed, in Example 36, the nontrivial solution v of WTz ≡ 0 (mod 5) has exactly 8
nonzero entries, which constitutes a vector v∗. Noting that (v∗)Te ≡ 0 (mod p) and
(v∗)Tv∗ ≡ 0 (mod p), Conjecture 38 (i) implies that v∗ and hence v can generate a
primitive matrix. Nevertheless, in Example 37, the nontrivial solution v has exactly 11
nonzero entries, which reaches 2p+1 (noting p = 5). Thus, we may ‘predict’ that v cannot
generate any primitive matrix assuming Conjecture 38 (ii).
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