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Abstract

Recent works of Andrews–Newman and Hopkins–Sellers unveil an interesting
relation between two partition statistics, the crank and the mex. They state that,
for a positive integer n, there are as many partitions of n with non-negative crank
as partitions of n with odd mex. In this paper, we give a bijective proof of a gen-
eralization of this identity provided by Hopkins, Sellers and Stanton. Our method
uses an alternative definition of the Durfee decomposition, whose combinatorial link
to the crank was recently studied by Hopkins, Sellers, and Yee.

Mathematics Subject Classifications: 05A17, 11P84, 11P83, 05A19

1 Introduction

1.1 State of art

An integer partition is a finite non-increasing sequence of positive integers. It then has
the form λ = (λ1, . . . ,λs) with λ1 ! · · · ! λs ! 1. The terms λi are called the parts of λ,
and we denote by ℓ(λ) = s and |λ| = λ1 + · · ·+ λs respectively the length and the weight
of the partition λ. For example, ℓ(∅) = |∅| = 0. For a non-negative integer n, an integer
partition with weight n is commonly called a partition of n. For example, the partition
of 3 are (3), (2, 1) and (1, 1, 1), respectively with length 1, 2 and 3. Let P be the set of
integer partitions. For F ⊂ P , F is the complementary of F , i.e. F = {λ ∈ P : λ /∈ F}.
In the remainder of the paper, the term “partition” stands for an integer partition, and
#A denotes the number of elements in the set A.

In a 1988 paper [1], Andrews and Garvan formally provide a definition of Dyson’s
crank, a partition statistic introduced by Dyson in [4] to combinatorially explain a divisi-
bility property of partitions. Let λ be a partition. Set ω(λ) = #{i ∈ {1, . . . , ℓ(λ)} : λi = 1},
the number of occurrences of 1 as part of λ, and set η(λ) = #{i ∈ {1, . . . , ℓ(λ)} : λi > ω(λ)}
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the number of parts greater than ω(λ). The crank of λ, denoted crank(λ), is defined by
the relation

crank(λ) =

!
λ1 if ω(λ) = 0 ,

η(λ)− ω(λ) if ω(λ) > 0 .
(1)

In particular, set crank(∅) = 0. One can easily check that −|λ| " crank(λ) " |λ|. Given
integers m,n with −n " m " n, C(m,n) denotes the number of partitions of weight n
and crank m, with the exception that C(1, 1) = −C(0, 1) = 1. In [5], Garvan explicitly
provides the generating function for the crank.

Theorem 1 (Garvan). We have

(x− 1)q +
"

λ∈P

xcrank(λ)q|λ| =
"

n!0

n"

m=−n

C(m,n)xmqn =
(q; q)∞

(qx, qx−1; q)∞
(2)

where (a1, . . . , at; q)∞ =
#

k!0

#t
i=1(1− aiq

k).

Corollary 2. Given integers n ! m ! 0, we have C(m,n) = C(−m,n).

Recent works involved the use of a new partition statistic, the minimal excludant or
mex, defined as the smallest positive integer which is not a part of the partition. For
λ ∈ P , set mex(λ) to be the mex of λ. For example, mex(∅) = mex((5, 3, 2, 2)) = 1. A
curious yet interesting connection between the mex and the crank arose from the works
of Andrews–Newman [2] and Hopkins–Sellers [6], who independently found the following
result.

Theorem 3. At fixed weight, the number of partitions with non-negative crank is equal
to the number of partitions with odd mex.

In [7], Hopkins, Sellers and Stanton provide a broad generalization of Theorem 3 by
introducing a notion generalizing the mex. For j ! 0, and λ a partition containing the
part j, mexj(λ) is the smallest integer greater than j which is not a part of λ.

Theorem 4. For j ∈ Z!0, at fixed weight greater than 1, the number of partitions λ with
a part j such that mexj(λ) − j is odd is equal to the number of partitions with crank at
least equal to j.

The case j = 0 of the above theorem implies Theorem 3 as mex0(λ) = mex(λ) and 0
can be seen as a fictitious part of all partitions.

The aim of this paper is to provide a purely bijective proof Theorem 4. This general-
ization will derive from a key result related the Durfee decomposition of partitions.

1.2 Statement of results

We first extend the generalization of the notion of mex to all partitions.
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Definition 5. Let j ∈ Z!0. For λ ∈ P , the j-mex of λ, denoted mexj(λ), is the smallest
integer greater than j which is not a part of λ. For example, we have mexj(∅) = j + 1
for j ∈ Z!0, mex0(5, 3, 2, 2) = 1,mex1(5, 3, 2, 2) = mex2(5, 3, 2, 2) = mex3(5, 3, 2, 2) =
4,mex4(5, 3, 2, 2) = 6 , and finally mexj(5, 3, 2, 2) = j+1 for j ! 5. Denote by Mj the set
of partitions with a j-mex parity different from j. With the previous examples, we have
that ∅ ∈ Mj for j ∈ Z!0, and

(5, 3, 2, 2) ∈ M0 ∩M1 ∩M2 ∩M3 ∩M4 ∩
$

j!5

Mj .

In the remainder of the paper, for all λ ∈ P , we set λ0 = ∞ and λℓ(λ)+1 = 0, so
that the sequence (λ0, · · · ,λℓ(λ)+1) remains non-increasing. A partition then becomes a
non-increasing sequence starting from ∞ and ending by 0. For example, the partition ∅
is associated to the sequence (∞, 0) with ∅0 = ∞ and ∅1 = 0. For j ∈ Z!0, denote by Pj

the set of partitions which do not have j as part. Conversely, Pj is the set of partitions
with a part j. A rephrasing of Theorem 4 is then the following.

Theorem 6. For j ∈ Z!0, at fixed weight greater than 1, the number of partitions in
Mj ∩ Pj is equal to the number of partitions with crank at least equal to j.

The bijective proof of Theorem 6 that we provide in this paper, was deeply inspired
by the work of Hopkins, Sellers, and Yee, who described in [8] combinatorial relations
that link the crank and the Durfee decomposition of a partition. Our work is based on a
simple yet subtle definition related the very notion of Durfee decomposition.

Definition 7. Let λ ∈ P . The function i '→ λi − i is strictly then decreasing on
{0, . . . , ℓ(λ) + 1}, with λ0 − 0 = ∞ and λℓ(λ)+1 − (ℓ(λ) + 1) < 0. Therefore, for j ∈ Z!0,
there exists a unique integer dλj ∈ {0, . . . , ℓ(λ)} such that λdλj

− dλj ! j > λdλj +1− (dλj +1).

Formally written,
dλj = max{i ∈ {0, . . . , ℓ(λ)} : λi − i ! j} . (3)

For example, d∅j = 0, and for λ = (5, 3, 2, 2),

dλ0 = dλ1 = 2, dλ2 = dλ3 = dλ4 = 1 and dλj = 0 for j ! 5 .

We also denote by Fj the set of partitions λ such that j /∈ {λi − i : i ∈ {1, . . . , ℓ(λ)}},
which is equivalent to saying that λdλj

− dλj > j > λdλj +1 − (dλj + 1). Conversely, F j is the

set of partitions λ satisfying λdλj
= dλj + j.

Remark 8. For j ∈ Z!0, as λdλj+1+2 − (dλj+1 + 2) < j < λdλj+1
− dλj+1 when dkj+1 < ℓ(λ),

we always have that dλj − dλj+1 ∈ {0, 1}. Therefore, the sequence (dλj )j!0 is non-increasing
while the sequence (dλj + j)j!0 is non-decreasing.

Remark 9. The Durfee decomposition of a partition λ = (λ1, . . . ,λℓ(λ)) is the triplet
(dλ0 , µ, ν) with (µ, ν) = [(µ1, . . . , µdλ0

), (ν1, . . . , νdλ0 )] such that, for all i ∈ {1, . . . , dλ0},
µi = λi − i and νi = #{u ∈ {1, . . . , ℓ(λ)} : λu ! i} − i. Inversely, for any triplet (t, µ, ν)
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such that µ and ν are increasing sequences of t non-negative integers, we associate the
partition λ with length ν1 + 1 and

!
λi = µi + i for 1 " i " t

λi = #{u : νu + u ! i} for t+ 1 " i " ν1 + 1 .

We note λ ≡ (t, µ, ν), and one can check that |λ| = t +
%t

u=1 µu + νu. In particular,
∅ ≡ (0, ∅, ∅).

Observe that, for j ∈ Z!0, Fj can be equivalently defined as the set of partitions
λ ≡ (dλ0 , µ, ν) such that j is not in µ.

We now provide an intermediate result that plays a fundamental role in the bijective
proof of Theorem 4.

Theorem 10. For j ∈ Z!0, at fixed weight, the number of partitions of Mj is equal to
the number of partitions in Fj.

Corollary 11. For j ∈ Z!0, at fixed weight, the number of partitions of Mj is equal to
the number of partitions in F j.

Using the following reformulation of a result provided by Hopkins, Sellers and Stanton
in [7], we derive the generalization of Theorem 3 from Theorem 10 and Corollary 2.

Theorem 12. Let j ∈ Z!0. Then, at fixed weight greater than 1, there are as many
partitions in Fj ∩ Pj as partitions with crank at most equal to −j.

By adding a part j to the partitions in Mj and Fj when j > 0, Theorem 12 implies
that, at fixed weight, there are as many partitions in Mj ∩ Pj as partitions in Fj ∩ Pj.
Then, by Theorem 10, at fixed weight greater than 1, there are as many partitions in
Mj ∩Pj as partitions with crank at most equal to −j. We finally obtain Theorem 4 from
Corollary 2.

The remainder of the paper is organized as follows. We first provide in Section 2 a
simple analytic proof of Theorem 10. Then, in Sections 3 and 4, a bijection for Theorem
10 is given, so as the proof of its well-definedness. After that, in Section 5, we give a
direct bijective proof of Corollary 11 in the spirit of the bijection of Section 3. In Section
6, Theorem 12 is proved bijectively. Finally, in Section 8, we provide the full scope of
bijective proof of Theorem 4 with a bijection for Corollary 2 given in Section 7.

2 Analytic proof of Theorem 10

For j, k ∈ Z!0, set ∆j,k = (j + k, . . . , j + 1) the partition consisting of k consecutive

integers ending by j+1, and ∆j,0 = ∅. Then, |∆j,k| = k(k+1)
2

+ jk. Hence, by Definition 5,
the set of partitions with j-mex equal to j + k + 1 can be associated to {∆j,k}× Pj+k+1,
i.e. mexj(λ) = j + k + 1 if and only if there exists a unique partition, without a part
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j + k + 1, whose parts are exactly those of λ except once the parts j + 1, . . . , j + k. We
then have "

λ∈P

xmexj(λ)yℓ(λ)q|λ| =
xj+1

(qy; q)∞

"

k!0

(xy)k(1− yqj+k+1)q|∆j,k| .

By Definition 5, Mj consists of partitions λ such that mexj(λ) − j ≡ 1 mod 2. Hence,
using the above relation with x = y = 1 and running the sum over even k, we have

"

λ∈Mj

q|λ| =
1

(q; q)∞

"

k!0

(1− qj+2k+1) · q|∆j,2k|

=
1

(q; q)∞

"

k!0

(−1)kq|∆j,k|

=
1

(q; q)∞

"

k!0

(−1)kq
k(k+1)

2
+jk .

Also, by the Jacobi triple product,

(−x; q)∞(−x−1q; q)∞ =
1

(q; q)∞
·
"

k∈Z

(−1)kxkq
k(k−1)

2 ,

and by Remark 9,

"

λ∈Fj

q|λ| = [x0]
&
(−x; q)∞(−x−1q; q)∞

'
· 1

(1 + xqj)

= [x0]

(
1

(q; q)∞
·
"

k∈Z

(−1)kxkq
k(k−1)

2

)
·
*
"

k!0

(−1)kxkqjk

+

=
1

(q; q)∞
·
"

k!0

(−1)kq
k(k+1)

2
+kj .

In conclusion,
%

λ∈Mj
q|λ| =

%
λ∈Fj

q|λ|.

3 Bijection for Theorem 10

Here is a reminder of the key definitions that we use in Sections 3, 4 and 5. For all integers
j ! 1, k ! 0, and for all partitions µ = (µ1, . . . , µℓ(µ))

Pj = {λ ∈ P : i /∈ λ} and Pj = {λ ∈ P : i ∈ λ},
Mj = {λ ∈ P : mexj(λ)− j ≡ 1 mod 2},
dµj = max{i ∈ {0, . . . , ℓ(µ)} : µi − i ! j},
Fj = {λ ∈ P : λdλj

− dλj > j} and F j = {λ ∈ P : λdλj
− dλj = j},

∆j,k = (j + k, . . . , j + 1, j).
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In this section, we provide two maps inverse of each other for the bijective proof of
Theorem 10. In our bijections, we will apply some transformations on pairs of partitions
in

,
k!0{∆j,k} × P . One has to keep in mind that P can be trivially associated to

{∆j,0} × P = {∅} × P . Finally, we identify Mj to
,

k!0{∆j,2k} × Pj+2k+1 and Fj to
{∆j,0}× Fj. Two maps will then be constructed,

Φj :
-

k!0

{∆j,2k}× Pj+2k+1 → {∆j,0}× Fj

and
Ψj : {∆j,0}× Fj →

-

k!0

{∆j,2k}× Pj+2k+1 ,

in such a way that the partitions in the pairs have their weight and their length sums
conserved during the process. By abuse of notation, if λ ∈ Mj is identified to the pair
(∆j,2k, µ), we write Φj(λ) = ν ∈ Fj such that Φj((∆j,2k, µ)) = (∆j,0, ν). The same
convention stands for Ψj : Fj '→ Mj.

3.1 From
,

k!0{∆j,2k} × Pj+2k+1 to {∆j,0} × Fj

Let φj be the map defined on

*
-

k!0

{∆j,2k}× P
+

\ ({∆j,0}× Fj) =

*
-

k!1

{∆j,2k}× Fj+2k

+
⊔
*
-

k!0

{∆j,2k}× F j+2k

+

as follows.

1. For k ! 0 and (∆j,2k,λ) ∈ {∆j,2k}× F j+2k, do the transformation

λ1, . . . ,λdλj+2k
'→ λ1 + 1, . . . ,λdλj+2k−1 + 1, 1 + j + 2k .

This means that, in λ, we delete the part λdλj+2k
= dλj+2k+j+2k, add 1 to the dλj+2k−1

largest finite parts and add a part 1 + j + 2k + 1. We then obtain a partition µ,
and set φj((∆j,2k,λ)) = (∆j,2k, µ). Observe that |µ| = |λ| and ℓ(µ) = ℓ(λ), so that
the weight and length sums are conserved. Moreover, the transformation does not
involved parts less than 1+j+2k, so that the parts at most equal to j are conserved.

2. For k ! 1 and (∆j,2k,λ) ∈ {∆j,2k}× Fj+2k, do the transformation

∆j,2k,λ1, . . . ,λdλj+2k
'→ ∆j,2k−2,λ1 − 1, . . . ,λdλj+2k

− 1, dλj+2k + j + 2k, j + 2k − 1 .

This means that, in ∆j,2k, we deleted the parts j + 2k, j + 2k − 1, and in λ, we
subtract 1 to the dλj+2k largest finite parts and add the parts dλj+2k + j + 2k and
j + 2k− 1 to obtain a partition µ. We finally set φj((∆j,2k,λ)) = (∆j,2k−2, µ). Note
that |µ| = |λ|+ (j +2k) + (j +2k− 1), and ℓ(µ) = ℓ(λ) + 2, so that the weight and
length sums are conserved. In addition, The parts at most equal to j are conserved.
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For all (∆j,2k,λ) ∈ {∆j,2k}×Pj+2k+1, iterate the map φj as long as it is possible. The
iteration stops as soon as we reach a pair in {∆j,0} × Fj. We then set Φj((∆j,2k,λ)) =
φu
j ((∆j,2k,λ)) ∈ {∆j,0} × Fj. We finally observe that the transformations occur only

on parts greater than j. Therefore, if Φj is well-defined, it then induces a map from,
k!0{∆j,2k}×

.
Pj+2k+1 ∩ Pj

/
to {∆j,0}×

.
Fj ∩ Pj

/
.

Example 13. For j, k ∈ Z!0,

Φj((∆j,2k, ∅)) = (∆j,0,∆j,2k) ,

as φu
j ((∆j,2k, ∅)) = (∆j,2k−2u,∆j+2k−2u,2u) for 0 " u " k.

Example 14. Consider the partition (11, 8, 7, 7, 5, 5, 4, 3, 2, 2). It belongs to Mj for j ∕=
2, 4, 7, 10, and the corresponding pairs are respectively

(∆0,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2)), (∆1,4, (11, 8, 7, 7, 5, 2)), (∆3,2, (11, 8, 7, 7, 5, 3, 2, 2))

(∆5,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2)), (∆6,2, (11, 7, 5, 5, 4, 3, 2, 2)),

and (∆j,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2)) for 10 ∕= j ! 8.

We now represent in tables the different iterations of each φj for j ∈ {0, 1, 3, 5}. For j = 0,

Iteration k λ dλ2k case φ0(λ)

1 0 (11, 8, 7, 7, 5, 5, 4, 3, 2, 2) 5 (1) (12, 9, 8, 8, 5, 4, 3, 2, 2, 1)
2 0 (12, 9, 8, 8, 5, 4, 3, 2, 2, 1) 5 (1) (13, 10, 9, 9, 4, 3, 2, 2, 1, 1)
3 0 (13, 10, 9, 9, 4, 3, 2, 2, 1, 1) 4 − −

and

Φ0(∆0,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2)) = φ2
0(∆0,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2))

= (∆0,0, (13, 10, 9, 9, 4, 3, 2, 2, 1, 1)).

For j = 1,

Iteration k λ dλ1+2k case φ1(λ)

1 2 (11, 8, 7, 7, 5, 2) 2 (2) (10, 7, 7, 7, 7, 5, 4, 2)
2 1 (10, 7, 7, 7, 7, 5, 4, 2) 4 (1) (11, 8, 8, 7, 5, 4, 4, 2)
3 1 (11, 8, 8, 7, 5, 4, 4, 2) 4 (1) (12, 9, 9, 5, 4, 4, 4, 2)
4 1 (12, 9, 9, 5, 4, 4, 4, 2) 3 (2) (11, 8, 8, 6, 5, 4, 4, 4, 2, 2)
5 0 (11, 8, 8, 6, 5, 4, 4, 4, 2, 2) 4 − −

and

Φ1((∆1,4, (11, 8, 7, 7, 5, 2))) = φ4
1((∆1,4, (11, 8, 7, 7, 5, 2)))

“““‘ = (∆1,0, (11, 8, 8, 6, 5, 4, 4, 4, 2, 2)).
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For j = 3,

Iteration k λ dλ3+2k case φ3(λ)

1 1 (11, 8, 7, 7, 5, 3, 2, 2) 2 (2) (10, 7, 7, 7, 7, 5, 4, 3, 2, 2)
2 0 (10, 7, 7, 7, 7, 5, 4, 3, 2, 2) 4 (1) (11, 8, 8, 7, 5, 4, 4, 3, 2, 2)
3 0 (11, 8, 8, 7, 5, 4, 4, 3, 2, 2) 4 (1) (12, 9, 9, 5, 4, 4, 4, 3, 2, 2)
4 0 (12, 9, 9, 5, 4, 4, 4, 3, 2, 2) 3 − −

and

Φ3((∆3,2, (11, 8, 7, 7, 5, 3, 2, 2))) = φ3
3((∆3,2, (11, 8, 7, 7, 5, 3, 2, 2)))

= (∆3,0, (12, 9, 9, 5, 4, 4, 4, 3, 2, 2)).

For j = 5,

Iteration k λ dλ5+2k case φ5(λ)

1 0 (11, 8, 7, 7, 5, 5, 4, 3, 2, 2) (2) − −

and

Φ5(∆5,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2)) = φ0
5(∆5,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2))

= (∆5,0, (11, 8, 7, 7, 5, 5, 4, 3, 2, 2)).

3.2 From {∆j,0} × Fj to
,

k!0{∆j,2k} × Pj+2k+1

Let ψj be the map defined on
*
-

k!0

{∆j,2k}× P
+

\
*
-

k!0

{∆j,2k}× Pj+2k+1

+
=

-

k!0

{∆j,2k}× Pj+2k+1

as follows. Let k ! 0.

1. For (∆j,2k, µ) ∈ {∆j,2k}×
.
F j+2k+1 ∩ Pj+2k+1

/
, do the transformation

∆j,2k, µ1, . . . , µdµ1+j+2k
, 1 + j + 2k '→ ∆j,2k+2, µ1 + 1, . . . , µdµ1+j+2k−1 + 1 .

This means that, in ∆j,2k, we add the parts 1+j+2k, j+2k+2, and in µ, we add 1 to
the dµ1+j+2k−1 largest finite parts and delete the parts µdµ1+j+2k

= dµ1+j+2k+1+j+2k

and 1 + j + 2k to obtain a partition λ. We finally set ψj((∆j,2k, µ)) = (∆j,2k+2,λ).
Note that |λ| = |µ|− (j + 2k + 2)− (j + 2k + 1), and ℓ(λ) = ℓ(µ)− 2.

2. For (∆j,2k, µ) ∈ {∆j,2k}×
.
Fj+2k+1 ∩ Pj+2k+1

/
, do the transformation

µ1, . . . , µdµ1+j+2k
, 1 + j + 2k '→ µ1 − 1, . . . , µdµ1+j+2k

− 1, dµ1+j+2k + 1 + j + 2k .

This means that, in µ, we deleted the part 1 + j + 2k, subtract 1 to the dµ1+j+2k

largest finite parts and add the part dµ1+j+2k + 1 + j + 2k to obtain a partition λ.
We finally set ψj((∆j,2k, µ)) = (∆j,2k,λ). Observe that |λ| = |µ| and ℓ(λ) = ℓ(µ).
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For all (∆j,0, µ) ∈ {∆j,0}×Fj, iterate the map ψj as long as it is possible. The iteration
stops as soon as we reach a pair in

,
k!0{∆j,2k} × Pj+2k+1. We then set Ψj((∆j,0, µ)) =

ψu
j ((∆j,0, µ)) ∈

,
k!0{∆j,2k} × Pj+2k+1. Similarly to Φj, if Ψj is well-defined, it then

induces a map from {∆j,0}×
.
Fj ∩ Pj

/
to

,
k!0{∆j,2k}×

.
Pj+2k+1 ∩ Pj

/
.

The reader can easily check that, by applying the corresponding Ψj to the pairs ob-
tained in Example 14, we retrieve the pairs corresponding to (11, 8, 7, 7, 5, 5, 4, 3, 2, 2) by
the exact inverse process.

4 Proof of the well-definedness of the bijection

The maps Φj and Ψj preserve the weight and length sums of the pair of partitions, as
they result from iterations of φj and ψj which have this property. To prove that maps Φj

and Ψj are inverse of one another, we first prove that φj and ψj are inverse of each other,
then prove the well-definedness of Φj and Ψj and conclude.

4.1 The maps φj and ψj are inverse of each other

We first prove that φj and ψj are inverse of each other with the following result.

Proposition 15. For all k ! 0, φj describes a bijection

1. from {∆j,2k}× F j+2k to {∆j,2k}×
.
F1+j+2k ∩ Pj+2k+1

/
,

2. from {∆j,2k+2}× Fj+2k+2 to {∆j,2k}×
.
F1+j+2k ∩ Pj+2k+1

/
,

and ψj is the inverse of φj.

Proof. Let k, j ! 0.

1. The map φj describes a bijection from {∆j,2k}× F j+2k to
{∆j,2k}×

.
F1+j+2k ∩ Pj+2k+1

/
, and ψj = φ−1

j .

(a) For (∆j,2k,λ) ∈ {∆j,2k}×F j+2k, set ℓ(λ) ! t ! dλj+2k such that λt ! 1+j+2k >
λt+1. By the first case of Section 3.1, µ consists of the parts

0
1112

1113

µi = λi + 1 for 1," i < dλj+2k ,

µi = λi+1 for dλj+2k " i < t ,

µi = λi for t < i " ℓ(λ) ,

µt = 1 + j + 2k .

Since 1 + j + 2k is a part of µ, we have that µ ∈ P1+j+2k. Moreover, λdλj+2k
!

µdλj+2k
, and

µdλj+2k−1 − (dλj+2k − 1) = λdλj+2k−1 − (dλj+2k − 1) + 1
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> λdλj+2k
− dλj+2k + 1

= 1 + j + 2k

> µdλj+2k
− dλj+2k ,

so that dµ1+j+2k = dλj+2k − 1 and µ ∈ F1+j+2k. Thus,

φj((∆j,2k,λ)) ∈ {∆j,2k}×
.
F1+j+2k ∩ Pj+2k+1

/
.

As dµ1+j+2k = dλj+2k−1, by applying the second case of Section 3.2 on (∆j,2k, µ),
it is straightforward that ψj(φj((∆j,2k,λ))) = (∆j,2k,λ).

(b) Let (∆j,2k, µ) ∈ {∆j,2k}×
.
F1+j+2k ∩ Pj+2k+1

/
. Similarly to the previous case,

as
µdµ1+j+2k+1 " 1 + dµ1+j+2k + j + 2k " µdµ1+j+2k

− 1 ,

we observe that the part λdµ1+j+2k+1 = 1 + dµ1+j+2k + j + 2k so that dλj+2k =

dµ1+j+2k + 1 and λ ∈ Fj+2k. Then,

ψj((∆j,2k, µ)) ∈ {∆j,2k}× F j+2k.

Using the first case of Section 3.1 on (∆j,2k,λ) with dλj+2k = dµ1+j+2k + 1, it is
straightforward that φj(ψj((∆j,2k, µ))) = (∆j,2k, µ).

2. The map φj describes a bijection from {∆j,2k+2}× Fj+2k+2 to
{∆j,2k}×

.
F1+j+2k ∩ Pj+2k+1

/
, and ψj = φ−1

j .

(a) Let (∆j,2k+2,λ) ∈ {∆j,2k+2}× Fj+2k+2. Note that

λdλj+2k+2
− dλj+2k+2 > j + 2k + 2 > λdλj+2k+2+1 − (dλj+2k+2 + 1) .

Then, the partition µ consists of the parts λ1−1, . . . ,λdλj+2k+2
−1,λdλj+2k+2

, . . . ,λℓ

and the parts dλj+2k+2 + j + 2k + 2, 1 + j + 2k. Since 1 + j + 2k is a part µ,

µ ∈ P1+j+2k. Moreover, λdλj+2k+2
− 1 ! dλj+2k+2 + j + 2k + 2 ! λdλj+2k+2

and

dλj+2k+2 + j + 2k + 2 > 1 + j + 2k, so that µdλj+2k+2+1 = dλj+2k+2 + j + 2k + 2.

Hence, dµ1+j+2k = dλj+2k+2 + 1 and µ ∈ F1+j+2k, and

φj((∆j,2k+2,λ)) ∈ {∆j,2k}×
.
F1+j+2k ∩ Pj+2k+1

/
.

Finally, by using the first case of Section 3.2 on (∆j,2k, µ) with dµ1+j+2k =

dλj+2k+2 + 1, we retrieve the fact that ψj(φj((∆j,2k+2,λ))) = (∆j,2k+2,λ).

(b) Let (∆j,2k, µ) ∈ {∆j,2k}×
.
F1+j+2k ∩ Pj+2k+1

/
. Using the first case of Section

3.2, we have that λ consists of the parts µ1+1, . . . , µdµ1+j+2k−1+1, and the parts

µdµ1+j+2k+1, . . . , µℓ(µ) except 1 + j + 2k. Moreover, µdµ1+j+2k−1 + 1 − (dµ1+j+2k −
1) > µdµ1+j+2k

− dµ1+j+2k + 1 = 2 + j + 2k > µdµ1+j+2k+1 − dµ1+j+2k, so that

dλj+2k+2 = dµ1+j+2k − 1 and λ ∈ Fj+2k+2. Hence,

ψj((∆j,2k, µ)) ∈ {∆j,2k+2}× Fj+2k .

We prove similarly to the previous case that φj(ψj((∆j,2k, µ))) = (∆j,2k, µ).

the electronic journal of combinatorics 30(1) (2023), #P1.41 10



4.2 Well-definedness of Φj

By Proposition 15, φj is injective, and this implies that a pair is not fixed by φj if and only
if its iterations are not fixed. Hence, it suffices to check that (∆j,2k,λ) ∈ {∆j,2k}×P1+j+2k

is not fixed by φj, and that we reach {∆j,0}×Fj after a finite number of iterations of φj.
In this regard, we state the following proposition.

Proposition 16. Let (∆j,2k,λ) ∈ {∆j,2k} × F j+2k. Then, λdλj+2k
= dλj+2k + j + 2k, and

λ1 ! 1 + j + 2k.

1. If λ1 = 1 + j + 2k, then dλj+2k = 1 and (∆j,2k,λ) is fixed by φj. Inversely, all the
pairs fixed by φj have the form (∆j,2k,λ) with λ1 = 1 + j + 2k.

2. If λ1 > 1+ j +2k, then dλj+2k ! 2 and, by setting u = #{i ! dλj+2k : λi = dλj+2k + j +
2k}, we have that

φ0
j((∆j,2k,λ)), . . . ,φ

u−1
j ((∆j,2k,λ)) ∈ {∆j,2k}× F j+2k ,

and φu
j ((∆j,2k,λ)) ∈ {∆j,2k}× Fj+2k.

We first prove the well-definedness of Φj assuming that the above proposition is true.
Let λ ∈ P1+j+2k. Since 1 + j + 2k is not a part of λ, λ1 ∕= 1 + j + 2k and by Proposition
16, (∆j,2k,λ) is not fixed by Φj. Hence, its iterations are not fixed by φj. We can then
use the second case of Proposition 16 and deduce the existence of non-negative integers
ul that counts the numbers of iterations of (∆j,2k,λ) respectively in {∆j,2l}×F j+2l. More
precisely, we have for all l ∈ {0, . . . , k},

φ
k−l+u+

!k
t=l+1 ut

j ((∆j,2k,λ)) ∈ {∆j,2l}× F j+2l for 0 " u < ul

and φ
k−l+

!k
t=l ut

j ((∆j,2k,λ)) ∈ {∆j,2l}× Fj+2l .

Since these iterations are not fixed, by setting n = |λ|+ |∆j,2k|, we have by definition of ul

in Proposition 16 that ul+1 " n
2+j+2l

" n
2
· 1
l+1

. Therefore, there is at most n
2
(1+log(k+2))

iterations, hence finite. Moreover,

Φj((∆j,2k,λ)) = φ
k+

!k
t=0 ut

j ((∆j,2k,λ)) ∈ {∆j,0}× Fj

so that Φj((∆j,2k,λ)) is well-defined.

Proof of Proposition 16. Let (∆j,2k,λ) ∈ {∆j,2k} × F j+2k. Recall that λdλj+2k
= dλj+2k +

j + 2k and set φj((∆j,2k,λ)) = (∆j,2k, µ).

1. As λ1 ! 1 + j + 2k, the fact that dλj+2k is unique implies that λ1 = 1 + j + 2k

if and only if dλj+2k = 1. The fact that φj(∆j,2k,λ) = (∆j,2k,λ) is trivial, as µ is
obtained by deleting λ1, adding 1 + j + 2k, and not adding 1 to any other part.
Inversely, only the pairs of {∆j,2k}×F j+2k can be fixed by φj, and when dλj+2k ! 2,
µ1 = λ1 + 1 > λ1 so that φj(∆j,2k,λ) ∕= (∆j,2k,λ). Hence, the only pairs fixed by φj

have the form (∆j,2k,λ) with λ1 = 1 + j + 2k.
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2. When λ1 > 1 + j + 2k, dλj+2k ! 2. Since µdλj+2k−1 > λdλj+2k
! µdλj+2k

, we then have

that µdλj+2k−1− (dλj+2k−1) > j+2k ! µdλj+2k
−dλj+2k. Hence, µ ∈ F j+2k if and only if

dλj+2k = dµj+2k and µdλj+2k
= dλj+2k + j +2k > 1+ j +2k. This occurs only if µdλj+2k

=

λdλj+2k+1 = dλj+2k + j + 2k. Thus, by formally setting (∆j,2k,λ
(w)) = φw

j ((∆j,2k,λ))

for w ∈ {0, . . . , u} and ℓ(λ) ! t ! dλj+2k + u − 1 such that λt ! 1 + j + 2k > λt+1,
we have that 0

1112

1113

λ
(w)
i = λi + w if 1 " i " dλj+2k − 1 ,

λ
(w)
i = λi+w if dλj+2k " i " t− w ,

λ
(w)
i = 1 + j + 2k if t− w + 1 " i " t ,

λ
(w)
i = λi if t+ 1 " i " ℓ(λ) ,

as we recursively obtain that dλ
(w)

j+2k = dλj+2k and λ
(w)

dλj+2k

= λdλj+2k+w = dλj+2k + j + 2k

for all w ∈ {0, . . . , u − 1}. Moreover, λ
(u)

dλj+2k

is either λdλj+2k+u when t ! dλj+2k + u,

or 1 + j + 2k when t = dλj+2k + u − 1. In all cases, λ
(u)

dλj+2k

− dλj+2k < j + 2k <

λ
(u)

dλj+2k−1
− (dλj+2k − 1)− u, so that λ(u) ∈ Fj+2k.

4.3 Well-definedness of Ψj

As before, we only need to check that (∆j,0,λ) ∈ {∆j,0}×Fj is not fixed by ψj, and that
we reach

,
k!0{∆j,2k} × Pj+2k+1 after a finite number of iterations of ψj. The following

propositions helps in that purpose.

Proposition 17. For (∆j,2k, µ) ∈ {∆j,2k} ×
.
F1+j+2k ∩ Pj+2k+1

/
, we have µdµ1+j+2k

−
dµ1+j+2k > 1 + j + 2k > µdµ1+j+2k+1 − (dµ1+j+2k + 1).

1. If dµ1+j+2k = 0, then µ1 = 1 + j + 2k and (∆j,2k, µ) is fixed by ψj. Inversely, all the
pairs fixed by ψj have the form (∆j,2k, µ) with µ1 = 1 + j + 2k.

2. If dµ1+j+2k ! 1, set u = µdµ1+j+2k
−dµ1+j+2k−(1+j+2k), and v the number occurrences

of 1 + j + 2k in µ.

(a) If v > u, then

ψ0
j ((∆j,2k, µ)), . . . ,ψ

u−1
j ((∆j,2k, µ)) ∈ {∆j,2k}×

.
F1+j+2k ∩ Pj+2k+1

/
,

and ψu
j ((∆j,2k, µ)) ∈ {∆j,2k}×

.
F1+j+2k ∩ Pj+2k+1

/
.

(b) If v " u, then

ψ0
j ((∆j,2k, µ)), . . . ,ψ

v−1
j ((∆j,2k, µ)) ∈ {∆j,2k}×

.
F1+j+2k ∩ Pj+2k+1

/
,

and ψv
j ((∆j,2k, µ)) ∈ {∆j,2k}× Pj+2k+1.
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To prove the well-definedness of Ψj, we first observe that, for µ ∈ Fj, µ1 ∕= j + 1, and
by Proposition 17, (∆j,0, µ) is not fixed by ψj. Thus, as ψj is injective, its iterations are
not fixed by ψj. Moreover, for l such that |∆j,2l| = l(1 + 2j + 2l)) > |µ|, these iterations
do not reach {∆j,2l} × P since ψj conserves the weight sum of the pair. Let then k be
the largest l such that {∆j,2l} × P is reached by the iterations. By Proposition 17, for
0 " l " k, wl the number of iterations of (∆j,0, µ) by ψj in {∆j,2l} × P is at most equal

to one plus the number of occurrences of 1 + j + 2l, hence at most equal to |µ|
1+j+2l

. We

then have in total at most |µ|(2+log(k+1))
2

iterations. Finally, at k,

Ψj((∆j,0, µ)) = ψ
k+

!k
l=0 wl

j ((∆j,0, µ))

is necessarily in {∆j,2k}× Pj+2k+1 as the iterations stop. Hence, Ψj is well-defined.

Proof of Proposition 17. As 1 + j + 2k is a part of µ, we then have µ1 ! 1 + j + 2k. Set
ψj((∆j,2k, µ)) = (∆j,2k,λ).

1. If dµ1+j+2k = 0, then µ1 " 1 + j + 2k, so that µ1 = 1 + j + 2k. One can easily check
that such pair (∆j,2k, µ) is fixed by ψj. Inversely, the only pairs fixed by ψj are
in {∆j,2k} ×

.
F1+j+2k ∩ Pj+2k+1

/
for some k ! 0. By Proposition 15, the pairs of

{∆j,2k} ×
.
F1+j+2k ∩ Pj+2k+1

/
fixed by ψj are exactly the pairs of {∆j,2k} × Fj+2k

fixed by φj. Finally, Proposition 16 gives us the form of the fixed pairs, which is
(∆j,2k, µ) with µ1 = 1 + j + 2k.

2. If dµ1+j+2k ! 1, then µ1 ! µdµ1+j+2k
> 1 + j + 2k + dµ1+j+2k. By the second part of

Section 3.2,
µdµ1+j+2k

− 1 ! 1 + j + 2k + dµ1+j+2k ! µdµ1+j+2k+1 ,

so that λdµ1+j+2k+1 = 1 + j + 2k + dµ1+j+2k. Hence,

λdµ1+j+2k
− dµ1+j+2k ! 1 + j + 2k > λdµ1+j+2k+1 − (dµ1+j+2k + 1) ,

and dλ1+j+2k = dµ1+j+2k. Therefore, both u = µdµ1+j+2k
− (1 + j + 2k + dµ1+j+2k) and v

the number of occurrences of 1+ j+2k decrease by 1 after ψj is applied once, while
dµ1+j+2k is conserved. Let ℓ(m) ! t ! dµ1+j+2k + v such that µt = 1 + j + 2k > µt+1.

(a) If v > u, by formally setting (∆j,2k, µ
(w)) = ψw

j ((∆j,2k, µ)) for w ∈ {0, . . . , u},
we have that

0
1112

1113

µ
(w)
i = µi − w if 1 " i " dµ1+j+2k ,

µ
(w)
i = 1 + dµ1+j+2k + j + 2k if dµ1+j+2k + 1 " i " dµ1+j+2k + w ,

µ
(w)
i = µi−w if dµ1+j+2k + w + 1 " i " t ,

µ
(w)
i = µi if t+ 1 " i " ℓ(µ) ,
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as we recursively obtain that dµ
(w)

1+j+2k = dµ1+j+2k,

µ
(w)

dµ1+j+2k
= µdµ1+j+2k

− w > dµ1+j+2k + 1 + j + 2k

and µ
(w)
t = 1 + j + 2k for all w ∈ {0, . . . , u − 1}. Finally, we have µ

(u)

dµ1+j+2k
=

dµ1+j+2k + 1 + j + 2k and µ
(u)
t = 1 + j + 2k so that µ(u) ∈ F1+j+2k ∩ P1+j+2k.

(b) If v " u, by formally setting (∆j,2k, µ
(w)) = ψw

j ((∆j,2k, µ)) for w ∈ {0, . . . , v},
we have that

0
1112

1113

µ
(w)
i = µi − w if 1 " i " dµ1+j+2k ,

µ
(w)
i = 1 + dµ1+j+2k + j + 2k if dµ1+j+2k + 1 " i " dµ1+j+2k + w ,

µ
(w)
i = µi−w if dµ1+j+2k + w + 1 " i " t ,

µ
(w)
i = µi if t+ 1 " i " ℓ(µ) ,

as we recursively obtain that dµ
(w)

1+j+2k = dµ1+j+2k,

µ
(w)

dµ1+j+2k
= µdµ1+j+2k

− w > dµ1+j+2k + 1 + j + 2k

and µt = 1 + j + 2k for all w ∈ {0, . . . , v − 1}. Finally, we have dµ
(w)

1+j+2k =

u − v + dµ1+j+2k + 1 + j + 2k, and µ
(u)
t is either 1 + dµ1+j+2k + j + 2k when

t = dµ1+j+2k+v, or µt−v > 1+j+2k when t > dµ1+j+2k+v, so that µ(u) ∈ P1+j+2k.

4.4 The maps Φj and Ψj are inverse of each other

For (∆j,2k,λ) ∈ {∆j,2k} × P1+j+2k, there exists a unique finite non-negative integer u
such that Φj((∆j,2k,λ)) = φu

j ((∆j,2k,λ)) ∈ {∆j,2k} × Fj. Then, by Proposition 15,
ψu
j (Ψj((∆j,2k,λ))) = (∆j,2k,λ), and as it belongs to {∆j,2k}× P1+j+2k, it is by definition

Ψj(Φj((∆j,2k,λ))). Similarly, we prove that, for µ ∈ Fj, Φj(Ψj((∆j,0, µ))) = (∆j,0, µ).
Finally, since the bijections preserve the part less or equal to j, Φj then induces a

bijection from Mj ∩ Pj to Fj ∩ Pj and Ψj = Φ−1
j .

5 Bijection for Corollary 11

We here provide a bijection of Corollary 11 in the spirit of Section 3. First, observe the
following correspondence.

Lemma 18. There is a weight-preserving bijection between F j and {∆j,1}× Fj+1.
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Proof. For all λ in F j, we have λdλj
= j + dλj . Hence, set ψ

′
j(λ) to be the pair ((j +1), µ),

where µ consists of the parts λ1 + 1, . . . ,λdλj −1 + 1 and λi for i > dλj . Inversely, for

((j+1), µ) ∈ {∆j,1}×Fj+1, we set φ
′
j((j+1), µ)) = λ whose parts are µ1−1, . . . , µdµj+1

−1,

j + 1 + dµj+1and µi for i > dµj+1. The proof that φ′
j and ψ′j are inverse of each other is

similar to the proof of Proposition 15, as dλj = dµj+1 + 1.

To bijectively prove Corollary 11, we build two maps,

Φ′
j :

-

k!0

{∆j,2k+1}× Pj+2k+2 → {∆j,1}× Fj+1

and
Ψ′

j : {∆j,1}× Fj+1 →
-

k!0

{∆j,2k+1}× Pj+2k+2.

The map Φ′
j is simply obtained by going through the process of Φj, except that we replace

all the occurrences of “2k” by “2k+1”. Similarly, Φ′
j is obtained by Ψj by replacing “2k”

by “2k + 1”. The proof of the well-definedness of the bijection is the same as the proof
provided in Section 4.

6 Bijective proof of Theorem 12

Before constructing the bijection for Theorem 12, we first state the key result given by
Hopkins, Sellers and Yee in [8], and that provides a combinatorial link between the crank
and the Durfee decomposition. Recall that, for all partitions λ,

ω(λ) = #{i ∈ {1, . . . , ℓ(λ)} : λi = 1},
η(λ) = #{i ∈ {1, . . . , ℓ(λ)} : λi > ω(λ)},

crank(λ) =

!
λ1 if ω(λ) = 0 ,

η(λ)− ω(λ) if ω(λ) > 0 .
.

Lemma 19 (Hopkins-Sellers-Yee). Let j ∈ Z!0 and λ ∈ P. Then,

crank(λ) " −j if and only if ω(λ) ! dλj + j ·

Remark 20. For j ∈ Z!0 and λ ∈ P , Lemma 19 implies that crank(λ) = −j if and
only if dλj+1 + j + 1 > ω(λ) ! dλj + j. By Remark 8, it equivalently means that ω(λ) =
dλj + j, η(λ) = dλj and dλj+1 = dλj .

Proof of Lemma 19. We have that crank(∅) = 0 and d∅j = 0. The equivalence then stands

for λ = ∅. Now suppose that λ ∕= ∅, which equivalently means that λ1 > 0 and dλ0 > 0.

1. If ω(λ) ! dλj + j, then, by Remark 8, ω(λ) ! dλ0 > 0, and η(λ) " dλj as λdλj +1 "
dλj + j " ω(λ). Therefore, crank(λ) = η(λ)− ω(λ) " dλj − (dλj + j) = −j.
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2. Otherwise, if 0 < ω(λ) < dλj + j, then λdλj
> ω(λ) so that η(λ) ! dλj . Hence,

crank(λ) = η(λ)− ω(λ) > dλj − (dλj + j) = −j. Finally, if ω(λ) = 0, λ1 > 0 so that
crank(λ) > 0 ! −j.

For an integer n, set C"n = {λ ∈ P : crank(λ) " n} and C!n = {λ ∈ P : crank(λ) !
n}. Theorem 12 is then equivalent to saying that, for j ∈ Z!0, there exists a weight-
preserving bijection Γj between Fj ∩Pj \ {∅, (1)} and C"−j \ {∅, (1)}. Also, for λ ∕= ∅, we
then always have dλj + j > 0. The construction of Γj is the following.

1. For λ ∈ Fj ∩ Pj with |λ| > 1, recall that λdλj
− dλj > j > λdλj +1 − (dλj + 1). Hence

λdλj
> j. Let ℓ(λ) ! tλ ! dj such that λtλ > j = λtλ+1. The map Γj consists in

sustracting 1 to the dλj largest finite parts, deleting the part λtλ+1 = j and adding
dλj +j parts equal to 1, so that it is obviously weight preserving. Formally, Γj(λ) = µ
with

0
1112

1113

µi = λi − 1 if 1 " i " dλj ,

µi = λi if dλj < i " tλ ,

µi = λi+1 if tλ < i " ℓ(λ)− χ(j ! 1) ,

µi = 1 if ℓ(λ) + χ(j = 0) " i " ℓ(λ) + dλj + j − χ(j ! 1) .

Here χ(A) equals 1 if A is true and 0 if not. Observe that µdλj
− dλj ! j > µdλj +1 −

(dλj + 1), as µdλj +1 = λdλj +1 if dλj < tλ, or λdλj +2 if dλj = tλ < ℓ(λ) − χ(j ! 1), or 1

if dλj = tλ = ℓ(λ) − χ(j ! 1). Therefore, dµj = dλj and µ ∈ C"−j. Finally, note that

ℓ(µ) = ℓ(λ) + dλj + j − χ(j ! 1) ! 2dµj + j − χ(j ! 1).

2. Inversely, let ∅ ∕= µ ∈ C−j with |λ| > 1. If µdµj
= 1, then dµj = 1 and j = 0. In

that case, as µ ∕= (1), ℓ(µ) ! 2, so that ℓ(µ) ! 2dµj . If µdµj
> 1 = µℓ(µ)−dµj +j+1, then

ℓ(µ) ! 2dµj + j. We thus always have ℓ(µ) ! 2dµj + j. For j ! 1, let dµj " tµ "
ℓ(µ)− dµj − j such that µt > j ! µt+1, and for j = 0, set tµ = ℓ(µ)− dµ0 . The map

Γ−1
j then consists in deleting the dµj + j smallest parts equal to 1, adding 1 to the

dµj largest finite parts and a part j. Formally, Γ−1
j (µ) = λ with

0
1112

1113

λi = µi + 1 if 1 " i " dµj ,

λi = µi if dµj < i " tµ ,

λi = µi−1 if tµ + 1 < i " ℓ(µ)− dµj − j + 1 ,

λtµ+1 = j .

As µdµj
− dµj ! j > µdµj +1 − (dµj + 1) and µdµj +1 ! λdµj +1, we have that λdµj

− dµj >

j > λdµj +1 − (dµj + 1). Therefore, dλj = dµj and λ ∈ Fj ∩ Pj. Note that ℓ(λ) =

ℓ(µ)− dµj − j + χ(j ! 1).
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The map Γj is well-defined as Γj((Fj ∩ Pj) \ {∅, (1)}) ⊂ C"−j, and since µ = Γj(λ)
satisfies dµj = dλj , it is straightforward that Γ−1

j (Γj(λ)) = λ as the corresponding tµ equals

tλ. Inversely, Γ−1
j (µ) ⊂ Fj ∩ Pj and Γj(Γ

−1
j (µ)) = µ for all µ ∈ C"−j with |λ| > 1.

Example 21. We have the following table:

j λ dλj Γj(λ) crank(Γj(λ))

1 (1) 0 (1) −1
0 ∆0,2k k (2k − 1, . . . , k! "# $

k consecutive

, k, . . . , 1! "# $
k consecutive

, 1, . . . , 1! "# $
k

) −3χ(k ! 1)

! 1 ∆j−1,2k k (2k − 1 + j, . . . , k + j! "# $
k consecutive

, k + j, . . . , 1 + j! "# $
k consecutive

, 1, . . . , 1! "# $
k+j

) −j − χ(k ! 1)

0 (13, 10, 9, 9, 4, 3, 2, 2, 1, 1) 4 (12, 9, 8, 8, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1) −2
3 (12, 9, 9, 5, 4, 4, 4, 3, 2, 2) 3 (11, 8, 8, 5, 4, 4, 4, 2, 2, 1, 1, 1, 1, 1, 1) −3
5 (11, 8, 7, 7, 5, 5, 4, 3, 2, 2) 2 (10, 7, 7, 7, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1) −6

.

7 Bijective proof of Corollary 2

We here present a crank-sign reversing involution provided by Berkovich and Garvan in
[3]. The involution Λ on P \ {∅, (1)} is such that crank(Λ(λ)) = − crank(λ). Let λ ∈ P
with |λ| > 1, and construct ν = Λ(λ) as follows.

1. (a) If ω(λ) = 0, then λ1 ! λℓ(λ) > 1. Set

!
νi = λi+1 if 1 " i " ℓ(λ)− 1 ,

νi = 1 if ℓ(λ) " i " λ1 + ℓ(λ)− 1 .

Hence, |ν| = |λ|, ω(ν) = λ1 > 0 and η(ν) = 0 so that crank(ν) = −λ1 =
− crank(λ).

(b) If ω(λ) > 0 and η(λ) = 0, then set
!
ν1 = ω(λ)

νi = λi−1 if 2 " i " ℓ(λ)− ω(λ) + 1 .

Hence, |ν| = |λ|, ω(ν) = 0, and crank(ν) = ω(λ) = − crank(λ).

One can easily check that these two cases are inverse of one another.

2. If ω(λ), η(λ) > 0, let ρ(λ) = max{ω(λ),λ2 − 1} and let λ∗ be the conjugate of λ,
which is defined by λ∗

i = #{u : λu ! i} for all i ∈ {1, . . . ,λ1}. Then, ℓ(λ∗) = λ1,
η(λ) = λ∗

ω(λ)+1 and ω(λ) = λ∗
1 − λ∗

2. We thus set

0
1112

1113

ν1 = λ∗
2 + λ1 − ρ(λ) ,

νi = 1 + λ∗
i if 2 " i " ω(λ) ,

νi = λ∗
i+1 if ω(λ) < i " ρ(λ) ,

νi = 1 if ρ(λ) < i " ρ(λ) + η(λ) .
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For all ω(λ) < i " ρ(λ), 2 = λ∗
λ2

" νi " λ∗
ω(λ)+2 " η(λ). Moreover, λ∗

2 ! λ∗
ω(λ)+1 =

η(λ), λ1 − ρ(λ) ! 1 as λ1 − ω(λ) ! 1 and λ1 − λ2 + 1 ! 1, and for all 2 " i " ω(λ),
νi ! 1+ λ∗

ω(λ) ! 1+ η(λ). Therefore, ω(ν) = η(λ) and η(ν) = ω(λ), and crank(ν) =

− crank(µ). Furthermore, since ρ(λ) + 1 ! λ2, λ
∗
i = 1 for all ρ(λ) + 1 < i " λ1, and

|ν| = ω(λ) + λ∗
24 56 7

λ∗
1

+(λ1 − ρ(λ)− 1) +

ω(λ)"

i=2

λ∗
i +

ρ(λ)+1"

ω(λ)+2

λ∗
i + η(λ)4567

λ∗
ω(λ)+1

=

λ1"

i=1

λ∗
i = |λ∗|

so that |ν| = |λ|. In addition,

0
12

13

ν∗
i = λi − 1 if 2 " i " η(λ) ,

ν∗
i = λi−1 if η(λ) + 1 < i " λ∗

2 + 1 ,

ν∗
η(λ)+1 = ω(λ) ,

and ρ(ν) = λ∗
2 if ω(λ) > 1 and ρ(ν) = η(λ) = λ∗

2 if ω(λ) = 1 so that ρ(ν) = λ∗
2.

Finally, ν∗
2 = ρ(λ) if ρ(λ) > ω(λ), and ν∗

2 = ω(λ) = ρ(λ) if ρ(λ) > ω(λ) as
νω(λ) ! ω(λ) + 1 ! 2. Hence, ν∗

2 = ρ(λ), and for Λ(ν) = κ, we have

0
1112

1113

κ1 = ρ(λ) + ν1 − λ∗
2 = λ1 ,

κi = 1 + ν∗
i = λi if 2 " i " η(λ) ,

κi = ν∗
i+1 = λi if η(λ) < i " λ∗

2 ,

κi = 1 if λ∗
2 < i " λ∗

2 + ω(λ) = λ∗
1 .

We then conclude that Λ(Λ(λ)) = λ.

Example 22. We have the following table:

λ ω(λ) η(λ) ρ(λ) Λ(λ)

(12, 9, 8, 8, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1) 6 4 8 (12, 9, 7, 6, 5, 5, 4, 2, 1, 1, 1, 1)
(11, 8, 8, 5, 4, 4, 4, 2, 2, 1, 1, 1, 1, 1, 1) 6 3 7 (13, 10, 8, 8, 5, 4, 3, 1, 1, 1)
(10, 7, 7, 7, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1) 7 1 7 (12, 10, 8, 7, 6, 5, 5, 1)

.

8 Conclusion

As we construct the different intermediate bijections in Sections 3, 6 and 7, we now present
the full scope of the bijection for Theorem 4. For j ∈ Z!0, the bijection between Mj ∩Pj

and the set of partitions with crank at least equal to j is given by Λ ◦ Γj ◦ Φj, and its
inverse is Ψj ◦ Γ−1

j ◦ Λ.
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Example 23. Using Examples 14, 21 and 22, the images of (11, 8, 7, 7, 5, 5, 4, 3, 2, 2) in
the cases j = 0, 3, 5 are respectively

(12, 9, 7, 6, 5, 5, 4, 2, 1, 1, 1, 1), (13, 10, 8, 8, 5, 4, 3, 1, 1, 1) and (12, 10, 8, 7, 6, 5, 5, 1) .

In particular, in Theorem 3, the partition (11, 8, 7, 7, 5, 5, 4, 3, 2, 2) with odd mex 1 can be
associated to the partition (12, 9, 7, 6, 5, 5, 4, 2, 1, 1, 1, 1) with non-negative crank 2.

Example 24. Here is a list of all the partitions of 9 in M0 and their successive images
by applying Φ0, Γ0 and Λ.

λ ∈ M0 Φ0(λ) ∈ F0 Γ0(Φ0(λ)) ∈ C"0 Λ(Γ0(Φ0(λ))) ∈ C!0

(9) (9) (8, 1) (8, 1)
(7, 2) (8, 1) (7, 1, 1) (6, 2, 1)
(6, 3) (6, 3) (5, 2, 1, 1) (5, 3, 1)
(5, 4) (5, 4) (4, 3, 1, 1) (4, 3, 1, 1)
(5, 2, 2) (7, 1, 1) (6, 1, 1, 1) (4, 2, 2, 1)
(4, 3, 2) (4, 3, 2) (3, 2, 2, 1, 1) (4, 4, 1)
(3, 3, 3) (4, 4, 1) (3, 3, 1, 1, 1) (3, 3, 3)
(3, 2, 2, 2) (6, 1, 1, 1) (5, 1, 1, 1, 1) (2, 2, 2, 2, 1)
(6, 2, 1) (5, 3, 1) (4, 2, 1, 1, 1) (3, 3, 2, 1)
(5, 2, 1, 1) (4, 3, 1, 1) (3, 2, 1, 1, 1, 1) (4, 3, 2)
(4, 2, 2, 1) (3, 3, 2, 1) (2, 2, 2, 1, 1, 1) (3, 2, 2, 2)
(4, 2, 1, 1, 1) (3, 3, 1, 1, 1) (2, 2, 1, 1, 1, 1, 1) (5, 2, 2)
(2, 2, 2, 2, 1) (5, 1, 1, 1, 1) (4, 1, 1, 1, 1, 1) (5, 4)
(2, 2, 2, 1, 1, 1) (4, 1, 1, 1, 1, 1) (3, 1, 1, 1, 1, 1, 1) (6, 3)
(2, 2, 1, 1, 1, 1, 1) (3, 1, 1, 1, 1, 1, 1) (2, 1, 1, 1, 1, 1, 1, 1) (7, 2)
(2, 1, 1, 1, 1, 1, 1, 1) (2, 1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1, 1, 1) (9)

.
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