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Abstract

In this paper we show that for a given k-tree T with a k-clique C, the local
mean order of all sub-k-trees of T containing C is not less than the global mean
order of all sub-k-trees of T , and the path-type k-trees have the smallest global
mean sub-k-tree order among all k-trees of a given order. These two results give
solutions to two problems of Stephens and Oellermann [J. Graph Theory 88 (2018),
61-79] concerning the mean order of sub-k-trees of k-trees. Furthermore, the mean
sub-k-tree order as a function on k-trees is shown to be monotone with respect to
inclusion. This generalizes Jamison’s result for the case k = 1 [J. Combin. Theory
Ser. B 35 (1983), 207-223].

Mathematics Subject Classifications: 05C05, 05C30, 05C35

1 Introduction

In the 1980s Jamison [11, 12] initiated the study of the mean order of the subtrees of
a tree. He studied the extremal problem and proved that the path Pn has the smallest
mean subtree order, namely n+2

3
, among all trees of a fixed order n. However, the problem

of describing the tree(s) of a given order with the largest mean subtree order remains
open, although several other open problems and conjectures posed in [11] and [12] were
subsequently solved in [4, 8, 16, 18, 25, 27, 28]. In recent years, some extensions of this
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mean to other connected graphs have been considered, such as the mean order of the
subtrees of an arbitrary graph (not necessarily a tree) (see [3, 5, 15, 26]), the mean order
of the connected induced subgraphs of a graph (see [1, 9, 10, 13, 22, 23, 24]), and the
mean order of the sub-k-trees of a k-tree (see [20]). Note that all of these means are equal
to the mean subtree order of a tree if the underlying graph is a tree.

In this paper we further investigate the mean order of the sub-k-trees of a k-tree. As
a generalization of trees, the class of k-trees (introduced by Beineke and Pippert in [2])
can be defined recursively as follows.

Definition 1. Fix a positive integer k.

1. The complete graph Kk is a k-tree.

2. If T is a k-tree, then so is the graph obtained from T by adding a vertex adjacent
to all vertices of some k-clique of T .

Note that a 1-tree is precisely a tree. Throughout we use T to denote an arbitrary
k-tree, and C to denote an arbitrary k-clique of T . The k-tree with just k vertices is
trivial. All other k-trees are non-trivial. It is worth mentioning that non-trivial k-trees
are in one-to-one correspondence with “tight (k + 1)-trees”, which are generalisations of
trees to (k + 1)-uniform hypergraphs: each nontrivial k-tree is the underlying graph of a
corresponding tight (k + 1)-tree, and the edge set of each tight (k + 1)-tree is the set of
(k+ 1)-cliques of the corresponding k-tree (see [6], although the “tight” was added in the
later usage).

The original k-clique in the recursive construction of a k-tree is called the base k-clique.
When we refer to a sub-k-tree X of a k-tree T , we mean that X is a subgraph of T that
is itself a k-tree. A sub-1-tree is also called a subtree. We denote by S(T ) the collection
of all sub-k-trees of T , and by S(T ;C) the collection of sub-k-trees of T containing the
k-clique C. Let N(T ) = |S(T )| and N(T ;C) = |S(T ;C)|.

For an integer 1 6 r 6 k + 1, we use Qr(T ) to denote the number of r-cliques of T .
Note that Q1(T ) = |T | is the order of T . We denote by Or(T ) the total number of r-
cliques over all sub-k-trees of T , that is, Or(T ) =

∑
X∈S(T )Qr(X). Likewise, let Or(T ;C)

denote the number of r-cliques over all sub-k-trees of T containing the k-clique C, i.e.,
Or(T ;C) =

∑
X∈S(T ;C)Qr(X). For r = 1, we use the notations O(T ) = O1(T ), O(T ;C) =

O1(T ;C) and refer to them as the global order and local order at C, respectively. Then
the average number of r-cliques in a sub-k-tree of T is given by

µr(T ) =
Or(T )

N(T )
.

The average number of r-cliques in a sub-k-tree of T containing the k-clique C is given
by

µr(T ;C) =
Or(T ;C)

N(T ;C)
.

Again we write µ(T ) = µ1(T ), µ(T ;C) = µ1(T ;C) and refer to them as the global mean
order and local mean order at C, respectively.
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Given a k-clique C, we define the degree of C as the number of (k+1)-cliques containing
it, denoted by degT (C), which is consistent with the conventional notion of the degree of
a vertex. A k-clique of degree at least 3 will be called a major k-clique. We say a vertex
is simplicial if its neighbours induce a clique. A simplicial vertex of a k-tree of order
n > k + 1 with degree k is called a k-leaf. Thus a 1-leaf is a leaf. A k-clique containing a
k-leaf is called a simplicial k-clique.

Note that adding a vertex into a k-tree induces
(
k
r−1

)
additional r-cliques. Then we

have the following formula (see also [7]) for the number of r-cliques in a k-tree.

Proposition 2. Let T be a k-tree of order n. Then for 1 6 r 6 k + 1, the number
of r-cliques in T is

(
k
r

)
+ (n − k)

(
k
r−1

)
. In particular, the number of k-cliques in T is

(n− k)k + 1 and the number of (k + 1)-cliques in T is n− k.

Some subclasses of k-trees deserve special attention, such as path-type k-trees, star-type
k-trees and aster-type k-trees. They are generalizations of special subclasses of trees.

Definition 3 (path-type k-trees). Fix a positive integer k.

1. The complete graphs Kk and Kk+1 are a path-type k-tree.

2. If P is a path-type k-tree, then so is the graph obtained from P by adding a vertex
adjacent to all vertices of some simplicial k-clique of P .

Thus every path-type k-tree with more than k + 1 vertices has precisely two k-leaves,
one of which is the most recently added vertex. Moreover, it is easy to see that every
path-type k-tree on n vertices has the same number and average order of sub-k-trees,
although they are not all isomorphic (see also [20]). The class of path-type k-trees has
been previously studied under the name k-path graphs (see [17, 19]).

Definition 4 (star-type k-trees). Fix a positive integer k.

1. The complete graph Kk is a star-type k-tree.

2. If S is a star-type k-tree, then so is the graph obtained from S by adding a vertex
adjacent to all vertices of the base k-clique of S.

Definition 5 (aster-type k-trees). Fix a positive integer k.

1. The complete graph Kk is an aster-type k-tree.

2. If A is an aster-type k-tree, then so is the graph obtained from A by adding a vertex
adjacent to all vertices of the base k-clique of A or any simplicial k-clique of A.

For k = 1, the above three graphs are exactly the paths, stars, and asters (i.e., trees
with at most one vertex of degree greater than 2), respectively. Note that path-type
k-trees and star-type k-trees are necessarily aster-type k-trees, but the converse is not
true.
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Stephens and Oellermann [20] initiated the first study of the global mean and the local
mean orders of sub-k-trees of k-trees. Sharp lower bounds on the local mean orders of all
sub-k-trees containing a given k-clique and a given sub-k-tree were derived, respectively.
A k-tree without major k-cliques is called a simple-clique k-tree (or simply, SC k-tree),
which forms a wide graph class. For example, SC 2-trees are just maximal outerplanar
graphs, and SC 3-trees are just maximal planar chordal graphs (see [17]). And obviously,
path-type k-trees are necessarily SC k-trees, but the converse is not true. For the global
mean orders of sub-k-trees of a k-tree, Stephens and Oellermann proved that the path-type
k-trees have the minimum number of sub-k-trees and the smallest global mean sub-k-tree
order among all SC k-trees of a given order. Moreover, several problems were also asked
in [20]. In this paper, we mainly consider the following two:

Problem 6 ([20, Problem 1]). For a given k-tree T with k-clique C, is the local mean
order of all sub-k-trees containing C an upper bound for the global mean order of all
sub-k-trees of T?

Problem 7 ([20, Problem 3]). Do the path-type k-trees have the smallest global mean
sub-k-tree order among all k-trees with a given order?

We start with the notion of the dual of a k-tree in Section 2, which can reduce a k-tree
to a block graph. Using this reduction, we show that the path-type k-trees and the star-
type k-trees have the minimum and the maximum number of sub-k-trees, respectively,
among all k-trees of a given order. This generalizes a known result of Székely and Wang
[21] on the number of subtrees of a tree. We also show that for any k-tree T with a
k-clique C, the local mean order of all sub-k-trees of T containing C is not less than the
global mean order of all sub-k-trees of T . This gives an affirmative answer to Problem 6.
In Section 3, we prove that the path-type k-trees have the smallest global mean sub-k-tree
order among all k-trees of a given order, thus giving an affirmative answer to Problem 7.
It is also shown that for any k-tree, the mean order of its sub-k-trees is asymptotically
equal to the mean order of the connected induced subgraphs of its dual. In Section 4,
the mean sub-k-tree order as a function on k-trees is shown to be monotone with respect
to inclusion. This generalizes Jamison’s results [11] for the case k = 1. We conclude in
Section 5 with an open question.

2 Comparing local and global mean orders

It was shown in [11, Theorem 3.9] that for any tree T and any vertex v in T , the local
mean order of subtrees containing v is an upper bound on the global mean order of all
subtrees of T , that is, µ(T ; v) > µ(T ). In this section, we generalize this result by showing
that µ(T ;C) > µ(T ) for any k-tree T and any k-clique C of T , thus answering Problem 6.
To do this, we first introduce the notion of the dual of a k-tree T , which is also known as
the (k+ 1)-line graph of T (see [17]). In the case k = 1 it is just the normal line graph of
the tree. Using this tool, we also obtain an extremal result on the number of sub-k-trees
of a k-tree. That is, the path-type k-trees and the star-type k-trees have the minimum
and the maximum number of sub-k-trees, respectively, among all k-trees of a given order.

the electronic journal of combinatorics 30(1) (2023), #P1.43 4



For a k-tree T , we use CLk+1(T ) to denote the set of (k + 1)-cliques of T .

Definition 8. Let T be a k-tree. The dual of T , denoted by T ∗, is the graph defined as
follows:

1. If X is a (k + 1)-clique in T , then X is a vertex in T ∗. Hence V (T ∗) is the set of
(k + 1)-cliques in T , i.e., V (T ∗) = CLk+1(T ).

2. If X and Y are (k + 1)-cliques in T such that their intersection is a k-clique, then
XY ∈ E(T ∗).

It follows from the definition that T ∗ is a block graph, i.e., graph for which every block
(maximal connected subgraph without a cut-vertex) is a clique (see also [20]). And by
Proposition 2, T ∗ has order |T | − k. Figure 1 gives an example of a 2-tree T and its dual.
The following result was derived in [20, Theorem 26].
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Figure 1: A 2-tree T (left) with its 3-cliques labeled and the dual T ∗ (right). Bolded in
T is a major 2-clique of degree 4, which corresponds to the bolded 4-clique in T ∗.

Theorem 9 ([20, Theorem 26]). For any k-tree T , there is a one-to-one correspondence
between non-trivial sub-k-trees of T and connected induced subgraphs of the dual of T .

We need more helpful concepts before presenting the main results of this section. Let
G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The order of
G is |G|. Denote by C(G) the collection of all connected induced subgraphs of G. For
U ⊆ V (G), denote by C(G;U) (resp., C?(G;U)) the collection of all connected induced
subgraphs of G containing all (resp., at least one) of the vertices of U . Let N(G) =
|C(G)|, N(G;U) = |C(G;U)|, N?

(G;U) = |C?(G;U)|, O(G) =
∑

X∈C(G) |X|, O(G;U) =∑
X∈C(G;U) |X|, and O

?
(G;U) =

∑
X∈C?(G;U) |X|. Then

µ(G) =
O(G)

N(G)
, µ(G;U) =

O(G;U)

N(G;U)
and µ?(G;U) =

O
?
(G;U)

N
?
(G;U)

denote, respectively, the mean order of all connected induced subgraphs of G, the mean
order of all connected induced subgraphs of G containing every vertex of U and the mean
order of all connected induced subgraphs of G containing at least one vertex of U . If U
contains only one single vertex v, then µ(G;U) = µ?(G;U) = µ(G; v).

The following result established in [1] is useful for our subsequent proofs.
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Lemma 10 ([1, Theorem 4.7]). Let G be a connected block graph.

(i) If v is a vertex of G, then µ(G; v) > µ(G).

(ii) If U is the vertex set of a block of G, then µ?(G;U) > µ(G).

Recall that Qk(T ) is the number of k-cliques of a k-tree T . Then the following result
is obvious from Theorem 9.

Lemma 11. For any k-tree T with dual T ∗, we have

N(T ) = N(T ∗) +Qk(T ).

Székely and Wang [21] studied the extremal problem concerning the number of subtrees
of a tree. They proved the following:

Theorem 12 ([21, Theorem 3.1]). The path Pn has
(
n+1
2

)
subtrees, fewer than any other

tree of order n. The star K1,n−1 has 2n−1 + n − 1 subtrees, more than any other tree of
order n.

Note that every tree is a connected block graph. The extremal problem concerning the
number of subtrees of a block graph was recently considered in [14]. We also note that a
subtree of a tree T is a connected induced subgraph of T . Below we consider the extremal
problem concerning the number of connected induced subgraphs of a block graph.

Lemma 13. For any connected block graph G of order n, we have(
n+ 1

2

)
6 N(G) 6 2n − 1

with left equality if and only if G ∼= Pn and right equality if and only if G ∼= Kn.

Proof. The right inequality N(G) 6 N(Kn) = 2n−1 clearly holds because each nonempty
subset of vertices in a complete graph induces a connected subgraph, and clearly equality
holds if and only if G ∼= Kn. Then we focus on the left inequality. Since the connected
induced subgraphs of a tree are precisely the subtrees of that tree, by Theorem 12, we
have N(Pn) =

(
n+1
2

)
. Let X be a spanning tree of G. It is easy to see that N(G) > N(X)

with equality if and only if G ∼= X. Combining it with Theorem 12, we conclude that
N(G) > N(X) > N(Pn) with equality if and only if G ∼= Pn.

It is clear from the proof that Lemma 13 holds for general connected graphs, not just
for block graphs. The following extremal result on the number of sub-k-trees of a k-tree
is a generalization of Theorem 12.

Theorem 14. For any k-tree T of order n, we have(
n− k + 1

2

)
+ (n− k)k + 1 6 N(T ) 6 2n−k + (n− k)k

with left equality if and only if T is a path-type k-tree and right equality if and only if T
is a star-type k-tree.
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Proof. Let P and S be a path-type k-tree and a star-type k-tree, respectively, of order n.
Then P ∗ is a path of order n− k and S∗ is a complete graph of order n− k. Recall that
T ∗ is a block graph of order n − k. By Lemma 13, we have N(P ∗) 6 N(T ∗) 6 N(S∗).
Moreover, it follows from Proposition 2 that Qk(P ) = Qk(S) = Qk(T ) = (n − k)k + 1.
Thus

N(P ∗) +Qk(P ) 6 N(T ∗) +Qk(T ) 6 N(S∗) +Qk(S).

Therefore, by Lemmas 11 and 13, we have(
n− k + 1

2

)
+ (n− k)k + 1 6 N(T ) 6 2n−k + (n− k)k.

Note that the dual T ∗ of a k-tree T is a path (resp., a complete graph) if and only if T is a
path-type k-tree (resp., a star-type k-tree). Hence the left equality holds if and only if T
is a path-type k-tree and the right equality holds if and only if T is a star-type k-tree.

Next we compare the global and the local mean orders, which needs the following
three lemmas.

Lemma 15. For any k-tree T of order n with dual T ∗, we have

µ(T ) =
O(T ∗)

N(T ∗) + (n− k)k + 1
+ k.

Proof. By Proposition 2, the number of (k+1)-cliques in a k-tree of order n is n−k. Note
that each term differs by k and so does the average. Hence we have µk+1(T ) = µ(T )− k.
Moreover, by Lemma 11 and Proposition 2, we have N(T ) = N(T ∗) +Qk(T ) = N(T ∗) +
(n− k)k + 1. Hence

µk+1(T ) =
Ok+1(T )

N(T )
=

1

N(T )

∑
X∈S(T )

Qk+1(X)

=
1

N(T )

∑
X∈S(T )

|X∗| = 1

N(T )

∑
Y ∈C(T ∗)

|Y |

=
O(T ∗)

N(T ∗) + (n− k)k + 1
.

Combining these two equalities, we obtain the desired result.

For a k-tree T with a k-clique C, we denote by CLk+1(T ;C) the set of (k + 1)-cliques
of T containing C.

Lemma 16. For any k-tree T with a k-clique C, let B ⊆ V (T ∗) such that
B = CLk+1(T ;C). Then

µ(T ;C) =
O
?
(T ∗;B)

N
?
(T ∗;B) + 1

+ k.
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Proof. Recall that C?(T ∗;B) is a set of connected induced subgraphs of T ∗ containing at
least one vertex of B. We define a function f : S(T ;C)\{C} 7→ C?(T ∗;B) by f(X) = X∗

for all X ∈ S(T ;C) \ {C}. Note that for any X ∈ S(T ;C) \ {C}, X contains at least
one (k+ 1)-clique of CLk+1(T ;C), which implies X∗ contains at least one vertex of B, i.e.,
X∗ ∈ C?(T ∗;B). Thus f is well-defined. Then the argument used in [20, Theorem 26] can
be used to show that f is a bijection, from which it follows that N(T ;C) = N

?
(T ∗;B)+1.

Then

µk+1(T ;C) =
Ok+1(T ;C)

N(T ;C)
=

1

N(T ;C)

∑
X∈S(T ;C)

Qk+1(X)

=
1

N(T ;C)

∑
X∈S(T ;C)

|X∗| = 1

N(T ;C)

∑
Y ∈C?(T ∗;B)

|Y |

=
O
?
(T ∗;B)

N
?
(T ∗;B) + 1

.

Moreover, the same argument as in Lemma 15 shows that

µk+1(T ;C) = µ(T ;C)− k.

Therefore

µ(T ;C) =
O
?
(T ∗;B)

N
?
(T ∗;B) + 1

+ k.

Lemma 17. For a connected graph G of order n with v ∈ V (G), we have

nN(G; v) > N(G)

with equality if and only if G ∼= K1.

Proof. We proceed by induction on n. If n = 1, then G ∼= K1 and the result follows
trivially. Now let n > 2 and suppose that the statement holds for all connected graphs of
order less than n. Let v be a vertex of G.

If v is not a cut-vertex of G, then G− v is a connected graph of order n− 1. Let u be
a neighbor of v. By induction hypothesis, we have (n− 1)N(G− v;u) > N(G− v). Note
that N(G; v) > N(G − v;u) because each connected induced subgraph in C(G − v;u)
together with v is a connected induced subgraph of C(G; v) and there is an additional
singleton {v} in C(G; v). Hence

(n− 1)N(G; v) > (n− 1)N(G− v;u) > N(G− v),

Thus we have nN(G; v) > N(G− v) +N(G; v) = N(G).
Now assume that v is a cut-vertex of G. Let H1, H2, . . . , Hk be the components of

G − v. For i = 1, 2, . . . , k, denote by Gi the subgraph of G induced by the vertices
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V (Hi) ∪ {v}, and let ni be their respective orders. By induction hypothesis, we have
niN(Gi; v) > N(Gi). Hence (ni − 1)N(Gi; v) > N(Gi)−N(Gi; v) = N(Hi). Note that

N(G) = N(G− v) +N(G; v) =
k∑
i=1

N(Hi) +
k∏
i=1

N(Gi; v).

Thus

N(G) 6
k∑
i=1

[(ni − 1)N(Gi; v)] +
k∏
i=1

N(Gi; v)

< (n− 1)
k∑
i=1

N(Gi; v) +
k∏
i=1

N(Gi; v)

6 (n− 1)
k∏
i=1

N(Gi; v) +
k∏
i=1

N(Gi; v)

= nN(G; v).

Here, the inequality
∑k

i=1N(Gi; v) 6
∏k

i=1N(Gi; v) holds because N(Gi; v) > 2 for every
1 6 i 6 k. This completes the induction.

Now we establish an inequality between the global and the local mean orders, which
provides an affirmative answer to Problem 6.

Theorem 18. For any k-tree T of order n with a k-clique C, we have µ(T ;C) > µ(T )
with equality if and only if T ∼= Kk.

Proof. If T ∼= Kk, then µ(T ;C) = µ(T ) = k. So we may suppose that |T | > k. Let
B ⊆ V (T ∗) such that B = CLk+1(T ;C). Note that |CLk+1(T ;C)| = degT (C). Clearly, if
degT (C) = 1, then B is a single vertex of T ∗, and if degT (C) > 1, then B is the vertex
set of a block of T ∗ which is a clique of size degT (C). By Lemmas 15 and 16, it suffices
to show that

O
?
(T ∗;B)

N
?
(T ∗;B) + 1

>
O(T ∗)

N(T ∗) + (n− k)k + 1
,

that is,

O
?
(T ∗;B)N(T ∗) + [k(n− k) + 1]O

?
(T ∗;B) > O(T ∗)N

?
(T ∗;B) +O(T ∗).

Since T ∗ is a block graph, and B is either a block or a single vertex, it follows from Lemma
10 that µ?(T ∗;B) > µ(T ∗), which is equivalent to

O
?
(T ∗;B)

N
?
(T ∗;B)

>
O(T ∗)

N(T ∗)
, (1)

that is,
O
?
(T ∗;B)N(T ∗) > O(T ∗)N

?
(T ∗;B).
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Then we just need to prove that

[k(n− k) + 1]O
?
(T ∗;B) > O(T ∗). (2)

Consider the order of B. Note that |T ∗| = n − k. If |B| = degT (C) = 1, by Lemma
17, we have

N(T ∗) 6 (n− k)N
?
(T ∗;B) < [k(n− k) + 1]N

?
(T ∗;B).

Multiplying this inequality with (1), we can deduce that (2) holds.
If |B| = degT (C) > 2, let G be a graph obtained from T ∗ by contracting B to a

new vertex u. Then |G| = n − k − |B| + 1. By Lemma 17, we have (n − k − |B| +
1)N(G;u) > N(G), that is, (n − k − |B|)N(G;u) > N(G − u). Further, we note that
N
?
(T ∗;B) > N(T ∗;B) = N(G;u) and T ∗ − B = G − u. Then we have N(G − u) =

N(T ∗ −B) = N(T ∗)−N?
(T ∗;B). Hence

[k(n− k)]N
?
(T ∗;B) > (n− k − |B|)N(G;u) > N(G− u) = N(T ∗)−N?

(T ∗;B).

Thus we have
[k(n− k) + 1]N

?
(T ∗;B) > N(T ∗).

Again, this together with (1) yields (2), and we are done.

3 k-trees with extremal global mean orders

In this section, we consider the extremal problems regarding the global mean order. We
prove that the path-type-k-trees have the smallest global mean sub-k-tree orders among
all k-trees, answering Problem 7. We also show that the star-type-k-trees have the largest
global mean sub-k-tree orders among all aster-type-k-trees. These two results generalize
the results of Jamison [11] for the case k = 1. Moreover, it is shown that the global mean
order of the sub-k-trees of T of sufficiently large order is asymptotically equal to the mean
order of all connected induced subgraphs of the dual T ∗.

Our proof requires the following result established in [1].

Theorem 19 ([1, Theorem 3.1]). If G is a connected block graph of order n, then µ(G) >
n+2
3

with equality if and only if G ∼= Pn.

In [11] Jamison proved that µ(T ) > n+2
3

for every tree T of order n with equality
only for Pn. A tree is a special block graph and a subtree of a tree T is a connected
induced subgraph of T , thus Theorem 19 extends Jamison’s lower bound from trees to
block graphs. Vince [22] and Haslegrave [9] later extend this lower bound to all connected
graphs. They independently and almost simultaneously proved that the path Pn uniquely
minimizes the mean order of the connected induced subgraphs among all connected graphs
of order n (the two preprints were submitted only one day apart, first by Vince [22] and
second by Haslegrave [9]). In the following, we extend this lower bound from trees to
k-trees.
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Theorem 20. For any k-tree T of order n, we have

µ(T ) >

(
n−k+2

3

)(
n−k+1

2

)
+ (n− k)k + 1

+ k

with equality if and only if T is a path-type-k-tree.

Proof. Let P be a path-type k-tree of order n, then P ∗ is a path of order n − k. One
easily computes that N(P ∗) =

(
n−k+1

2

)
and O(P ∗) =

(
n−k+2

3

)
(see also [11]). It follows

from Lemma 15 that

µ(P ) =

(
n−k+2

3

)(
n−k+1

2

)
+ (n− k)k + 1

+ k.

Now assume that T is not a path-type k-tree. It suffices to show that µ(T ) > µ(P ). By
Lemma 15, we have

µ(T ) =
O(T ∗)

N(T ∗) + (n− k)k + 1
+ k,

µ(P ) =
O(P ∗)

N(P ∗) + (n− k)k + 1
+ k.

Then µ(T ) > µ(P ) is equivalent to

O(T ∗)

N(T ∗) + (n− k)k + 1
>

O(P ∗)

N(P ∗) + (n− k)k + 1
,

that is,

O(T ∗)N(P ∗) +O(T ∗)[(n− k)k + 1] > O(P ∗)N(T ∗) +O(P ∗)[(n− k)k + 1]. (3)

Note that T ∗ is a block graph of order n−k which is not a path. It follows from Theorem
19 that µ(T ∗) > µ(P ∗), which is equivalent to

O(T ∗)

N(T ∗)
>
O(P ∗)

N(P ∗)
, (4)

that is,
O(T ∗)N(P ∗) > O(P ∗)N(T ∗).

To obtain (3), we just need to prove that

O(T ∗) > O(P ∗).

By Lemma 13, we have N(T ∗) > N(P ∗). Multiplying this with inequality (4) yields
O(T ∗) > O(P ∗), completing the proof.

In [11] Jamison proved the following maximum property of stars among all asters of a
fixed order.
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Theorem 21 ([11, Theorem 5.12]). Among all asters on n vertices, the star K1,n−1
uniquely achieves the largest global mean subtree order.

We show that this result can be generalized as follows.

Theorem 22. For any aster-type k-tree T of order n, we have

µ(T ) 6
(n− k)2n−k−1

2n−k + (n− k)k
+ k

with equality if and only if T is a star-type k-tree.

Proof. Let S be a star-type k-tree of order n, then S∗ is a complete graph of order n− k.
One easily computes that N(S∗) = 2n−k − 1 and O(S∗) = (n− k)2n−k−1. It follows from
Lemma 15 that

µ(S) =
O(Kn−k)

N(Kn−k) + (n− k)k + 1
+ k =

(n− k)2n−k−1

2n−k + (n− k)k
+ k.

If T is a path-type k-tree, then the result holds from Theorem 20. Now let T be an aster-
type k-tree that is neither path-type nor star-type. It suffices to show that µ(T ) < µ(S).

Let C be the k-clique of maximum degree in T . Clearly T ∗ is a block graph of order
n − k, which is obtained from a complete graph of order degT (C) by attaching to each
vertex at most one pendant path (there is at least one vertex of T ∗ with a pendant path
attached to it since T is not star-type while being aster-type). It follows from the structure
of T ∗ that there exists an aster-type 1-tree A of order n − k + 1 whose dual is also T ∗.
Then, by Theorem 21, µ(A) < µ(K1,n−k). Note that the dual of K1,n−k is the complete
graph Kn−k. Applying Lemma 15, we obtain

O(T ∗)

N(T ∗) + n− k + 1
<

O(Kn−k)

N(Kn−k) + n− k + 1
,

that is,

O(T ∗)N(Kn−k) + (n− k + 1)O(T ∗) < O(Kn−k)N(T ∗) + (n− k + 1)O(Kn−k).

Moreover, we note that n− k + 1 6 (n− k)k + 1 and O(T ∗) < O(Kn−k). It follows that

O(T ∗)N(Kn−k) + [(n− k)k + 1]O(T ∗) < O(Kn−k)N(T ∗) + [(n− k)k + 1]O(Kn−k),

which is equivalent to

O(T ∗)

N(T ∗) + (n− k)k + 1
+ k <

O(Kn−k)

N(Kn−k) + (n− k)k + 1
+ k,

that is, µ(T ) < µ(S), according to Lemma 15.
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Lastly, we show that the global mean order of the sub-k-trees of T is asymptotically
equal to the mean order of all connected induced subgraphs of the dual T ∗ if the order of
T is sufficiently large.

Theorem 23. If {Tn} is a sequence of k-trees with |Tn| = n, then

lim
n→∞

µ(Tn)

µ(T ∗n)
= 1.

Proof. By Lemma 15, we have

µ(Tn) =
O(T ∗n)

N(T ∗n) + (n− k)k + 1
+ k.

Then

µ(Tn)

µ(T ∗n)
=

[
O(T ∗n)

N(T ∗n) + (n− k)k + 1
+ k

]
N(T ∗n)

O(T ∗n)
=

N(T ∗n)

N(T ∗n) + (n− k)k + 1
+

k

µ(T ∗n)
.

Let {Pn} be a sequence of path-type k-trees with |Pn| = n. It follows from Lemma 13
that N(T ∗n) > N(P ∗n) =

(
n−k+1

2

)
. Then

1 <
N(T ∗n) + (n− k)k + 1

N(T ∗n)
6 1 +

(n− k)k + 1(
n−k+1

2

) .

As n→∞, by the squeeze theorem, we have

lim
n→∞

N(T ∗n)

N(T ∗n) + (n− k)k + 1
= 1.

Moreover, by Theorem 19, µ(T ∗n) > n−k+2
3

. Thus we have lim
n→∞

k
µ(T ∗n)

= 0. Therefore

lim
n→∞

µ(Tn)

µ(T ∗n)
= lim

n→∞

N(T ∗n)

N(T ∗n) + (n− k)k + 1
+ lim

n→∞

k

µ(T ∗n)
= 1.

4 Inclusion monotonicity

In [11], the following monotonicity results on the mean subtree order of trees were estab-
lished.

Theorem 24 ([11, Theorem 4.8]). If S is a proper subtree of a tree T , then µ(S) < µ(T ).

Theorem 25 ([11, Theorem 4.5]). If R ⊂ S are subtrees of a tree T , then

µ(T ;R) < µ(T ;S) 6 µ(T ;R) +
|S| − |R|

2
.
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Theorem 26 ([11, Theorem 4.7]). For any subtree R of a proper subtree S of a tree T ,
we have µ(S;R) < µ(T ;R).

In this section, we extend the above results from trees to k-trees. A useful tool is
the simple fact that if a population is divided into subpopulations, then its mean is a
convex combination (or weighted average) of the means over the subpopulations. As an
example, for a k-tree T with a vertex v ∈ V (T ), we denote by µ(T ; v) the mean order of
the sub-k-trees of T containing v and µ(T − v) the mean order of the sub-k-trees of T not
containing v. Since every sub-k-tree of T either contains v or not, we can write

µ(T ) = λ1µ(T ; v) + λ2µ(T − v),

where λ1 = N(T ;v)
N(T )

and λ2 = N(T−v)
N(T )

satisfying λ1 +λ2 = 1. It follows that µ(T ) is a convex

combination of µ(T ; v) and µ(T − v), which implies

min{µ(T ; v), µ(T − v)} 6 µ(T ) 6 max{µ(T ; v), µ(T − v)}.

Theorem 27. If S is a proper sub-k-tree of a k-tree T , then µ(S) < µ(T ).

Proof. Since any sub-k-tree of T can be obtained from T by a sequence of k-leaf deletions,
we may suppose that S = T − v for some k-leaf v of T , the general case following from
this by induction. Let µ(T ; v) be the mean order of the sub-k-trees of T containing v.
Then µ(T ) is a convex combination of µ(T ; v) and µ(S). To obtain µ(S) < µ(T ), we only
need to show that µ(T ; v) > µ(T ).

Let C be a k-clique containing v. Clearly degT (C) = 1. Thus there exist k k-cliques
containing v, one of which is C. Note that each non-trivial sub-k-tree in T that contains
v must contain C. It follows that N(T ; v) = N(T ;C) + k − 1 and O(T ; v) = O(T ;C) +
k(k − 1). Recall that CLk+1(T ;C) is the set of (k + 1)-cliques of T containing C. Let
B ⊆ V (T ∗) such that B = CLk+1(T ;C). In terms of Lemma 16, we have O(T ;C) =

O
?
(T ∗;B) + k

(
N
?
(T ∗;B) + 1

)
and N(T ;C) = N

?
(T ∗;B) + 1. It follows that

µ(T ; v) =
O(T ; v)

N(T ; v)
=
O(T ;C) + k(k − 1)

N(T ;C) + k − 1

=
O
?
(T ∗;B) + k

(
N
?
(T ∗;B) + 1

)
+ k(k − 1)

N
?
(T ∗;B) + 1 + k − 1

=
O
?
(T ∗;B)

N
?
(T ∗;B) + k

+ k.

By Lemma 15,

µ(T ) =
O(T ∗)

N(T ∗) + (n− k)k + 1
+ k.

To obtain µ(T ; v) > µ(T ), it suffices to show that

O
?
(T ∗;B)

N
?
(T ∗;B) + k

>
O(T ∗)

N(T ∗) + (n− k)k + 1
,
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that is,

O
?
(T ∗;B)N(T ∗) + [(n− k)k + 1]O

?
(T ∗;B) > O(T ∗)N

?
(T ∗;B) + kO(T ∗).

Note that B is a single vertex of T ∗ since degT (C) = 1. Then, by Lemma 10, µ?(T ∗;B) >
µ(T ∗), which is equivalent to

O
?
(T ∗;B)

N
?
(T ∗;B)

>
O(T ∗)

N(T ∗)
, (5)

that is,
O
?
(T ∗;B)N(T ∗) > O(T ∗)N

?
(T ∗;B). (6)

Moreover, using Lemma 17, we have (n− k)N
?
(T ∗;B) > N(T ∗). This together with (5)

yields (n− k)O
?
(T ∗;B) > O(T ∗), which implies that [(n− k)k + 1]O

?
(T ∗;B) > kO(T ∗).

Adding this inequality and (6) gives us the desired result.

Theorem 27 is a generalization of Theorem 24. Now we generalize Theorems 25 and
26 from trees to k-trees. This requires a useful method for reducing a k-tree to a 1-tree.

It is well-known that every non-trivial k-tree has at least two k-leaves. If v is a
k-leaf of a k-tree T of order n > k + 1, then T − v is a k-tree. Then for any non-
trivial k-tree T with a k-clique C, there exists a sequence of vertices (v1, v2, . . . , vp) such
that (i) {v1, v2, . . . , vp} ∪ V (C) = V (T ), (ii) v1 is a k-leaf in T , (iii) vi is a k-leaf in
T −{v1, v2, . . . , vi−1} for all i > 2. Such a sequence is called a perfect elimination ordering
of T down to C. The following result established in [20] is a generalization to k-trees of
the fact that any two vertices of a tree have a unique path between them.

Lemma 28 ([20, Lemma 7]). For any k-tree T with a k-clique C, let v be any vertex of
T that is not in C. Then there exists a unique sequence AT (C, v) = (C,w1, w2, . . . , ws, v),
where all terms except C are vertices of T , such that

1. the graph induced by V (C) ∪ {w1, w2, . . . , ws−1, ws, v}, denoted by PT (C, v), is a
path-type k-tree, and C is simplicial in PT (C, v).

2. the sequence (v, ws, ws−1, . . . , w2, w1) is a perfect elimination ordering of PT (C, v)
down to C.

We use L(T ) to denote the set of k-leaves of T . The next lemma shows that each
k-tree has a path-type representation consisting of path-type k-trees starting at C and
ending at a k-leaf.

Lemma 29 ([20, Theorem 8]). For any k-tree T with a k-clique C, we have

T =

 ⋃
v∈L(T )

V (PT (C, v)) ,
⋃

v∈L(T )

E (PT (C, v))

 .
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For each v ∈ V (T )− V (C), we define the graph P ′T (C, v) with

V (P ′T (C, v)) = {C,w1, w2, . . . , ws−1, ws, v} ,

and
E (P ′T (C, v)) = {Cw1, w1w2, w2w3, . . . , ws−1ws, wsv} .

Thus the graph P ′(C, v) is a path of order s+ 2.

Definition 30. Let T be a k-tree with k-clique C. The characteristic 1-tree of T with
respect to C, is the graph T ′C defined as follows:

T ′C =

 ⋃
v∈L(T )

V (P ′T (C, v)) ,
⋃

v∈L(T )

E (P ′T (C, v))

 .

It follows from Lemma 28 that T ′C is a tree, and is the unique tree for which AT ′C (C, v) =
AT (C, v) for all v ∈ L(T ). Note that the characteristic 1-tree of a path-type k-tree with
respect to an arbitrary k-clique is a path. Figure 2 gives an example of a 2-tree and its
two characteristic 1-trees. The following result is rather intuitive.

v5

v6

v1

v2

v3

v4

v7

v8

v1

v2

v4 v3 C1
v7

v8

C2

v2

v1 v3 v5

v8

v7
T :

T ′C2
:

T ′C1
:

Figure 2: A 2-tree T and its two characteristic 1-trees T ′C1
, T ′C2

, where C1 = {v5, v6} and
C2 = {v4, v6}.

Lemma 31. Let T be a k-tree, R a sub-k-tree of T , and C any k-clique of R. Then R′C
is a subtree of T ′C.

Proof. If R is a k-clique of T , then the statement clearly holds. Now suppose that R is a
non-trivial sub-k-tree of T . Let v be a k-leaf of R that is not in C. By Lemma 28, there is a
corresponding unique sequence AR(C, v) and a path-type k-tree PR(C, v). Note that v also
belongs to T . It follows from Lemma 29 that v belongs to PT (C, u) for some k-leaf u of T .
Then it follows from Lemma 28 that if AT (C, u) = (C,w1, w2, . . . , ws), where ws = u, then
we must have v = wi for some 1 6 i 6 s, i.e., AR(C, v) = AT (C, v) = (C,w1, w2, . . . , wi).
Hence P ′R(C, v) is a subpath of P ′T (C, u), which implies that R′C is a subtree of T ′C from
the fact that each k-tree has a path-type representation.
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For any k-tree T with a sub-k-tree R, recall that S(T ;R) is the set of all sub-k-
trees of T containing the sub-k-tree R, and |S(T ;R)| = N(T ;R). The next result is a
generalization of the result in [20, Theorem 9].

Lemma 32. Let T be a k-tree, R a sub-k-tree of T , and C any k-clique of R. Then there
is a one-to-one correspondence between S(T ;R) and S(T ′C ;R′C).

Proof. Define a function f : S(T ;R) 7→ S(T ′C ;R′C) by the rule f(X) = X ′C for all X ∈
S(T ;R). We first show that f is well-defined. Let X ∈ S(T ;R). Then R ⊆ X ⊆ T .
By Lemma 31, we have R′C ⊆ X ′C ⊆ T ′C . Therefore X ′C ∈ S(T ′C ;R′C), and thus f is
well-defined.

Then we show that f is a bijection. Suppose that f(X) = f(Y ) for some sub-k-
trees X, Y ∈ S(T ;R). Then X ′C = Y ′C . It follows that L(X ′C) = L(Y ′C), implying
L(X) = L(Y ). By Lemma 28, we have P ′X(C, v) = P ′Y (C, v) for any leaf v of f(X) =
f(Y ), which implies PX(C, v) = PY (C, v) for any k-leaf v of X or Y . Thus we have
(∪V (PX(C, v)) ,∪E (PX(C, v))) = (∪V (PY (C, v)) ,∪E (PY (C, v))), where the unions on
the left (resp., right) are over all leaves v of X (resp., Y ). It follows from Lemma 29 that
X = Y . Thus f is injective.

Now let Y be a subtree of S(T ′C ;R′C). For each leaf v of Y , Lemma 28 shows that there
is a corresponding unique sequence AY (C, v) and a path PY (C, v). Note that there also
exist PT (C, v) and AT (C, v). And it follows from Lemma 28 that AT (C, v) = AY (C, v).
Let X = (∪V (PT (C, v)) ,∪E (PT (C, v))), where the unions are over the leaves v of Y . We
shall show that f(X) = Y . First we prove that X ∈ S(T ;R). Let u be a leaf of R′C . In
terms of Lemma 29, u belongs to PY (C, v) for some leaf v of Y . It follows from Lemma
28 that if AY (C, v) = (C,w1, w2, . . . , ws), where ws = v, then we must have u = wi for
some 1 6 i 6 s, i.e., AR′C (C, u) = AY (C, u) = (C,w1, w2, . . . , wi). This implies that
PT (C, u) is a sub-k-tree of PT (C, v). Further, Lemma 29 gives the path representation
R = (∪V (PT (C, u)) ,∪E (PT (C, u))), where the unions are over the leaves u of R. Note
that L(X) = L(Y ). Hence R is a sub-k-tree of X and thus X ∈ S(T ;R). In addition, we
can see that P ′X(C, v) = PY (C, v) for all v ∈ L(Y ). Therefore by Lemma 29, we have

f(X) = X ′C =

 ⋃
v∈L(X)

V (P ′X(C, v)) ,
⋃

v∈L(X)

E (P ′X(C, v))


=

 ⋃
v∈L(Y )

V (PY (C, v)) ,
⋃

v∈L(Y )

E (PY (C, v))

 = Y.

Thus f is a surjective function. Consequently, we conclude that f is a bijection and the
desired result follows.

Theorem 33. If R ⊂ S are sub-k-trees of a k-tree T , then

µ(T ;R) < µ(T ;S) 6 µ(T ;R) +
|S| − |R|

2
.
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Proof. Let C be a k-clique both belonging toR and S. It follows from Lemma 32 that there
is a one-to-one correspondence between S(T ;S) and S(T ′C ;S ′C), which implies N(T ;S) =
N(T ′C ;S ′C). Observe that for each sub-k-tree X in S(T ;S) with its corresponding subtree
Y in S(T ′C ;S ′C), we have |X| = |Y |+ k − 1. Hence

µ(T ;S) = µ(T ′C ;S ′C) + k − 1.

Similarly, we have
µ(T ;R) = µ(T ′C ;R′C) + k − 1.

It follows that
µ(T ;S)− µ(T ;R) = µ(T ′C ;S ′C)− µ(T ′C ;R′C).

Since R is a proper sub-k-tree of S, by Lemma 31, R′C is a proper subtree of S ′C . Note
that |S| − |R| = |S ′C | − |R′C |. Combining with Theorem 25, we obtain

0 < µ(T ;S)− µ(T ;R) = µ(T ′C ;S ′C)− µ(T ′C ;R′C) 6
|S ′C | − |R′C |

2
=
|S| − |R|

2
,

which completes the proof.

Theorem 34. For any sub-k-tree R of a proper sub-k-tree S of a k-tree T , we have

µ(S;R) < µ(T ;R).

Proof. It suffices to establish the result in the case that S is obtained by deleting a k-leaf
v from T . The general result will then follow by induction.

Choose an arbitrary k-clique C of R. By Lemma 28, there exists a unique sequence
AT (C, v) and a path-type k-tree PT (C, v). Now we show that each sub-k-tree of T con-
taining both v and C must contain PT (C, v). Set B = PT (C, v). Note that B′C is a path
with V (B′C) = V (P ′T (C, v)). By Lemma 32, there is a one-to-one correspondence between
S(T ;B) and S(T ′C ;B′C). Since each subtree in S(T ′C) containing both v and C (a vertex of
T ′C) must contain the path B′C , it follows that each sub-k-tree in S(T ) containing both v
and C (a k-clique of T ) must contain the path-type k-tree B. Let Q be the graph induced
by V (B) ∪ V (R). Then Q is the smallest sub-k-tree containing both v and R.

Note that each sub-k-tree of T containing R either contains v or not. Then

µ(T ;R) = λ1µ(S;R) + λ2µ(T ;Q),

where λ1 = N(S;R)
N(T ;R)

and λ2 = N(T ;Q)
N(T ;R)

satisfy λ1 +λ2 = 1. It follows that µ(T ;R) is a convex

combination of µ(S;R) and µ(T ;Q). By Theorem 33, µ(T ;Q) > µ(T ;R). Hence we have
µ(S;R) < µ(T ;R).

the electronic journal of combinatorics 30(1) (2023), #P1.43 18



5 Final remarks

Theorem 20 shows that the path-type-k-trees have the smallest global mean sub-k-tree
orders among all k-trees of a given order. This result generalizes Jamison’s result [11]
that the path Pn has the smallest mean subtree order among all trees of a fixed order n.
However, the problem of determining the structure of those k-trees of a given order with
maximum global mean order remains open even for k = 1. It was conjectured by Jamison
[11] that the maximum mean subtree order is attained by a caterpillar (i.e., a tree that
becomes a path when all leaves are removed) for every tree of given order. This is known
as Jamisons Caterpillar Conjecture. We define a caterpillar-type k-tree as a k-tree that
becomes a path-type k-tree when all k-leaves are removed. For the general k-trees, we
have the following natural question:

Question 35. Among all k-trees of a given order, is the k-tree with the largest global
mean sub-k-tree order necessarily a caterpillar-type k-tree?
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