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Abstract

We propose the notion of a majority k-edge-coloring of a graph G, which is an
edge-coloring of G with k colors such that, for every vertex u of G, at most half the
edges of G incident with u have the same color. We show the best possible results
that every graph of minimum degree at least 2 has a majority 4-edge-coloring,
and that every graph of minimum degree at least 4 has a majority 3-edge-coloring.
Furthermore, we discuss a natural variation of majority edge-colorings and some
related open problems.

Mathematics Subject Classifications: 05C15

1 Introduction

Motivated by similar notions considered for vertex-colorings, we propose and study ma-
jority edge-colorings of graphs: For a (finite, simple, and undirected) graph G, an edge-
coloring c : E(G)→ [k] is a majority k-edge-coloring if, for every vertex u of G and every
color α in [k], at most half the edges incident with u have the color α.
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Before we present our results, we discuss some related research. Lovász [9] showed
that every graph G has a 2-vertex-coloring such that, for every vertex u of G, at most
half the neighbors of u have the same color as u. For infinite graphs, this leads to the
Unfriendly Partition Conjecture [2]. Kreutzer, Oum, Seymour, van der Zypen, and Wood
[8] showed that every digraph D has a 4-vertex-coloring such that, for every vertex u of
D, at most half the out-neighbors of u have the same color as u, and they conjecture
that 3 colors suffice. Anholcer, Bosek, and Grytczuk [4] studied a choosability version
for digraphs. It follows from a result of Wood [13] that every digraph D has a 4-arc-
coloring such that, for every vertex u of D, at most half the arcs leaving u have the same
color. Further related research concerns defective or frugal edge-colorings [1, 3, 7], where
maximum degree conditions are imposed on the subgraphs formed by edges having the
same color.

Our first result is that 2 colors almost suffice for a majority edge-coloring.

Theorem 1. Let G be a connected graph.

(i) If G has an even number of edges or G contains vertices of odd degree, then G has

a 2-edge-coloring such that, for every vertex u of G, at most
⌈
dG(u)

2

⌉
of the edges

incident with u have the same color.

(ii) If G has an odd number of edges, all vertices of G have even degree, and uG is any
vertex of G, then G has a 2-edge-coloring such that, for every vertex u of G distinct
from uG, exactly dG(u)

2
of the edges incident with u have the same color, and exactly

dG(uG)
2

+ 1 of the edges incident with uG have the same color.

Using Vizing’s bound [12] on the chromatic index leads to our second result.

Theorem 2. Every graph of minimum degree at least 2 has a majority 4-edge-coloring.

Clearly, a graph containing a vertex of degree 1 does not have a majority edge-coloring,
which motivates the minimum degree condition in Theorem 2. Furthermore, since graphs
of minimum degree at least 2, maximum degree 3, and chromatic index 4 have no majority
3-edge-coloring, the number of colors in Theorem 2 is best possible under this minimum
degree condition. In fact, if a graph G of minimum degree at least 2 has an induced
subgraph H such that H is a graph of maximum degree 3 and chromatic index 4 such
that all vertices of H have degree 2 or 3 in G, then G has no majority 3-edge-coloring.
We conjecture that all graphs for which 4 colors are needed contain an induced subgraph
of maximum degree 3 and chromatic index 4.

Our third result supports this conjecture.

Theorem 3. Every graph of minimum degree at least 4 has a majority 3-edge-coloring.

Since a graph containing a vertex of odd degree at least 3 does not have a majority
2-edge-coloring, the number of colors in Theorem 3 is best possible under the minimum
degree condition in that result. In Section 2 we prove our results, and in a conclusion we
discuss a variation of majority edge-colorings.
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2 Proofs

Theorem 1 is a consequence of Euler’s Theorem [6].

Proof of Theorem 1.

(i) Let the multigraph G′ arise from G by adding the edges of a perfect matching M
on the possibly empty set of vertices of odd degree. Clearly, the multigraph G′ is
connected and every vertex has even degree in G′. Let e0e1 · · · em−1 be an Euler
tour of G′, where, provided that M is not empty, we may assume that em−1 ∈ M .
Setting c(ei) = (i mod 2) + 1 for every index i such that ei belongs to G, yields the
desired 2-edge-coloring of G.

(ii) Let e0e1 · · · em−1 be an Euler tour of G such that e0 is incident with uG. Now, setting
c(ei) = (i mod 2) + 1 for every index i, yields the desired 2-edge-coloring of G.

Theorem 2 is a consequence of Vizing’s Theorem [12].

Proof of Theorem 2. Let G be a graph of minimum degree at least 2. If u is a vertex of
degree d, and d = d1+· · ·+dk is a partition of d into positive integers di, then the graph H
arises from G by splitting u into vertices of degrees d1, . . . , dk if there is a partitionNG(u) =
N1 ∪ · · · ∪ Nk of NG(u) with |Ni| = di for i ∈ [k], V (H) = (V (G) \ {u}) ∪ {u1, . . . , uk}
for u1, . . . , uk 6∈ V (G), and E(H) = E(G− u) ∪

⋃
i∈[k]{uiv : v ∈ Ni}. See Figure 1 for an

illustration.
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Figure 1: Splitting a vertex u of degree 7 into vertices of degrees 2, 2, and 3.

Now, let G∗ arise from G by splitting every vertex of degree d > 3 into vertices of
degrees

• 3, . . . , 3, if d ≡ 0 mod 3,

• 2, 2, 3, . . . , 3, if d ≡ 1 mod 3, and

• 2, 3, . . . , 3, if d ≡ 2 mod 3.

Note that there is a natural bijection between the edges of G and those of G∗. By Vizing’s
Theorem [12], the graph G∗ has a proper 4-edge-coloring, which yields a majority 4-edge-
coloring of G. In fact, we obtain an edge-coloring of G such that, for every vertex of
degree d at least 4, at most (d+ 2)/3 of the incident edges have the same color.
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We proceed to the proof of Theorem 3.

Proof of Theorem 3. Let G be a graph of minimum degree δ at least 4. Let V (G) =
D ∪A∪C be the Gallai-Edmonds decomposition of G, that is, D is the set of all vertices
of G that are missed by some maximum matching, A is the set of all vertices of G outside
of D that have a neighbor in D, and C contains the remaining vertices, cf. [10].

Let D′ be the set of isolated vertices in G[D].

Claim 4. It is possible to select, for every vertex u in D′, exactly one edge incident with

u in such a way that every vertex v in A is incident with at most
⌊
dG(v)

2

⌋
of the selected

edges.

Proof of Claim 4. Let H0 be the bipartite subgraph of G with partite sets D′ and A whose
edges are exactly all edges of G between D′ and A. Let H arise from H0 by replacing

each vertex v in A by
⌊
dG(v)

2

⌋
copies having the same neighbors in D′ as v. Clearly, the

desired statement follows if H has a matching saturating all vertices in D′. Suppose, for
a contradiction, that such a matching does not exist. By Hall’s Theorem [5], there is
a subset S of D′ with |S| > |NH(S)|. By the definition of D′ and the construction of

H, we have |NH(S)| =
∑

v∈NG(S)

⌊
dG(v)

2

⌋
. Let m denote the number of edges of G between

S and NG(S). Since every vertex in D′ has all its neighbors in A, we have m > δ|S|.
Furthermore, m 6

∑
v∈NG(S)

dG(v). Combining these estimates, we obtain

∑
v∈NG(S)

δ

⌊
dG(v)

2

⌋
= δ|NH(S)| < δ|S| 6 m 6

∑
v∈NG(S)

dG(v). (1)

For integers δ and d with 3 6 δ 6 d, it is easy to verify that δ
⌊
d
2

⌋
> d, which yields a

contradiction to (1). This completes the proof of Claim 4.

The properties of the Gallai-Edmonds decomposition imply that G[C] has a perfect
matching MC , that there is a matching MA using edges between A and D that connects
each vertex from A to a distinct component of G[D], and that every component of G[D]
is factor-critical; recall that a graph H is factor-critical if H − u has a perfect matching
for every vertex u of H.

We now construct a subset E1 of the edge set E(G) of G as follows, starting with the
empty set:

• We add to E1 all |D′| selected edges as in Claim 4.

• We add MC to E1.

• For every vertex v from A that is not incident with a selected edge, we add to E1

the unique edge from MA incident with v. Let M ′
A be the subset of MA added to

E1.
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• For every component K of G[D] of order at least 3 such that some vertex x of K is
incident with an edge from M ′

A, we add to E1 a perfect matching of K − x.

• For every component K of G[D] of order at least 3 such that no vertex of K is
incident with an edge from M ′

A, we add to E1 a perfect matching of K −x for some
vertex x of K as well as one further edge of K incident with x.

Up to some small modifications explained below, this completes the description of E1.
By construction, the spanning subgraph G1 of G with edge set E1 satisfies

1 6 dG1(u) 6

⌊
dG(u)

2

⌋
for every vertex u of G. (2)

Let G2 be the spanning subgraph of G with edge set E(G) \ E1.

For every component K of G2 such that all vertices of K have even degree in G2,
K has an odd number of edges, and all vertices from V (K) have degree 1 in G1, we
select any edge eK from K and move it from G2 to G1. Note that K − eK contains
exactly two vertices of odd degree, and, hence, is still connected. Furthermore, since G
has minimum degree at least 4, it follows that (2) still holds after each such modification.
Having performed these modifications for each such component of G2, every component
K of (the modified) G2 now

• either contains at least one vertex of odd degree in K,

• or all vertices of K have even degrees in K, and the number of edges of K is even,

• or all vertices of K have even degrees in K, the number of edges of K is odd, and
K contains a vertex uK such that the degree of uK in G1 is at least 2.

The components ofG2 as in the final point are called type 2 components, and the remaining
components of G2 are called type 1 components.

We are now in a position to describe a majority 3-edge-coloring c : E(G)→ [3].

• For all edges e of G1, let c(e) = 3.

• For every component K of G2 that is of type 1, let c : E(K)→ [2] be as in Theorem
1(i) (applied to K as G).

• For every component K of G2 that is of type 2, let c : E(K)→ [2] be as in Theorem
1(ii) (applied to K and uK as G and uG).

It is now easy to verify that c is a majority 3-edge-coloring of G, which completes the
proof.
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3 Conclusion

The most natural question motivated by our results is which graphs of minimum degree
at least 2 do not have a majority 3-edge-coloring.

As a variation of majority edge-colorings, we propose the study of α-majority edge-
colorings for α ∈ (0, 1), where at most an α-fraction of the edges incident with each vertex
are allowed to have the same color. If k is a positive integer at least 2, then every positive
integer at least k(k− 1) can be written as a non-negative integral linear combination of k
and k+ 1. Using this fact, a straightforward adaptation of the proof of Theorem 2 yields
the following statement: If a graph G has minimum degree at least k(k−1), then G has a
1
k
-majority (k+ 2)-edge-coloring. A probabilistic argument implies that, for a sufficiently

large minimum degree, one color less suffices.

Theorem 5. For every integer k at least 2, there is a positive integer δk such that every
graph of minimum degree at least δk has a 1

k
-majority (k + 1)-edge-coloring.

Proof. Let G be a graph of minimum degree δ at least δk, where we specify δk later. Let
c : E(G)→ [k + 1] be a random (k + 1)-edge-coloring, where we choose the color of each
edge uniformly and independently at random. For every vertex u of G, we consider the
bad event Au that more than 1

k
dG(u) of the edges incident with u have the same color.

For d = dG(u), the union bound and the Chernoff inequality, cf. [11], imply

P [Au] 6 (k + 1)P
[
Bin

(
d,

1

k + 1

)
>
d

k

]
(union bound)

= (k + 1)P
[
Bin

(
d,

1

k + 1

)
>

(
1 +

1

k

)
d

k + 1

]
6 (k + 1)e

− d
3k2(k+1) . (Chernoff inequality)

For every vertex u of G, the event Au is determined only by the colors of the edges incident
with u, which are chosen uniformly and independently at random. Therefore, the event
Au is mutually independent of all events Av with v ∈ V (G) \ ({u} ∪NG(u)). In order
to complete the proof, we use the weighted Lovász Local Lemma, cf. [11], which states
that with positive probability none of the bad events Au occurs provided that there is a
positive integer tu for every vertex u of G and there is some real p with 0 6 p 6 1

4
such

that

• P [Au] 6 ptu for every vertex u of G and

•
∑

v∈NG(u)
(2p)tv 6 tu

2
for every vertex u of G.

Let p = (k+1)e
− δ

3k2(k+1) and, for every vertex u of G, let tu =
⌊
dG(u)
δ

⌋
. Note that dG(u) > δ

implies that tu is a positive integer, and that 2tu = 2
⌊
dG(u)
δ

⌋
> dG(u)

δ
.
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Choosing δk sufficiently large, we may ensure that p 6 1
4
, and, hence, P [Au] 6 p

dG(u)

δ 6
ptu . Furthermore, we obtain∑

v∈NG(u)

(2p)tv 6 2pdG(u) 6 4pδtu =
(

4(k + 1)e
− δ

3k2(k+1) δ
)

︸ ︷︷ ︸
→0 for δ→∞

tu,

which is at most tu/2 for δk sufficiently large.
Altogether, choosing δk sufficiently large, the weighted Lovász Local Lemma implies

that with positive probability none of the bad events Au occurs, which implies the exis-
tence of a 1

k
-majority (k + 1)-edge-coloring and completes the proof.

The estimates in the above proof allow to show that δk can be chosen to be O(k3 log k).
Our Theorem 3 implies that 4 is the smallest possible value for δ2.
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