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Abstract

A crucial permutation is a permutation that avoids a given set of prohibitions,
but any of its extensions, in an allowable way, results in a prohibition being intro-
duced.

In this paper, we introduce five natural types of crucial permutations with re-
spect to monotone patterns, notably quadracrucial permutations that are linked
most closely to Erdős-Szekeres extremal permutations. The way we define right-
crucial and bicrucial permutations is consistent with the definition of respective
permutations studied in the literature in the contexts of other prohibitions. For
each of the five types, we provide its characterization in terms of Young tableaux
via the Robinson-Schensted correspondence. Moreover, we use the characterizations
to prove that the number of such permutations of length n is growing when n → ∞,
and to enumerate minimal crucial permutations in all but one case. We also provide
other enumerative results.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

The celebrated Erdős-Szekeres theorem [3] asserts that any permutation of length (k −
1)(ℓ− 1) + 1 contains an increasing subsequence of length k or a decreasing subsequence
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of length ℓ. It follows from the Robinson-Schensted (R-S) correspondence and the hook-
length formula [11] that the number of permutations of length (k − 1)(ℓ − 1) without
increasing subsequences of length k and decreasing subsequences of length ℓ, k ! ℓ, is
given by !

((k − 1)(ℓ− 1))!

1122 · · · (ℓ− 1)ℓ−1ℓℓ−1 · · · (k − 1)ℓ−1kℓ−2 · · · (k + ℓ− 3)1

"2

. (1)

This formula, in the case of k = ℓ, has been presented in [12] from 1969, and the respective
permutations are called Erdős-Szekeres extremal permutations in [13].

So, extending any permutation of length (k − 1)(ℓ − 1) that avoid increasing and
decreasing subsequences of lengths k and ℓ, respectively, by an extra element to the
left, or to the right, results in an occurrence of a monotone subsequence in question.
However, depending on k and ℓ, there may be permutations of smaller lengths that have
the same properties, namely, that avoid the monotone subsequences in question but that
do not admit extensions to the right and/or to the left without introducing an unwanted
monotone subsequence. Such permutations, being of significant combinatorial interest,
have not received any attention in the literature, and the main goal of this paper is to fill
in this gap.

In fact, our studies in this paper belong to a much wider context. The idea of a
crucial object appearing, for example, in Combinatorics on Words and Graph Theory,
can be described as follows. Given a set of prohibitions P , we consider the set S of all
objects that avoid P , namely, the set of all objects that do not contain elements of P
as subobjects. Then, a crucial object s ∈ S is an object that cannot be extended, in a
specified way, to a larger object in S. In other words, any attempt to enlarge s in the
specified way will necessarily introduce a prohibited subobject in P .

In the context of our paper, the objects are permutations and the set of prohibitions
is increasing subsequences of length k and decreasing subsequences of length ℓ, while
extensions of permutations by an element will be defined in five ways (see Section 2 for
formal definitions): (i) just to the right (giving crucial permutations, the same as right-
crucial permutations), which is equivalent to extending just to the left, or by inserting
the largest element, or by inserting the smallest element; (ii) to the right and to the
left (giving bicrucial permutations); (iii) to the right and by inserting the largest element
(giving top-right-crucial permutations); (iv) to the right, to the left and by inserting the
largest element (giving tricrucial permutations); and (v) to the right, to the left and
by inserting the largest or smallest elements (giving quadracrucial permutations). The
most relevant to our paper are the studies in [1, 2, 4, 5] on (bi)crucial permutations with
respect to squares and aritheoremetic monotone patterns, although we do not use any of
the results from these papers as our prohibitions are of different nature.

Examples of natural questions to ask about crucial objects with respect to a given set
of prohibitions are: Do crucial objects exist? If so, then do crucial objects exist of any size
above certain size or crucial objects of maximal size exist? What is the size of a minimal
crucial object? What is the structure of crucial objects? How many crucial objects of a
given size are there? And so on.

This paper is organized as follows. In Sections 2 and 3 we give all necessary definitions
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perm. type character. min length enum. of min enum. ℓ = 3

crucial Thm 12 k + ℓ− 3 Cor. 8 Cor. 13
top-right-cruc. Thm 26 k + ℓ− 3 Thm 10 Cor. 27

bicrucial Thm 19 k + 2ℓ− 5 Cor. 21 only min, Cor. 22
tricrucial Thm 31 k + 2ℓ− 5 ? only min, Cor. 33

quadracrucial Thm 35 k + 2ℓ− 5 Thm 37 only min, Thm 37

Table 1: A summary of our key results in the paper

along with a number of preliminary results and briefly review the R-S correspondence to
be used in Sections 4–8 to characterize crucial, bicrucial, top-right-crucial, tricrucial and
quadracrucial permutations, respectively, and to provide a number of enumeration results
based on the characterizations. In Section 9 we discuss directions of further research.

Table 1 summarises our main results in this paper that have been obtained via our
novel idea of using the R-S correspondence in the context of cruciality. An intriguing fact
can be noticed in Table 1 that the length of minimal crucial permutations is the same
for extending permutations to one side as that to two adjacent sides, while it is different
from extending permutations to two opposite sides, which in turn is the same as extending
permutations to three or four sides. Also, it follows from Table 1 that we enumerated
minimal crucial permutations in all but one case, and we were able to enumerate crucial
and top-right-crucial permutations for arbitrary k when ℓ = 3.

2 Preliminaries

A pattern is a permutation of {1, . . . , k} in one-line notation. An occurrence of a pattern
p = p1 · · · pk in a permutation σ = σ1 · · · σn is a subsequence σi1 · · · σik , where 1 " i1 <
· · · < ik " n, such that σij < σim if and only if pj < pm. For example, the permutation
23514 has two occurrences of the pattern 132, namely, the subsequences 254 and 354,
while this permutation avoids (that is, has no occurrences of) the pattern 321. A pattern
p is increasing (resp., decreasing) if p1 < p2 < · · · < pk (resp., p1 > p2 > · · · > pk) and
we denote it ik (resp., dk). Increasing and decreasing patterns are monotone patterns.
Permutation patterns are an active area of research (see, for example, [6] and references
therein). We let Sn denote the set of all permutations of length n.

Let σ = σ1 · · · σn ∈ Sn. Then the i-th extension of σ to the right (resp., left), 1 " i " n,
is the permutation ei(σ1) · · · ei(σn)i (resp., iei(σ1) · · · ei(σn)), where

ei(x) =

#
x if x < i,

x+ 1 if x ! i.

The (n+ 1)-st extension of σ to the right (resp., left) is the permutation σ(n+ 1) (resp.,
(n + 1)σ). The i-th extension of σ from below (resp., above), 1 " i " n + 1, is the
permutation (σ1+1) · · · (σi−1+1)1(σi+1) · · · (σn+1) (resp., σ1 · · · σi−1(n+1)σi · · · σn). For
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a sequence π of distinct numbers, the reduced form of π, denoted red(π), is the sequence
obtained by replacing the i-th smallest element by i. For example, red(3826)=2413.
Finally, the reverse of σ is the permutation r(σ) = σnσn−1 · · · σ1 and the complement of
σ is the permutation c(σ) = (n + 1 − σ1) · · · (n + 1 − σn). For example, r(2413) = 3142
and c(25413) = 41253.

2.1 Five types of crucial permutations

Each permutation can be viewed as a two-dimensional permutation diagram where the
height of the points corresponds to the value of the respective elements. For example, the
permutation 526413 (avoiding the patterns 123 and 4321) corresponds to the permutation
diagram

Following a natural approach to define crucial permutations when looking at permutation
diagrams, we see that, up to diagram rotation, there are five ways to specify allowed
extensions of permutations to larger permutations:

• extending just to the right (crucial permutations in the literature correspond to
extending to the right);

• extending to the right and to the left (corresponding to bicrucial permutations in
the literature);

• extending to the right and from above;

• extending to the right, to the left and from above (corresponding to tricrucial per-
mutations introduced in this paper);

• extending to the right, to the left, from above and from below (corresponding to
quadracrucial permutations introduced in this paper).

Next, we give formal definitions. A permutation is (k, ℓ)-right (resp., left, top, bottom)-
crucial if it avoids the patterns ik and dℓ but any of its extensions to the right (resp., to the
left, from above, from below) results in a permutation containing an occurrence of ik or
dℓ. Sometimes, we omit the word “right” in a “(k, ℓ)-right-crucial permutation” because
“right-crucial” objects in the literature [1, 2, 4] are called “crucial”. A permutation is
(k, ℓ)-bicrucial if it is (k, ℓ)-crucial and its reverse is (ℓ, k)-crucial (equivalently, if it is
(k, ℓ)-right-crucial and (k, ℓ)-left-crucial). A permutation is (k, ℓ)-top-right-crucial if it
is (k, ℓ)-crucial and any of its extension from above results in a permutation containing
an occurrence of ik or dℓ. A (k, ℓ)-bicrucial permutation is (k, ℓ)-tricrucial if any of
its extension from above results in a permutation containing an occurrence of ik or dℓ.
A (k, ℓ)-tricrucial permutation is (k, ℓ)-quadracrucial if any of its extension from below
results in a permutation containing an occurrence of ik or dℓ.
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Throughout this paper, we usually assume that k, ℓ ! 3, since if k = 1 or ℓ = 1 then
the empty permutation is trivially the only (k, ℓ)-crucial object in any of our contexts,
while if k = 2 (resp., ℓ = 2) then every (k, ℓ)-crucial object must be the decreasing (resp.,
increasing) permutation of length ℓ− 1 (resp., k − 1).

Let s
(c)
n (k, ℓ) (resp., s

(b)
n (k, ℓ), s

(tr)
n (k, ℓ), s

(tri)
n (k, ℓ), s

(q)
n (k, ℓ)) be the number of (k, ℓ)-

right-crucial (resp., (k, ℓ)-bicrucial, (k, ℓ)-top-right-crucial, (k, ℓ)-tricrucial,
(k, ℓ)-quadracrucial) permutations of length n.

For any type of permutations introduced above, a permutation of that type is minimal
(resp., maximal) if there are no other permutations of the same type of smaller (resp.,
larger) length. Also, for any type of permutations introduced above, a permutation of
that type is irreducible if there is no way to delete an element in the permutation that
would result, in the reduced form, in a permutation of the same type. Finally, for any
type of permutations introduced above, a permutation of that type is non-extendable if
there is no way to insert a new element in the permutation (keeping the order of the other
elements the same) that would result in a permutation of the same type.

It follows from the Erdős-Szekeres theorem that maximal (k, ℓ)-crucial ((k, ℓ)-bicrucial,
(k, ℓ)-top-right-crucial, (k, ℓ)-tricrucial, (k, ℓ)-quadracrucial) permutations are of length
(k − 1)(ℓ − 1). However, the study of minimal lengths, and indeed, (k, ℓ)-(bi,top-right-
,tri,quadra)crucial permutations of lengths between minimal and maximal, is an interest-
ing and challenging research direction.

2.2 The R-S correspondence

The Robinson-Schensted correspondence, also referred to as the R-S correspondence or the
R-S algoritheorem, is a bijection between the set of all permutations of length n and pairs
(P,Q) of standard Young tableaux of the same shape. Even though the R-S correspondence
is a well known object in algebraic combinatorics, we briefly review it here as several of
our key results in this paper rely on it.

Let λ = (λ1,λ2, . . .) be a partition of n ! 0, denoted λ ⊢ n. Hence, λ1 ! λ2 ! · · · ! 0
and

$
λi = n. The Young diagram of a partition λ is a left-justified array of squares with

λi squares in the i-th row. For example, the Young diagram of (4,3,1) is given by

A standard Young tableau (SYT) of shape λ ⊢ n is obtained by placing the integers
1, . . . , n (each appearing once) into the squares of the diagram of λ (with one integer in
each square) such that every row and column is increasing. For example, an SYT of shape
(4,2,1) is given by

1 3 4 7
2 6 8
5
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The basic operation of the Schensted algoritheorem is row insertion, that is, inserting
an integer i into a tableau T with distinct entries and with increasing rows and columns.
Hence, T satisfies the conditions of an SYT except that its entries can be any distinct
integers, not necessarily 1, . . . , n. The process of row inserting i into T produces another
tableau, denoted T ← i, with increasing rows and columns. If S is the set of entries of T ,
then S ∪ {i} is the set of entries of T ← i. Now, T ← i is defined recursively as follows.

• If the first row of T is empty or the largest entry of the first row of T is less than i,
then insert i at the end of the first row.

• Otherwise, i replaces (or bumps) the smallest element j > i in the first row of T .
We then insert j into the second row of T by the same procedure.

Let σ = σ1 · · · σn ∈ Sn, and let ∅ denote the empty tableau. Define

Pi = Pi(σ) = (· · · ((∅ ← σ1) ← σ2) ← · · · ← σi

and set P := P (σ) = Pn(σ). P is called the insertion tableau. Define Q0 = ∅, and once
Qi−1 is defined let Qi = Qi(σ) be obtained from Qi−1 by inserting i (without changing
the position of any of the entries of Qi−1) so that Qi and Pi have the same shape. Set
Q := Q(σ) = Qn(σ) called the recording tableau, and finally define the output of the
Schensted algoritheorem applied to σ to be the pair (P,Q). We refer to [11] for an
example of the R-S correspondence applied to a permutation of length 5.

Remark 1. It is known that the number of columns in P (and Q) is the length of a longest
increasing subsequence in σ, and the number of rows in the tableaux is the length of a
longest decreasing subsequence.

Below, we let pi,j and qi,j denote the entry in row i (from above) and column j (from
left) in P and Q, respectively. In what follows, we will also need the evacuation map
introduced in [9]. Here we provide one of its equivalent definitions.

First, we introduce jeu-de-taquin slides of a tableau shape. Let a < b and • represents
an empty square. Then jeu-de-taquin slides are

• a
b c → a •

b c
• b
a c → a b

• c

Here, the squares b and c may or may not be present.
Let T be a SYT with n squares. Place T in a tight rectangle and replace every entry

j of T by n + 1 − j. Then rotate the rectangle 180◦ and perform jeu-de-taquin slides
on the result until a standard Young tableau is obtained. The constructed SYT is the
evacuation tableau ε(T ).
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3 Properties of crucial permutations

In this section we present several properties of crucial permutations. In particular, we de-
scribe the minimal (k, ℓ)-(top-right,bi)crucial, permutations and enumerate them. Also,
we find all possible lengths of (k, ℓ)-crucial permutations. Moreover, we establish the
equivalences between (k, ℓ)-right-, (k, ℓ)-left-, (k, ℓ)-top-, and (k, ℓ)-bottom-crucial per-
mutations. We start with the following lemma.

Lemma 2. Let σ = σ1 · · · σn be a (k, ℓ)-crucial permutation. Then, σ has an occurrence
of ik−1 and an occurrence of dℓ−1 both ending at σn (and having no other elements in
common).

Proof. Consider extending σ by the element σn+1 := σn + 1, which cannot introduce an
occurrence of the pattern dℓ as otherwise, such an occurrence is given by σj1 > · · · >
σjℓ−1

> σn+1 for some j1 < · · · < jℓ−1 < n and σj1 > · · · > σjℓ−1
> σn would have been an

occurrence of dℓ in σ (since σn+1−σn = 1), which is impossible. Hence, such an extension
must introduce an occurrence of the pattern ik as σ is (k, ℓ)-crucial. Since σn+1 − σn = 1,
such an occurrence must involve σn or else there would be an occurrence of ik in σ ending
with σn. That shows that σ has an occurrence of ik−1 ending with σn.

On the other hand, consider extending σ by the element σn+1 := σn, which cannot
introduce an occurrence of the pattern ik as otherwise, such an occurrence is given by
σj1 < · · · < σjk−1

< σn+1 for some j1 < · · · < jk−1 < n and σj1 < · · · < σjk−1
< σn would

have been an occurrence of ik in σ (since σn+1 is one less than the element next to it in
the obtained permutation of length n+1), which is impossible. Hence, such an extension
must introduce an occurrence of the pattern dℓ as σ is (k, ℓ)-crucial. Since σn−σn+1 = 1,
such an occurrence must involve σn or else there would be an occurrence of dℓ in σ ending
with σn. That shows that σ has an occurrence of dℓ−1 ending with σn.

Clearly, the only common element in the occurrences of the patterns ik−1 and dℓ−1 in
question can be the final element σn.

The proof of the next lemma is analogous to that of Lemma 2 and hence is omitted.

Lemma 3. Let σ = σ1 · · · σn be a (k, ℓ)-left-crucial permutation. Then, σ has an occur-
rence of ik−1 and an occurrence of dℓ−1 both beginning at σ1 (and having no other elements
in common).

Theorem 4. Any minimal (k, ℓ)-crucial permutation σ is of length n = k + ℓ− 3 and it
has the following form:

• the final element is σn = k − 1;

• the first n− 1 = k− ℓ− 4 positions of σ are occupied by the interleaved occurrences
of the pattern ik−2 formed by the elements in {1, . . . , k − 2} and the pattern dℓ−2

formed by the elements in {k, . . . , k+ℓ−3}. In particular, any minimal (k, ℓ)-crucial
permutation begins with either the smallest or the largest element.
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Proof. Since an increasing and a decreasing subsequences in any permutation can have at
most one element in common, we see that, by Lemma 2, the length of a minimal (k, ℓ)-
crucial permutation is at least k+ ℓ−3. Moreover, by Lemma 2, we see that the length of
any minimal (k, ℓ)-crucial permutation is k+ ℓ−3 and its structure is as in the statement
of the theorem.

Remark 5. It follows immediately from Lemma 2 that every (k, ℓ)-crucial permutation
can be obtained by inserting elements to a minimal (k, ℓ)-crucial permutation (without
changing the relative order of already existing elements). Indeed, given a (k, ℓ)-crucial
permutation we can locate k+ ℓ−3 “essential elements” in it discussed in Lemma 2, then
remove the remaining elements to obtain a minimal (k, ℓ)-crucial permutation. Reversing
the removing steps, we will obtain the desired result.

The proof of the following lemma, that is closely related to Remark 5, is straightfor-
ward, and hence is omitted.

Lemma 6. Let σ = σ1 · · · σn be a (k, ℓ)-crucial permutation. Let I be a collection of
k+ ℓ− 3 elements in σ forming occurrences of ik−1 and dℓ−1 both ending at σn (that exist
by Lemma 2). Then removing any element σi ∕∈ I and taking the reduced form results in
a (k, ℓ)-crucial permutation in Sn−1.

Theorem 4, Lemma 6 and formula (1) give the following result.

Corollary 7. There exist (k, ℓ)-crucial permutations in Sn for each n, k + ℓ − 3 " n "
(k − 1)(ℓ− 1).

The following corollary is immediate from Theorem 4, and we invite the reader to
compare this result with a much more sophisticated formula (1) for the number of maximal
(k, ℓ)-crucial permutations.

Corollary 8. The number of minimal (k, ℓ)-crucial permutations is
%
k+ℓ−4
k−2

&
.

Another comparison that one can make is between minimal and non-extendable (k, ℓ)-
crucial permutations: while the former always begin with the smallest or the largest ele-
ments, the latter never begin with these elements. Indeed, suppose that a non-extendable
(k, ℓ)-crucial permutation σ ∈ Sn begins with 1 (resp., n) and k, ℓ ! 3. Then, extending
σ to the left by 2 (resp., n) we obtain a permutation in Sn+1 that is clearly (k, ℓ)-crucial,
which contradicts to σ being non-extendable.

Yet another corollary of Theorem 4 is the following result.

Theorem 9. Suppose that k ! ℓ. Any minimal (k, ℓ)-bicrucial permutation σ = σ1 · · · σn

is of length n = k + 2ℓ− 5 and it has the following form:

• σ1 = ℓ− 1;

• σn = k + ℓ− 3;
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• the elements in {1, 2, . . . , ℓ − 1} and those in {k + ℓ − 3, . . . , k + 2ℓ − 5} are in
decreasing order, while the elements in {ℓ − 1, ℓ, . . . , k + ℓ − 3} are in increasing
order.

Proof. Since σ is (k, ℓ)-bicrucial, it is also (k, ℓ)-crucial, and by Lemma 2, σ has an
occurrence of ik−1, say formed by the elements in a set A, and an occurrence of dℓ−1, say
formed by the elements in a set B, both ending at σn (hence A ∩B = {σn}).

Moreover, since σ is also (k, ℓ)-left-crucial, by Lemma 3, σ has an occurrence of ik−1,
say formed by the elements in a set C, and an occurrence of dℓ−1, say formed by the
elements in a set D, both beginning at σ1 (hence C ∩D = {σ1}).

Since an increasing and a decreasing sequences can share at most one element, any
minimal (k, ℓ)-bicrucial permutation must have A = C (which minimizes the length of a
(k, ℓ)-bicrucial permutation; here we use the fact that k ! ℓ and hence did not consider
the other possibility of minimizing the length, namely, B = D). From this observation,
we recover immediately that D = {1, 2, . . . , ℓ − 1}, A = C = {ℓ − 1, ℓ, . . . , k + ℓ − 3},
B = {k + ℓ− 3, . . . , k + 2ℓ− 5}, σ1 = ℓ− 1, σn = k + ℓ− 3 and n = k + 2ℓ− 5.

Theorem 10. There is exactly one minimal (k, ℓ)-top-right-crucial permutation that is
of length k + ℓ− 3 and is of the form

12 · · · (k − 2)(k + ℓ− 3)(k + ℓ− 4) · · · (k − 1).

Proof. Any (k, ℓ)-top-right-crucial permutation σ is (k, ℓ)-crucial and hence Theorem 4
can be applied to learn about the relative positions of elements in A = {1, . . . , k − 2},
those in B = {k, . . . , k + ℓ − 3}, and the element k − 1. Now, extending σ from above
must result in an occurrence of ik or dℓ. Inserting k + ℓ− 2 (the new maximum element)
anywhere to the left of k + ℓ− 3 results in an occurrence of dℓ involving all the elements
in B and the element k−1. On the other hand, inserting k+ ℓ−2 to the right of k+ ℓ−3
cannot result in an occurrence of dℓ and hence must result in an occurrence of ik that can
involve only one element in B ∪ {k − 1}. Considering inserting k + ℓ− 2 immediately to
the right of k + ℓ − 3, we see that all the elements in A must be placed (in increasing
order) to the left of k + ℓ− 3, which gives the required structure.

To characterize (k, ℓ)-left-, (k, ℓ)-top- and (k, ℓ)-bottom-crucial permutations in Sec-
tion 4, we need the following result that follows trivially from the definitions and symme-
tries.

Lemma 11. Let σ ∈ Sn. The following statements are equivalent:

• σ is (k, ℓ)-right-crucial;

• the reverse permutation r(σ) is (ℓ, k)-left-crucial;

• the inverse permutation σ−1 is (k, ℓ)-top-crucial;

• the complement of the inverse permutation c(σ−1) is (ℓ, k)-bottom-crucial.
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4 Characterization of (k, ℓ)-crucial permutations via R-S corre-
spondence

The main result in this section is the following characterization of (k, ℓ)-right-crucial
permutations in terms of the corresponding pairs of SYT.

Theorem 12. Let σ ∈ Sn and (P,Q) be the pair of SYT corresponding to σ. Then, σ is
(k, ℓ)-right-crucial if and only if the following holds:

• the number of columns in P (and Q) is k − 1;

• the number of rows in P (and Q) is ℓ− 1;

• P contains an increasing sequence of elements p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1
for some

j2, . . . , jℓ−1.

Proof. “⇐” Assume that (P,Q) satisfies the requirements. By Remark 1, the longest
increasing (resp., decreasing) subsequence in σ is of length k − 1 (resp., ℓ− 1).

Let us extend σ to the right by an element t. Suppose that σ′ is the resulting permu-
tation corresponding to the pair of SYT (P ′, Q′). If t > p1,k−1 then the extension of σ by
t results in a new column added to P , and hence in an occurrence of ik in σ′.

Assume that t " p1,k−1 so that the element p1,k−1 in σ and P becomes the element
(p1,k−1 + 1) in σ′ and P ′. By the row insertion operation of the R-S correspondence, we
have that t is inserted into the first row of P and an element p1,s1 in P , p1,s1 < p1,k−1, will
be moved to the second row of P . Since p1,s1 is smaller than the maximum element in the
second row of P (because p1,s1 is smaller than p2,j2), the insertion algoritheorem replaces
an element p2,s2 in the second row of P , p2,s2 < p2,j2 , by p1,s1 . Continuing in this way, we
see that an element pℓ−2,sℓ−2

replaces an element pℓ−1,sℓ−1
, where pℓ−1,sℓ−1

< pℓ−1,jℓ−1
, and

the element pℓ−1,sℓ−1
goes to the ℓ-th row in P ′. Consequently, by Remark 1, σ′ has an

occurrence of dℓ showing that σ is (k, ℓ)-right-crucial.
“⇒” By the definition of a (k, ℓ)-right-crucial permutation and Remark 1, the require-

ments on the number of rows and columns are satisfied.
Assume that there is no increasing sequence p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1

in P . Let us con-
sider the longest increasing sequence p1,k−1, p2,j2 , . . . , pr,jr such that it is lexicographically
smallest among all such longest increasing sequences starting at p1,k−1. By our assump-
tion, 1 " r < ℓ − 1 and all elements in the (r + 1)-th row of P are smaller than pr,jr ,
where j1 := k − 1. In particular, since P is an SYT, we have that the (r + 1)-th row of
P is shorter than the r-th row.

Let us extend σ to the right by the element p1,k−1 so that the elements
p1,k−1, p2,j2 , . . . , pr,jr in σ and P become, respectively, the elements (p1,k−1 + 1), (p2,j2 +
1), . . . , (pr,jr + 1) in σ′ and P ′. Note that the row insertion operation will move the ele-
ments (p1,k−1 + 1), (p2,j2 + 1), . . . , (pr,jr + 1) and add one new element at the end of the
(r + 1)-th row:

p′1,k−1 = p1,k−1; p′i,ji = pi−1,ji−1
for i ∈ {2, . . . , r}; p′r+1,sr+1 = pr,jr ,

the electronic journal of combinatorics 30(1) (2023), #P1.40 10



where sr is the length of the r-th row in P . We see that the lengths of the longest
increasing and decreasing subsequences in σ and σ′ are the same contradicting the fact
that σ is a (k, ℓ)-right-crucial permutation. Hence, P contains an increasing sequence of
elements p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1

for some j2, . . . , jℓ−1.

To illustrate applications of Theorem 12, note that the SYT P given by

1 2 3
4 5

satisfies all conditions in the theorem when k = 4 and ℓ = 3, and hence, since there are
five choices for Q in this case, we see that there are five (4, 3)-crucial permutations with
such P : 14523, 14253, 45123, 41253, 41523 (the remaining (4, 3)-crucial permutations of
length 5 are 13254, 13524, 21354, 21534, 23154, 23514, 25134, 31254, 31524, 35124).

As an immediate corollary to Theorem 12 and Corollary 8, we have the following
result.

Corollary 13. The number of (k, 3)-right-crucial permutations of length n = k is k − 1,
and for n ! k + 1 and k ! 3, it is given by

s(c)n (k, 3) =
(2k − n)(2k − n− 1)

(n− k)(n− k + 1)

!
n− 1

k

"!
n

k

"
. (2)

Moreover, for 2 " i " k − 1, the number of (k, 3)-right-crucial permutations of i-th
smallest length k + i− 1 is given by

(k − i)(k − i+ 1)

i(i− 1)

!
k + i− 2

k

"!
k + i− 1

k

"
(3)

and this number is 0 for i ! k. By symmetry, replacing k by ℓ in the formulas, we obtain
the results for (3, ℓ)-crucial permutations for ℓ ! 3.

Proof. The fact that there are k−1 (k, 3)-right-crucial permutations of length k is obtained
from Corollary 8 by letting ℓ = 3.

Let σ be a (k, 3)-right-crucial permutation of length n ! k + 1 and the pair of SYT
(P,Q) corresponds to σ. Then, by Theorem 12, the first row of P is of length k − 1,
the second row of P is of length n − k + 1 and also p2,n−k+1 = n. We can now use the
hook length formula to count the number of SYT with two rows obtained by removing
the element p2,n−k+1 (any such SYT has two rows because n ! k+1; each such SYT gives
a unique choice for P ):

(2k − n)(n− 1)!

k!(n− k)!
=

2k − n

n− k

!
n− 1

k

"
. (4)

Also, by the hook length formula, the number of choices for Q is given by

(2k − n− 1)n!

k!(n− k + 1)!
=

2k − n− 1

n− k + 1

!
n

k

"
.
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Multiplying the formulas above, we obtain (2).
To prove (3), first note that by Theorem 4, the minimal (k, 3)-crucial permutations are

of length k, and by the Erdős-Szekeres theorem [3] the maximal (k, 3)-crucial permutations
are of length (k − 1)(3 − 1) giving us the bounds for i as the i-th smallest (k, 3)-crucial
permutations are of length k + i − 1. We now obtain (3) by inserting n = k + i − 1 in
(2).

Remark 14. Corollary 13 allows us to derive the following results. The number of (k, 3)-
right-crucial permutations of length k + 1 (next smallest length, the case of i = 2), is
given by

(k − 2)(k2 − 1)

2
.

The corresponding sequence 4, 15, 36, 70, 120, 189, 280, . . . is the sequence A077414 in [10]
with several combinatorial interpretations.

The number of (k, 3)-right-crucial permutations of length k + 2 (the case of i = 3), is
given by

(k − 3)(k2 − 4)(k + 1)2

12
,

and the respective sequence begins with 0, 25, 126, 392, 960, 2025, 3850, 6776, . . ..

Theorem 15. For k+ℓ−3 " n < (k−1)(ℓ−1), we have the following monotone property
for the number of crucial permutations:

s(c)n (k, ℓ) < s
(c)
n+1(k, ℓ). (5)

Proof. Suppose that σ ∈ Sn is a (k, ℓ)-crucial permutation and (P,Q) is the pair of SYT
corresponding to σ. Then P and Q satisfy the conditions of Theorem 12. Moreover, since
n < (k− 1)(ℓ− 1), P has an element pi,j such that 2 " i " ℓ− 1, 1 " j < k− 1 and there
is no element to the right of pi,j (that is, pi,j+1 does not exist). Out of all such pi,j we
choose one with the minimum i. Let the SYT P ′ (resp., Q′) be obtained from P (resp.,
Q) by introducing the new element pi,j+1 = n + 1 (resp., qi,j+1 = n + 1), which we think
of as filling in the corner next to pi,j. Let the pair (P ′, Q′) correspond to a permutation
σ′ of length n + 1 via the R-S correspondence. Note that P ′ satisfies the conditions of
Theorem 12, so σ′ is a (k, ℓ)-crucial permutation. Moreover, the operation of obtaining

σ′ from σ is clearly injective, and hence s
(c)
n (k, ℓ) " s

(c)
n+1(k, ℓ).

To prove that the inequality is actually strict, we consider two cases:

(i) Let k + ℓ − 3 " n " (k − 1)(ℓ − 2). In this case, there exist Young diagrams with
n + 1 squares, k − 1 columns and ℓ − 1 rows with exactly one square in the last
row. Let P and Q be SYT of the same shape with n entries, k − 1 columns and
ℓ− 2 rows, and P satisfies the last condition in Theorem 12 (with the non-existing
pℓ−1,jℓ−1

ignored), so that the pair (P,Q) corresponds to a permutation counted by

s
(c)
n (k, ℓ− 1).We can extend P and Q to SYT P ′ and Q′, respectively, by adjoining
the element n + 1 in the row ℓ − 1, which is an injective operation. Clearly, P ′
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satisfies the last condition in Theorem 12 and hence the permutation corresponding
to the pair (P ′, Q′) is counted by s

(c)
n+1(k, ℓ). Since the element n+ 1 does not have

another element to the left of it, the (k, ℓ)-crucial permutations of length n + 1
obtained in this way are distinct from the ones considered above. Hence, in this
case

s(c)n (k, ℓ) < s(c)n (k, ℓ) + s(c)n (k, ℓ− 1) " s
(c)
n+1(k, ℓ). (6)

(ii) Let (k−1)(ℓ−2) < n < (k−1)(ℓ−1). In this case, we can consider Young diagrams
having k − 1 squares in each of the first ℓ− 2 rows and d := n− (k − 1)(ℓ− 2) ! 1
squares in the last row. We define a SYT P by filling in such a Young diagram with
elements as follows:

(a) the entries pi,j for 1 " i " ℓ − 1 and 1 " j " d are in {1, . . . , (ℓ − 1)d} and
they form a SYT. For example, reading from left to right, we can let row 1 be
1, 2, . . . , d, row 2 be d+ 1, d+ 2, . . . , 2d, etc.

(b) the remaining entries pi,j for 1 " i " ℓ− 2 and d + 1 " j " k − 1 also form a
SYT, which will automatically satisfy the last condition in Theorem 12 because
of the last column (with the non-existing pℓ−1,jℓ−1

ignored). An example of an
arrangement here can be, again, placing the elements consecutively in increas-
ing order from left to right from top to bottom with the element (ℓ − 1)d + 1
being in the North-West corner.

We note that because row ℓ− 1 has relatively “small” elements, the constructed by
us P does not satisfy the last condition in Theorem 12. However, adjoining to P
the element pℓ−1,d+1 = n+1 gives a SYT P ′ satisfying all conditions in Theorem 12.
Hence, choosing any SYT Q′ with n + 1 elements of the shape of P ′ we obtain a
pair of SYT (P ′, Q′) corresponding to a (k, ℓ)-crucial permutation of length n + 1
that was not considered above (including case (i)), because the element n + 1 has
another element to the left of it, and removing n + 1 from P ′ does not give a SYT
satisfying the last condition in Theorem 12. Hence, in this case we also have (5).

An alternative proof of strictness of s(c)n (k, ℓ) " s
(c)
n+1(k, ℓ). Note that for k+ℓ−3 <

n < (k−1)(ℓ−1)−2 we can always construct a SYT P with at least two corners satisfying
the conditions in Theorem 12 (e.g. by placing the elements consecutively in increasing
order from left to right from top to bottom in an appropriate Young diagram). That
means that we can extend P in more than one way by placing n + 1 in another corner
(not just in the top one as is done above), and such an extension is clearly injective. In the
remaining cases we have exactly one corner. If n ∈ {(k−1)(ℓ−1)−2, (k−1)(ℓ−1)−1} then
we can apply the construction in case (ii) above to get an extra (k, ℓ)-crucial permutation
of length n+1. Finally, if n = k+ ℓ− 3 then note that pℓ−1,1 = n. We can then extend P
to P ′ by letting the corner p′2,2 = n, the bottommost element p′ℓ−1,1 = n+ 1, and keeping
all other elements of P the same. Such a P ′ clearly satisfies the conditions in Theorem 12
and it was not obtained previously by filling in a corner element (as n+1 has no element
to the left of it in P ′).
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Remark 16. There is plenty of room to strengthen (5), for example, by using the proof

of Theorem 15. In particular, (6) states that s
(c)
n (k, ℓ) + s

(c)
n (k, ℓ − 1) " s

(c)
n+1(k, ℓ) for

k + ℓ− 3 " n " (k − 1)(ℓ− 2). As for the case of (k − 1)(ℓ− 2) < n < (k − 1)(ℓ− 1), we
can prove that

s(c)n (k, ℓ) + I(k, ℓ− 1)
k−2'

d=1

I(d+ 1, ℓ)I(k − d, ℓ− 1) " s
(c)
n+1(k, ℓ) (7)

where I(n, k) is given by the square root of the formula (1), that is, I(n, k) is the number
of SYT of the (ℓ−1)× (k−1) rectangular shape. Indeed, I(d+1, ℓ) (resp., I(k−d, ℓ−1))
is the number of possibilities to choose a SYT in case (ii)(a) (resp., (ii)(b)) in the proof of
Theorem 15 (independently from each other), which gives an estimation for the number
of possible P after summing over all d. Moreover, for each such a choice of P we can make
several choices for Q depending on the shape of P . All these choices can be estimated
from below by dropping the last row and considering I(k, ℓ−1) (ℓ−2)×k−1 rectangular
SYT1, which gives (7). Finally, we note that while our estimates are generally much better

than s
(c)
n (k, ℓ) + 1 " s

(c)
n+1(k, ℓ), they are still far from being accurate. For example, our

inequalities imply 15 = s
(c)
5 (4, 3) ! 6, 64 = s

(c)
6 (4, 4) ! 21 and 378 = s

(c)
7 (4, 4) ! 89, and

they become much worse with growing k and ℓ.

In this paper, we use the following properties of the R-S correspondence, where AT is
the transpose of a SYT A, and recall that ε is the evacuation map.

Lemma 17 ([7, 8]). Let σ ∈ Sn and (P,Q) be the pair of SYT corresponding to σ. Then,

• (P T , ε(Q)T ) is the pair of SYT corresponding to the reverse r(σ).

• (Q,P ) is the pair of SYT corresponding to the inverse σ−1.

• (ε(P )T , QT ) is the pair of SYT corresponding to the complement c(σ).

Next, we characterize (k, ℓ)-left-, top- and bottom-crucial permutations.

Theorem 18. Let σ ∈ Sn and (P,Q) be the pair of SYT corresponding to σ. Then, σ is
(k, ℓ)-left-, top- or bottom-crucial if and only if the following holds:

• the number of columns in P (and Q) is k − 1;

• the number of rows in P (and Q) is ℓ− 1;

• for (k, ℓ)-left-crucial: P contains an increasing sequence of elements pℓ−1,1, pi2,2,
. . . , pik−1,k−1 for some i2, . . . , ik−1;

for (k, ℓ)-top-crucial: Q contains an increasing sequence of elements q1,k−1, q2,j2,
. . . , qℓ−1,jℓ−1

for some j2, . . . , jℓ−1;

1We can produce an explicit formula for the number of Q for any fixed d hence introducing an extra
factor under the sum in (7) and improving the inequality. However, this is not done for the sake of
keeping simplicity.
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for (k, ℓ)-bottom-crucial: Q contains an increasing sequence of elements qℓ−1,1,
qi2,2, . . . , qik−1,k−1 for some i2, . . . , ik−1.

Proof. Remark 1 gives conditions on the number of rows and columns in P and Q.
By Lemma 11, σ is (k, ℓ)-left-crucial if and only if r(σ) is (ℓ, k)-right-crucial. By

Lemma 17, (P T , ε(Q)T ) is the pair of SYT corresponding to r(σ). Hence, Theorem 12
gives the required characterization of (k, ℓ)-left-crucial permutations.

By Lemma 11, σ is (k, ℓ)-top-crucial if and only if σ−1 is (k, ℓ)-right-crucial. By
Lemma 17, (Q, T ) is the pair of SYT corresponding to σ−1. Hence, Theorem 12 gives the
required characterization of (k, ℓ)-top-crucial permutations.

By Lemma 11, σ is (k, ℓ)-bottom-crucial if and only if (c(σ))−1 is (ℓ, k)-right-crucial.
By Lemma 17, (QT , ε(P )T ) is the pair of SYT corresponding to (c(σ))−1. Hence, Theo-
rem 12 gives the required characterization of (k, ℓ)-bottom-crucial permutations.

5 Characterization of (k, ℓ)-bicrucial permutations via R-S cor-
respondence

The following theorem is an immediate corollary of Theorems 12 and 18 and the fact that
the set of (k, ℓ)-bicrucial permutations is the intersection of the sets of (k, ℓ)-right-crucial
and (k, ℓ)-left-crucial permutations.

Theorem 19. Let σ ∈ Sn and (P,Q) be the pair of SYT corresponding to σ. Then, σ is
(k, ℓ)-bicrucial if and only if the following holds:

• the number of columns in P (and Q) is k − 1;

• the number of rows in P (and Q) is ℓ− 1;

• P contains an increasing sequence of elements p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1
for some

j2, . . . , jℓ−1;

• P contains an increasing sequence of elements pℓ−1,1, pi2,2, . . . , pik−1,k−1 for some
i2, . . . , ik−1.

Our next theorem characterizes minimal (k, ℓ)-bicrucial permutations, and it is the
main tool for enumeration of these permutations in Corollary 21.

Theorem 20. For k > ℓ ! 3, any minimal (k, ℓ)-bicrucial permutation σ is of length
n = k + 2ℓ− 5. Moreover, if (P,Q) is a pair of SYT corresponding to σ, then P is given
by

1 ℓ ℓ + 1 · · · k + ℓ − 3

k + ℓ − 22

.

.

.

.

.

.

ℓ − 1 k + 2ℓ − 5
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For k = ℓ, any minimal (k, k)-bicrucial permutation σ is of length n = 3k− 5. Moreover,
if (P,Q) is a pair of SYT corresponding to σ, then P , or P T , is given by

1 k k + 1 · · · 2k − 3

2k − 22

.

.

.

.

.

.

k − 1 3k − 5

Proof. By Theorem 19, P has k − 1 columns and ℓ − 1 rows. Moreover, P contains
an increasing sequence of elements p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1

for some j2, . . . , jℓ−1 and an
increasing sequence of elements pℓ−1,1, pi2,2, . . . , pik−1,k−1 for some i2, . . . , ik−1.

Note that the minimal possible value of p1,k−1 in any SYT P is k− 1 and the minimal
possible value of pℓ−1,1 in any SYT P is ℓ− 1.

If pℓ−1,1 = ℓ−1, then the increasing sequence of elements pℓ−1,1, pi2,2, . . . , pik−1,k−1 with
the smallest possible values has entries ℓ− 1, ℓ, . . . , k+ ℓ− 3 and i2 = i3 = · · · = ik−1 = 1.
Note that in this case we have p1,k−1 = k + ℓ − 3. Then the longest increasing sequence
p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1

with the smallest possible values has entries k + ℓ − 3, k + ℓ −
2, . . . , k + 2ℓ− 5 and j2 = j3 = · · · = jℓ−1 = 2. This gives us a SYT corresponding to an
irreducible (by Theorem 9) (k, ℓ)-bicrucial permutation of length k + 2ℓ− 5.

Similarly, if p1,k−1 = k − 1, then the increasing sequence of elements
p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1

with the smallest possible values has entries k−1, k, . . . , k+ ℓ−3
and j2 = j3 = · · · = jℓ−1 = 1. Note that in this case we have pℓ−1,1 = k + ℓ − 3. Then,
the longest increasing sequence pℓ−1,1, pi2,2, . . . , pik−1,k−1 with the smallest possible values
has entries k + ℓ − 3, k + ℓ − 2, . . . , 2k + ℓ − 5 and i2 = i3 = · · · = ik−1 = 2. This gives
us a SYT corresponding to an irreducible (by Theorem 9) (k, ℓ)-bicrucial permutation of
length 2k + ℓ− 5.

We see that if k > ℓ, then the case of pℓ−1,1 = ℓ− 1 gives a shorter permutation with
the respective tableau P shown below, where we underline the first sequence and indicate
the second one in bold:

1 ℓ ℓ + 1 · · · k + ℓ − 3

k + ℓ − 22

.

.

.

.

.

.

ℓ − 1 k + 2ℓ − 5

If k = ℓ then both of the cases of pℓ−1,1 = ℓ − 1 and p1,k−1 = k − 1 give permutations
of the same length and the respective P ’s in these cases are obtained from each other by
transposition that has no fixed points.

Corollary 21. Let k ! ℓ. The number of minimal (k, ℓ)-bicrucial permutations is given
by

(1 + δk,ℓ)(k + 2ℓ− 5)!

(k + ℓ− 3)(k + ℓ− 4)(ℓ− 1)!(ℓ− 2)!(k − 3)!
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where δk,ℓ is the Kronecker delta, namely,

δk,ℓ =

(
0 if k ∕= ℓ
1 if k = ℓ

.

Proof. By Theorem 20 we know the shape of the SYT corresponding to a (k, ℓ)-bicrucial
permutation σ, and we only need to apply the hook length formula to count the number
of possible SYT Q. The tableau listing the hook length of each cell in the respective
Young diagram is

k + ℓ − 3

ℓ − 1

ℓ − 2

.

.

.

2

k + ℓ − 4

ℓ − 2

ℓ − 3

.

.

.

1

k − 3 k − 4 · · · 1

from where the result follows by noticing the factor of 2 in the case of k = ℓ (since
P and P T cannot simultaneously be of the required form, so we have twice as many
possibilities).

As an immediate consequence of Corollary 21 we have the following result.

Corollary 22. Let k ! 3. The number of minimal (k, 3)-bicrucial permutations is given
by

(1 + δk,3)(k + 1)(k − 2)

2

where δk,ℓ is the Kronecker delta. For k > 3 the sequence begins with 5, 9, 14, 20, 27, 35, . . .
and this is the sequence A000096 in [10] with many combinatorial interpretations.

Remark 23. It follows from the proof of Theorem 20 that irreducible (k, ℓ)-bicrucial per-
mutations are not necessarily minimal (k, ℓ)-bicrucial permutations as for k > ℓ irreducible
(k, ℓ)-bicrucial permutations of length 2k + ℓ− 5 exist.

Theorem 24. For k ! ℓ and k + 2ℓ − 5 " n < (k − 1)(ℓ − 1), we have the following
monotone property for the number of bicrucial permutations:

s(b)n (k, ℓ) < s
(b)
n+1(k, ℓ). (8)

Proof. Our proof is very similar to the alternative proof of Theorem 15, so we just provide
a sketch of it.

Note that for k + 2ℓ − 5 < n < (k − 1)(ℓ − 1) − 2 we can alway construct a SYT P
with at least two corners satisfying the conditions in Theorem 19 (e.g. by starting with
a P corresponding to a minimal (k, ℓ)-bicrucial permutation and then introducing new
largest elements, one by one, in corners). That means that we can extend P in more than
one way by placing n+ 1 in one of the corners, and such an extension is clearly injective
and results in a SYT P ′ satisfying the conditions in Theorem 19. In the remaining cases
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we have exactly one corner and placing n + 1 in that corner results in a SYT satisfying
the conditions in Theorem 19. If n ∈ {(k − 1)(ℓ− 1)− 2, (k − 1)(ℓ− 1)− 1} then we can
apply the construction in case (ii) in the proof of Theorem 15 to get an extra (k, ℓ)-crucial
permutation of length n+ 1.

Finally, if n = k+2ℓ−5 then note that pℓ−1,2 = n. Suppose that ℓ > 3. We can extend
P to P ′ by letting the corner p′2,3 = n, the element p′ℓ−1,2 = n + 1, and keeping all other
elements of P the same. Such a P ′ clearly satisfies the conditions in Theorem 19 and it
was not obtained previously by filling in the corner element (as n + 1 is in the bottom
row now unlike the other case). If ℓ = 3 then we get an extra extension by letting the
corner element p′2,3 = n+ 1 and swapping the elements p2,2 = n and p1,k−1 while keeping
all other elements of P the same, which is clearly an injective operation.

Remark 25. If follows directly from the proof of Theorem 24 that

2s(b)n (k, ℓ) " s
(b)
n+1(k, ℓ).

6 Characterization of (k, ℓ)-top-right-crucial permutations via
R-S correspondence

The following theorem is an immediate corollary of Theorems 12 and 18 and the fact that
the set of (k, ℓ)-top-right-crucial permutations is the intersection of the sets of (k, ℓ)-right-
crucial and (k, ℓ)-top-crucial permutations.

Theorem 26. Let σ ∈ Sn and (P,Q) be the pair of SYT corresponding to σ. Then, σ is
(k, ℓ)-top-right-crucial if and only if the following holds:

• the number of columns in P (and Q) is k − 1;

• the number of rows in P (and Q) is ℓ− 1;

• P contains an increasing sequence of elements p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1
for some

j2, . . . , jℓ−1;

• Q contains an increasing sequence of elements q1,k−1, q2,j2 , . . . , qℓ−1,jℓ−1
for some

j2, . . . , jℓ−1.

As a corollary to Theorem 26, we have the following result.

Corollary 27. The number of (k, 3)-top-right-crucial permutations of length n ! k + 1,
for k ! 3, is given by

s(tr)n (k, 3) =

!
2k − n

n− k

!
n− 1

k

""2

.

Moreover, for 2 " i " k − 1, the number of (k, 3)-top-right-crucial permutations of i-th
smallest length k + i− 1 is given by

!
k − i+ 1

i− 1

!
k + i− 2

k

""2
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and this number is 0 for i ! k.

Proof. Our proof follows exactly the same steps as those in the proof of Corollary 13
except we note that the number of choices for Q is now the same as the number of choices
for P and hence is given by (4).

Remark 28. The fact that P and Q have the same restrictions for (k, ℓ)-top-right-crucial

permutations implies that the number s
(tr)
n (k, ℓ) of such permutations of length n is the

sum of t square numbers, where t is the number of Young diagrams with n squares, k− 1
columns and ℓ − 1 rows (equivalently, t is the number of partitions of n into ℓ − 1 parts
with the largest part of size k−1). In particular, the number of minimal and next minimal

(k, ℓ)-top-right-crucial permutations, respectively, s
(tr)
k+ℓ−3(k, ℓ) and s

(tr)
k+ℓ−2(k, ℓ), are square

numbers for any k and ℓ as there are unique Young diagrams in question. By Theorem 10,
s
(tr)
k+ℓ−3(k, ℓ) = 1 and in Theorem 29 we will show that s

(tr)
k+ℓ−2(k, ℓ) = (k + ℓ− 4)2.

Theorem 29. For k, ℓ ! 3, the number of next minimal (k, ℓ)-top-right-crucial permuta-

tions is s
(tr)
k+ℓ−2(k, ℓ) = (k + ℓ− 4)2.

Proof. First note that by Theorem 26, the Young diagram of any (k, ℓ)-top-right-crucial
permutation of length k + ℓ − 2 has k − 1 squares in the first row, two squares in the
second row and one square in rows 3, 4, . . . , ℓ− 1. We wish to count the number of ways
to build P , which is the number of possible SYT of the shape satisfying the “increasing
sequence of elements” condition in Theorem 26.

Any SYT having the shape in question has an i, 1 " i " k− 1, such that the first row
in P begins with 1, 2, . . . , i and p2,1 = i + 1. If i < k − 1 then, by Theorem 26, we must
have p1,i+1 < p1,i+2 < · · · < p1,k−1 < p2,2 < p3,1 < p4,1 < · · · < pℓ−1,1 and hence there is a
unique way to build such a P (where, in particular, p1,i+1 = i + 2). That far, we found
k − 2 ways to construct P . However, if i = k − 1 (and p2,1 = k) then p2,2 can be any
element in {k + 1, k + 2, . . . , k + ℓ− 2} giving us additional ℓ− 2 possibilities to build P .
The claimed result now follows from k − 2 + ℓ − 2 = k + ℓ − 4 and the observation that
by Theorem 26, the number of ways to build P is the same as that to build Q.

Following the same arguments as in the proof of Theorem 15 related to (k, ℓ)-crucial
permutations, except always choosing for Q the SYT of the form in question obtained by
filling in squares with consecutively increasing numbers from left to right and from top to
bottom (that would satisfy the condition on Q in Theorem 26), we obtain the following
result.

Theorem 30. For k+ℓ−3 " n < (k−1)(ℓ−1), we have the following monotone property
for the number of top-right-crucial permutations:

s(tr)n (k, ℓ) < s
(tr)
n+1(k, ℓ). (9)
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7 Characterization of (k, ℓ)-tricrucial permutations via R-S cor-
respondence

Recall that a permutation is (k, ℓ)-tricrucial if it is (k, ℓ)-bicrucial and any of its extensions
from above results in a permutation containing an occurrence of ik or dℓ. The following
theorem is an immediate corollary of Theorems 18 and 19 and the fact that the set of
(k, ℓ)-tricrucial permutations is the intersection of the sets of (k, ℓ)-bicrucial and (k, ℓ)-
top-crucial permutations.

Theorem 31. Let σ ∈ Sn and (P,Q) be the pair of SYT corresponding to σ. Then, σ is
(k, ℓ)-tricrucial if and only if the following holds:

• the number of columns in P (and Q) is k − 1;

• the number of rows in P (and Q) is ℓ− 1;

• P contains an increasing sequence of elements p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1
for some

j2, . . . , jℓ−1;

• P contains an increasing sequence of elements pℓ−1,1, pi2,2, . . . , pik−1,k−1 for some
i2, . . . , ik−1;

• Q contains an increasing sequence of elements q1,k−1, q2,j2 , . . . , qℓ−1,jℓ−1
for some

j2, . . . , jℓ−1.

Theorem 32. For k > ℓ, any minimal (k, ℓ)-tricrucial permutation σ is of length n =
k + 2ℓ− 5. Moreover, if (P,Q) is a pair of SYT corresponding to σ, then P is given by

1 ℓ ℓ + 1 · · · k + ℓ − 3

k + ℓ − 22

.

.

.

.

.

.

ℓ − 1 k + 2ℓ − 5

and q1,k−1 < q2,2 in Q.
For k = ℓ, any minimal (k, k)-tricrucial permutation σ is of length n = 3k−5. Moreover,
if (P,Q) is a pair of SYT corresponding to σ, then P , or P T , is given by

1 k k + 1 · · · 2k − 3

2k − 22

.

.

.

.

.

.

k − 1 3k − 5

and in Q, q1,k−1 < q2,2 in the former case and q1,k−1 < q2,j < q3,1, for some j ∈ {1, . . . k−
1}, in the latter case.
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Proof. Any tricrucial permutation is a bicrucial permutation, and in Theorem 20 we have
a characterization for (k, ℓ)-bicrucial permutations, which gives, in particular, the claimed
shape and filling of P and the shape of Q.

By Theorem 18, a (k, ℓ)-bicrucial permutation is (k, ℓ)-top-crucial (and, consequently,
(k, ℓ)-tricrucial) if the corresponding SYT Q contains an increasing sequence of elements
q1,k−1, q2,j2 , . . . , qℓ−1,jℓ−1

for some j2, . . . , jℓ−1.
If k > ℓ, then SYTQ has the unique shape (presented in the statement of the theorem).

Since in any SYT every column is increasing, the presence of an increasing sequence of
elements q1,k−1, q2,j2 , . . . , qℓ−1,jℓ−1

is equivalent to the requirement q1,k−1 < q2,2.
If k = ℓ then there is another possible shape of Q (the transposition of the shape in

the statement of the theorem). In this case, to guarantee the presence of an increasing
sequence of elements q1,k−1, q2,j2 , . . . , qℓ−1,jℓ−1

it is sufficient to check that q1,k−1 < q2,j <
q3,1 for some j ∈ {1, . . . k − 1}.
Corollary 33. For k > 3 there are k − 1 minimal (k, 3)-tricrucial permutations:

2134 · · · (k − 1)(k + 1)k
2314 · · · (k − 1)(k + 1)k

...
234 · · · (k − 1)1(k + 1)k
234 · · · (k − 1)(k + 1)1k

All minimal (3, 3)-tricrucial permutations are 2143, 2413, 3142, and 3412.

Proof. Referring to Theorem 32, we derive the following facts. For k ! 3, the length of
permutations in question is k + 1. For k > 3, we have the unique choice for P , and in Q
(having two rows) we must have q1,1 = 1 and q2,2 = k + 1 (the maximum element), and
any of the remaining k−1 elements can be in square q2,1 hence giving the result. If k = 3,
then both SYTs of the 2× 2 shape are valid choices for P and Q, hence giving in total 4
choices. Reversing the R-S correspondence, we obtain the result.

Following the same arguments as in the proof of Theorem 24 related to (k, ℓ)-bicrucial
permutations, except always choosing for Q the SYT of the form in question obtained by
filling in squares with consecutively increasing numbers from left to right and from top to
bottom (that would satisfy the condition on Q in Theorem 31), we obtain the following
result.

Theorem 34. For k+ℓ−3 " n < (k−1)(ℓ−1), we have the following monotone property
for the number of tricrucial permutations:

s(tri)n (k, ℓ) < s
(tri)
n+1(k, ℓ). (10)

8 Characterization of (k, ℓ)-quadracrucial permutations via the
R-S correspondence

Recall that a permutation is (k, ℓ)-quadracrucial if it is (k, ℓ)-tricrucial and any extension
from below results in a permutation containing an occurrence of ik or dℓ. The following
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theorem is an immediate corollary of Theorems 18 and 31 and the fact that the set of
(k, ℓ)-bicrucial permutations is the intersection of the sets of (k, ℓ)-tricrucial and (k, ℓ)-
bottom-crucial permutations.

Theorem 35. Let σ ∈ Sn and (P,Q) be the pair of SYT corresponding to σ. Then, σ is
(k, ℓ)-quadracrucial if and only if the following holds:

• the number of columns in P (and Q) is k − 1;

• the number of rows in P (and Q) is ℓ− 1;

• P contains an increasing sequence of elements p1,k−1, p2,j2 , . . . , pℓ−1,jℓ−1
for some

j2, . . . , jℓ−1;

• P contains an increasing sequence of elements pℓ−1,1, pi2,2, . . . , pik−1,k−1 for some
i2, . . . , ik−1;

• Q contains an increasing sequence of elements q1,k−1, q2,j2 , . . . , qℓ−1,jℓ−1
for some

j2, . . . , jℓ−1;

• Q contains an increasing sequence of elements qℓ−1,1, qi2,2, . . . , qik−1,k−1 for some
i2, . . . , ik−1.

Theorem 36. For k ! 3 and ℓ ! 2, minimal (k, ℓ)-quadracrucial permutations are of
length k + 2ℓ− 5.

Proof. Any (k, ℓ)-quadracrucial permutation is (k, ℓ)-tricrucial, and hence, by Theorem 32,
the length of a minimal (k, ℓ)-quadracrucial permutation is ! k+2ℓ−5. To complete the
proof, we construct a (k, ℓ)-quadracrucial permutation of length k+ 2ℓ− 5. Consider the
permutation σ = σ1 · · · σk+2ℓ−5 =

(ℓ− 1)(ℓ− 2) · · · 1ℓ(ℓ+ 1) · · · (ℓ+ k − 4)(k + 2ℓ− 5)(k + 2ℓ− 6) · · · (k + ℓ− 3) (11)

having the ℓ−1 smallest and ℓ−1 largest elements consecutively in decreasing order, and
the remaining k − 3 elements in the middle in increasing order.

Clearly, σ avoids ik and dℓ. Moreover, extending σ

• to the right by an element " ℓ+ k − 3 (resp., > ℓ+ k − 3) introduces dℓ (resp., ik)
involving the elements k+2ℓ−5, k+2ℓ−6, . . . , ℓ+k−3 (resp., ℓ−1, ℓ, . . . , ℓ+k−3)
in σ;

• to the left by an element > ℓ− 1 (resp., " ℓ− 1) introduces dℓ (resp., ik) involving
the elements 1, 2, . . . , ℓ− 1 (resp., ℓ− 1, ℓ, . . . , k + ℓ− 3) in σ;

• from above to the left (resp., right) of the element k+2ℓ−5 introduces dℓ (resp., ik)
involving the elements k+ ℓ−3, k+ ℓ−2, . . . , k+2ℓ−5 (resp., ℓ−1, ℓ, . . . , ℓ+k−4,
k + 2ℓ− 5) in σ;
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k − 2

k − 2

ℓ − 2

ℓ − 2

Figure 1: The structure of the quadracrucial permutation given by (13)

• from below to the right (resp., left) of the element 1 introduces dℓ (resp., ik) involving
the elements 1, 2, . . . , ℓ− 1 (resp., 1, ℓ, ℓ+ 1, . . . , ℓ+ k − 4, k + 2ℓ− 5) in σ.

Therefore, σ is (minimal) (k, ℓ)-quadracrucial.

In fact, Theorem 36 is a direct corollary of the following theorem.

Theorem 37. There is a unique minimal (k, 3)-quadracrucial permutation 2134 · · · (k −
1)(k + 1)k for any k > 3, and there are four minimal (3, 3)-quadracrucial permutations
(2143, 2413, 3142, 3412). Moreover, there are 1 + δk,ℓ minimal (k, ℓ)-quadracrucial per-
mutations for k, ℓ > 3, where δk,ℓ is the Kronecker delta: permutation (11) and its reverse
for k = ℓ.

Proof. Since for k = ℓ = 3, k + 2ℓ − 5 = (k − 1)(ℓ − 1), by Theorem 36 minimal (3, 3)-
quadracrucial permutations are precisely maximal (3, 3)-quadracrucial permutations, and

by (1), there are
%

4!
11·22·31

&2
= 4 such permutations.

Now, assume that k > ℓ ! 3. Any quadracrucial permutation is necessarily bicrucial,
and hence Theorem 20 can be applied to see that there is a unique choice for P . Moreover,
the conditions on Q for the shape of P in Theorem 35 imply the unique choice of Q (in
fact, P = Q), which gives the desired result. Finally, if k = ℓ > 3 then again Theorem 20
can be applied to see that there are two choices for P , for each of which there is a unique
choice of Q by Theorem 35 (again, P = Q). Using the reverse R-S correspondence, we
complete the proof.

Following the same arguments as in the proof of Theorem 24 related to (k, ℓ)-bicrucial
permutations, but instead of choosing any Q always mimicking on Q the ways we extend
P (to make sure that the extended Q satisfies the conditions in Theorem 35), we obtain
the following result.

Theorem 38. For k+ℓ−3 " n < (k−1)(ℓ−1), we have the following monotone property
for the number of quadracrucial permutations:

s(q)n (k, ℓ) < s
(q)
n+1(k, ℓ). (12)
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Experimenting with quadracrucial permutations of smaller lengths, one can notice that
any such permutation σ has an element x such that replacing this element with either x(x+
1) or (x+1)x, and increasing all elements in σ larger than x by 1, results in a quadracrucial
permutation of larger length. For example, in the quadracrucial permutation given by
(11) we can replace the element ℓ by (ℓ + 1)ℓ and increase the elements larger than ℓ
in the original permutation by 1 in order to get a quadracrucial permutation of length
k+2ℓ−4. It was tempting to conjecture and prove that this is the case for all quadracrucial
permutations of length less than the maximal length (k−1)(ℓ−1). However, this is not the
case, as a counterexample is found by considering the quadracrucial permutation (placed
on two lines)

(k + ℓ− 4)(k + ℓ− 5) · · · (k − 1)(k + 2ℓ− 5)(k + 2ℓ− 4) · · · (13)

(2k + 2ℓ− 8)12 · · · (k − 2)(k + 2ℓ− 6)(k + 2ℓ− 7) · · · (k + ℓ− 3)

of length 2(k + ℓ− 4) whose schematic structure is presented in Figure 1.

9 Directions of further research

We end our paper by stating a conjecture and a number of open problems (in no particular
order).

Conjecture 39. Every (k, ℓ)-crucial permutation can be obtained by deleting elements
from a maximal (k, ℓ)-crucial permutation.

Problem 40. Let us fix a Young diagram D. How many crucial permutations of a given
type introduced in this paper exist with the shapes of P and Q being D? The answer
to this question is likely to be difficult to find for an arbitrary D, so the problem can
be reformulated for a fixed class of Young diagrams, e.g. of some regular type, or having
other specified properties.

For the next problem, recall the definition of an irreducible bicrucial permutation in
Section 2.1.

Problem 41. Can we argue that for k > ℓ the only irreducible (k, ℓ)-bicrucial permuta-
tions are of length k+2ℓ−5 and 2k+ℓ−5? (See Remark 23 and the proof of Theorem 20).
Or do such permutations exist of other lengths?

Problem 42. Generalize Corollary 33 by enumerating minimal (k, ℓ)-tricrucial permuta-
tions. This problem is equivalent to enumerating SYT Q of the form in Theorem 32 with
q1,k−1 < q2,2.

Problem 43. Enumerate (k, ℓ)-(top-right,bi,tri,quadra)crucial permutations.

Problem 44. Explain bijectively the connection between (k, 3)-crucial permutations of
next minimal length mentioned in Remark 14 and the combinatorial objects mentioned
in the sequence A077414 in [10].
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For the next problem, recall the definition of a non-extendable permutation in Sec-
tion 2.1.

Problem 45. Note that any non-extendable permutation of any of the five types intro-
duced in this paper is necessarily quadracrucial. Do non-extendable (k, ℓ)-quadracrucial
permutations, apart from the maximal (k, ℓ)-quadracrucial permutations, exist? If so,
characterize such permutations.
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