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Abstract

We extend the classical relation between the 2n-th Fibonacci number and the
number of spanning trees of the n-fan graph to ribbon graphs. More importantly, we
establish a relation between the n-associated Mersenne number and the number of
quasi-trees of the n-wheel ribbon graph. The calculations are performed by comput-
ing the determinant of a matrix associated with ribbon graphs. These theorems are
also proven using contraction and deletion in ribbon graphs. The results provide
neat and symmetric combinatorial interpretations of these well-known sequences.
Furthermore, they are refined by giving two families of abelian groups whose orders
are the Fibonacci and associated Mersenne numbers.

Mathematics Subject Classifications: 05C10, 11B39

1 Introduction

The relation between the number of spanning trees of fans and wheels with the Fibonacci
and Lucas numbers seems to fascinate mathematicians in combinatorics, see [26, 31, 28,
17, 32, 25]. For example, in 1972, there were two talks at the British Combinatorial
Conference about this subject, see [14, 16, 17]. As the 50-year-old gap seems meaningful,
this work attempts to shed some new light on the relation between these well-known
sequences and the more recent concept of quasi-trees in ribbon graphs.

The wheel graph with n+1 vertices, W,,, has n vertices in an n-cycle (the rim) plus one
vertex (the hub) adjacent to the rest of the vertices. The fan graph with n + 1 vertices,
F,, is obtained from W, by deleting an edge from the rim. The basic formulae for the
number of spanning trees were already known from the work of Sedlacek [30, 29].

Theorem 1. The number of spanning trees of W, is la, — 2, and the number of spanning
trees of Fy, is fon, where l,, is the n-th Lucas number and f, is the n-th Fibonacci number.
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The sequence of Fibonacci and Lucas numbers share the same recursive formula, f, =
fo1+ fano and l, = l,_1 + l,_o. However, the initial values are different. The first
Fibonacci numbers are f; = 1 and f; = 1, while the first Lucas numbers are [y = 1 and
ly = 3.

The reason for this present work is twofold. First, the numbers of spanning trees of
the graphs Fj are the Fibonacci numbers of even index. It is natural to ask if there is
a family of graphs whose numbers of spanning trees give the entire Fibonacci sequence.
A partial answer is the family {F;} U {F} }, where F} is obtained from the graph F}, by
adding a parallel edge from the hub to a minimum degree vertex in the rim. This result
is implicit in the work in [16, 17]. However, the arbitrary break of symmetry gives us a
reason to present a family of ribbon graphs whose number of spanning quasi-trees is the
Fibonacci sequence that is more natural and symmetric.

Second, the —2 in the formula for spanning trees of W, is puzzling. It is natural
to look for a family of graphs whose numbers of spanning trees give the sequence of
Lucas numbers, probably with a —2 added to each term. This work presents a family
of ribbon graphs whose numbers of spanning quasi-trees is the sequence of associated
Mersenne numbers {a,} that naturally extends the family of wheel graphs and explains
the seemingly arbitrary —2 in the well-known formula. The sequence {a,,} was first defined
in [15] as the integer sequence such that a; =1, ay =1 and a, = a1 +a,—2+1—(=1)"
The relation between {a,} and {l,} is folklore: a, =1, — 1 — (=1)".

2 Preliminaries

2.1 Graphs and ribbon graphs

An abstract graph G is just an ordered pair G = (V, E) comprising a finite set V' of
vertices and a set E of unordered pairs of vertices called edges. For example, P, x P, is
the ladder graph with vertices {(1,7)|1 < i< n}U{(2,7)|1 <i < n} and there is an edge
joining (4, j) with (¢, j') if and only if |i — |+ |j — j’| = 1. For more about graph theory,
see [12]

The definition of ribbon graphs is taken from [4, 10]. A ribbon graph G consists of two
finite sets of closed disks, a set V' of vertices, and a set F of edges such that their union
defines a surface with boundary. The vertices and edges satisfy the following restrictions.
The vertices and edges intersect in disjoint line segments; each such line segment lies on
the boundary of precisely one vertex and precisely one edge; every edge contains exactly
two such line segments. Note that ribbon graphs need not be connected and that edges
joining a vertex to itself are allowed. If the surface is orientable, then we say that the
ribbon graph is orientable.

A more intuitive construction starts with a 2-cellular embedding of a graph G in a
closed compact surface . Then a ribbon graph is obtained by taking a small neighborhood
of the embedding of G and deleting its complement. Also, given a ribbon graph G, if we
cap each boundary component of (the surface of) G with a disk, we get a closed compact
surface 3(G) where the abstract graph G has a natural 2-cellular embedding. Notice that
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we can always consider a ribbon graph G as an abstract graph G, by disregarding the
information about the embedding.

As with graphs, we can delete edges or isolated vertices from a ribbon graph G and
get a new ribbon graph H, called a ribbon subgraph of G. If H has the same vertex set
as G, it is called a spanning ribbon subgraph. However, care needs to be taken as H may
not have a 2-cellular embedding in the same surface as G. For example, the ribbon graph
G with one vertex and two interlaced loops has a 2-cellular embedding in the torus, but
the subgraph H obtained from G by deleting one loop is 2-cellular embeddable just in the
sphere.

The number of spanning trees and quasi-trees

Given a connected graph G, the number of spanning subgraphs of G that are trees is
a fundamental invariant associated with G, called the complezity of G and denoted by
k(G).

A ribbon graph with exactly one boundary component is called a quasi-tree. Given
a connected ribbon graph G, the number of spanning ribbon subgraphs of G that are
quasi-trees is denoted by x(G). The first observation is that every spanning tree of the
abstract graph of G is a quasi-tree. That quasi-trees play the same role for ribbon graphs
as trees for abstract graphs is described in [10, 11].

2.2 Partial duality

For this subsection, we follow [9, 10]. Let G be a ribbon graph with vertices V', edges E,
and f boundary components. The geometric dual G* of G is constructed from ¥(G) by
deleting the interior of the disks in V. The new vertices are the f disks used to cap each
hole in G. Notice that the edges of G* and G are identical. The only change is which arcs
on their boundaries do and do not intersect vertices.

Let G = (V, E) be a ribbon graph and A C E a subset of edges. The partial dual G*
of G is obtained in the following way. Consider the spanning ribbon subgraph H = (V| A).
Now, take G and glue a disk onto each boundary component of H; these disks are the
vertices of GA. Removing the interior of all old vertices of G we get G4. Its edges are
the same as in G. Vertices of G not incident with edges in A together with edges not in
A will stay the same; only the intersections of the edges from A to vertices are changed.
An example is shown in Figure 1.

Some of the basic properties of partial duality enunciated in [9] are the following:

o (GMY = G**Y, where AAA’ is the symmetric difference of the sets;
e partial duality preserves the orientability of ribbon graphs;
e partial duality preserves the number of connected components of ribbon graphs.

Observe that the first result in the list implies that partial duality can be computed edge
by edge.
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Figure 1: On the left, a ribbon graph G with a subset of edges A in red; the second from
the left is the graph G with the boundary components of H = (V, A) capped with a disc;
the second from the right is the ribbon graph obtained after deleting the original vertices
of G; on the right, the graph G.

In graph theory, deletion and contraction of edges are two of the most fundamental
operations. In ribbon graph theory, there are three fundamental operations: contraction,
deletion and partial duality. Given a ribbon graph G = (V, E), and e € E, the deletion of
ein G is G\ e=(V, E\ €). The contraction of e in G is G1*} \ e. Table 1 shows the three
operation G \ e, G/e and G1* for a ribbon graph G and an edge e that can be a loop or
a non-loop.

A ribbon graph with exactly one vertex is called a bouquet and denoted by B. If
G = (V,E) is a connected ribbon graph, it always contains a spanning quasi-tree T =
(V, A) as a subgraph, for example the ribbon subgraph corresponding to a spanning tree
of the abstract graph G. The partial dual G* is a bouquet. One of the fundamental
relations between G and G# is that both have the same number of quasi-trees, see [10,
Theorem 5.1].

A natural operation on bouquets is the one-point join. Here the definition is taken
from [13]. For a pair of bouquets By and B, the one-point join is obtained by identifying
an arc on the vertex of B; with an arc on the vertex of Bo. The two arcs that are identified
should not intersect any edges. Notice that the new ribbon graph is also a bouquet. It
is not difficult to show that a quasi-tree in a one-point join of B; and B, is the union of
edges of a quasi-tree of B; and a quasi-tree of Bs.

G G\e G/e Glet

non-loop i}:& i) @< %iﬁ
loop %iﬁ 9 @& | 99—

Table 1: The results of the operations G \ e, G/e and G} for a ribbon graph G and an
edge e that can be a loop or a non-loop.
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2.3 Chord diagrams and circle graphs

Because a ribbon graph is an abstract two-dimensional surface with boundary, its embed-
ding into 3-space is not relevant for counting spanning quasi-trees. Thus, in the case of a
bouquet, the cyclic order of the intersections of the only vertex and the edges determines
the number of spanning quasi-trees, as explained below.

Recall that a chord diagram D consists of 2n cyclically ordered points in a circle
together with n straight line segments, called chords, that join pairwise disjoint pairs
{a;,b;}, 1 < i < n. Two chords intersect if they do so as line segments, equivalently, if
the four endpoints of the chord interlace. The intersection graph of the chord diagram is
denoted by G(D), and graphs obtained in this way are called circle graphs.

Thus, each bouquet B = ({vg}, ) with n edges has an associated chord diagram D(B)
obtained by first labeling the intersections of the edges with vy using the labels 1,...,2n
in a cyclic order proceeding clockwise around vy, and then constructing a chord diagram
with points 1,...,2n in which a and b are joined by a chord if they are the labels of the
two intersections of some edge of B with vy.

2.4 Counting quasi-trees in ribbon graphs

The following matrix A(D) of the chord diagram D = {{a;,b;} : 1 < i < n}, was defined
in [5], and it is a signing of the adjacency matrix of G(D). First, choose an arbitrary
ordered pair (a,b) or (b,a) for each chord {a,b}. The entry A, ; is zero if i = j or the
chords (a;, b;) and (a;, b;) do not intersect. For i < j, entry A, ; is 1 if the chords intersect
and the endpoints in the corresponding ordered pairs are in cyclic order a;, a;, b;, b;, and
—1 if the cyclic order is a;, bj, b;, a;. For j <1, Ai,j = —Ajﬂ'.

Notice that although there is a unique chord diagram D associated with a bouquet B,
the matrix A(D) is not uniquely determined by the chord diagram. If (a;, b;) is exchanged
by (b;, a;), the diagram D does not change, but the matrix does.

The matrix A(D) is sometimes called the intersection matriz, see [22]. Observe that
A(D) and any of its principal submatrices are (0,1,—1) skew-symmetric matrices. It is a
classical result from the 1800’s that for any skew-symmetric matrix B, det(B) = (pf(B))>.
The invariant pf(B) is called the Pfaffian of B. Recall that a unimodular matrix is
a matrix of determinant 1 or —1. A principal unimodular matrix is such that every
nonsingular principal submatrix is unimodular. It was proved by Bouchet in [5] that
A(D) is principal unimodular. Thus, any principal submatrix of A(D) has determinant 0
or 1. More important for us is the following result obtained in many different contexts by
different authors [5, 22, 23, 24].

Theorem 2. Given a bouquet B with n edges, the number of quasi-trees of B equals
det(I,, + A(D(B))).

That det(I,, + A(D(B))) does not change if a and b are interchanged in the ordered
pair (a,b) was implicitly proved in [27], and explicitly in [5]. To reduce notation, we write
A(B) for A(D(B)) when the chord diagram of B is clear from the context.
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Figure 2: The bouquet Ws. Figure 3: The bouquet Fg.

3 Counting quasi-trees in fans and wheels

The families of ribbon graphs we are interested in are described using bouquets. In turn,
each bouquet is described by a chord diagram. However, the reader may find circle graphs
a better description.

3.1 Fans

The first family of ribbon graphs are the bouquets {IF, }, where the (ordered pairs of the)
chord diagram D(FF,,) consists of the pairs {(1,3),(2,5),(4,7),...,(2n—4,2n— 1), (2n —
2,2n)}. Figure 3 shows the bouquet Fg. The corresponding circle graphs are the n-paths.
The matrix A(F,) is

0 1 o --- 0 0
—1 0 1 o --- 0
S S (1)
0 -~ 0 -1 0 1
0 o --- 0 -1 0

The number of quasi-trees is given by the value of the determinant of the tridiagonal
matrix A(F, )+ I,. Starting with Fy, the first values are 2, 3,5,8,13,21,34,55,89, 144, .. ..
The following is a well-known result, see [35].

Theorem 3 (Strang). The determinant of the tridiagonal matriz A(F,) + I, equals the
(n+1)-th Fibonacci number fp1.

Corollary 4. The number of quasi-trees of F,, equals the (n+1)-th Fibonacci number f, 1.

3.1.1 Combinatorial interpretations

Given an n X n matrix A, let us define Fy(A) as the sum of its principal minors of size
k > 0, and Ey(A) = 1. The following formula for the characteristic polynomial of A is
well-known, see [18].

det(tl, — A) = Eo(A)t" — By (A)t" ' + .-+ (=1)"E,(A). (2)
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Also, elementary linear algebra shows that a skew-symmetric matrix A of odd order is
singular. It follows from subsection 2.4 that, det(/,,+A(B)) equals the number of principal
submatrices of even size of A(B) that are non-singular. Notice that the empty matrix
corresponds to a principal submatrix of size 0 and represents the intersection matrix of
the bouquet with no edges.

A proof using ribbon graphs of a well-known combinatorial interpretation of the Fi-
bonacci numbers is given.

Theorem 5. The (n+1)-th Fibonacci number equals the number of perfect matchings in
Py, x Pn'

Proof. A perfect matching M in P, x P, is uniquely defined by the wvertically matched
vertices, that is the (possibly empty) subset of vertices {(1,4;)|1 < i; < n} that are
matched with the corresponding neighboring vertices {(2,¢;) |1 < ¢; < n}. Observe that
the number of interior vertices in the unique alternating path with respect to M between
the vertically matched vertices (1,4;) and (1,%;41) is even.

Recall that the matrix A(FFy) is non-singular if and only if & is even. Then, a principal
submatrix of A(TF,) is non-singular if and only if it is the intersection matrix of a ribbon
subgraph H = ({vo}, F) that is a one-point join of ribbon subgraphs of the form Fy;, with
k> 0.

Given a matching M in P, x P,, we delete the i; chord of D(IF,) for each vertically
matched vertex (1,4;) to obtain a ribbon subgraph H(M) of F,. From the discussion
above, this construction defines a bijection between matchings of P, x P, and non-singular
principal submatrix of A(FF,,). Now, the result follows from Theorem 3. O]

The Fibonacci polynomial is defined as fi(z) = 1, fo(z) = 2 and f,.1(z) = zfu.(x) +
fn_1(x). The first few polynomials are: f3(z) = 2*+1, fi(z) = 2®+2x, f5(z) = 2*+32%+1
and fg(z) = 2° 4+ 42 + 3z. The following results appears in [19].

Theorem 6. The characteristic polynomial of the matriz A(F,,) equals (n+1)-th Fibonacci
polynomial.

Proof. The result follows by expanding det(tl, — A) along the first column to get the
same recurrence relation as the Fibonacci polynomials. O]

3.1.2 Ribbon graph theory proof

Alternative proof of Corollary 4. For F,, let B, be the set of chords with an odd label.
Then, it is easy to see that if n = 2k+1, k > 0, the partial dual F?° is just the (embedding
in the sphere of the) fan graph Fi.;. An example is shown in Figure 4. If n = 2k + 2,
k > 0, the partial dual F? is the (embedding in the sphere of the) graph F,jH. Now, the
result follows from the classical result in [16]. O
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Figure 4: On the left of the figure, the bouquet F5 with B, the three edges crossing the
vertex vg; and on the right, the partial dual IF5B°.

3.2 Wheels

The second family of ribbon graphs is the set {W,, } of bouquets. The (ordered pairs of the)
chord diagram D(W,,) consists of the pairs {(1,4), (3,6), (5,8),...,(2n—3,2n), (2n—1,2)}.
Figure 2 shows the bouquet W;. The corresponding circle graphs are the n-cycles. The
matrix A(W,) is

0O 1 O 0 -1
-1 0 1 O 0
0 0 -1 0 1
1 0 0 -1 0

The number of quasi-trees is given by the determinant of the matrix A(W) + I,,, that
is the circulant matrix of the vector (1,1,0,...,0,—1). Starting with W3, the first values
are 4,5,11,16,29,45,76,121,199, 320, .... These are the first terms in the sequence of

associated Mersenne numbers {a,, }.

Theorem 7. The number of quasi-trees of W,, equals the n-th associated Mersenne num-
ber a,,.

Proof. Let n > 3 be an integer. We will prove the case for n = 2k +1. Let A(W,,)+ I, be
the matrix B = (b;;). Let us denote by BJi, j] the submatrix of B obtained by deleting
column ¢ and row j. First, we expand the determinant of B along the first column. The
submatrix B[1,1] is the matrix A(F,_;) + I,_1 whose determinant equals for11 by the
previous subsection. Now, we expand the determinant of the submatrix B[1,2] = B’
along the first row, which has a 1 at the first entry and a —1 at the last entry. The
submatrix B’[1,1] is the matrix A(FF,,_2)+ I,,_o and the submatrix B'[n—1, 1] is an upper
triangular matrix with all the entries at the diagonal equal to —1. We also expand the
submatrix B[l,n] = B” along the first row, which has a 1 at the first entry and a —1 at
the last entry. The submatrix B”[1,1] is a lower triangular matrix with all entries at the
diagonal equal to 1. The submatrix B”[n — 1, 1] is the matrix A(F,,_2) + I,,_. Thus, the
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determinant of B is the sum of the determinant of these matrices.

det B = fopr1 + (for + (=1)" ) + (1 + for)
= foryo + for + 14+ (=1)"
= loy1
= a,

The case for n even is similar. O

The initial values of the sequence {a, } suggest that a2 is a square. This is true and
it follows from the known relation among Lucas numbers that loy = [2 + (—1)F~12.

3.2.1 Combinatorial interpretations

A combinatorial interpretation of the Mersenne numbers is given in [8]. Let N, be the
number of arrangements of black and white beads on a necklace with a total of n beads
satisfying the following: there is at least one black bead; between any two black beads
the number of white beads is even; rotations and flipping of the necklace are considered
distinct.

Theorem 8 (Butler). The value a,, equals N,,.

Alternative proof of Theorem 8. Notice that det(A(W,)) = 0 for n > 1. Also, any
proper principal submatrix corresponds to the intersection matrix of a ribbon subgraph
H = ({v}, £) that is a one-point join of ribbon subgraphs of the form Fj. Thus, the
determinant of A(W,,) + I,, equals the number of ribbon subgraphs of W,, that are the
one-point join of ribbon graphs of the form [Fy.

The bijection between the necklaces of the statement with our quasi-trees is now
obvious. The chords not present in the quasi-tree are black beads and the chords present
are white beads. [

From the previous theorem it is easy to get the following combinatorial interpretation
for the associated Mersenne numbers.

Theorem 9. The n-th associated Mersenne number a,, and the number of perfect match-
ngs in Py, x C,,, m,, are related by the equation

m, = a, +2+ (—1)"2.

Proof. From the first proof of Theorem 5, it follows that almost any perfect matching
M in P, x C, is uniquely defined by the vertically matched vertices, that is, the subset
of vertices {(1,4;)|1 < i; < n} that are matched with the corresponding neighboring
vertices {(2,4;) |1 <1i; < n}. The only perfect matchings that are missing are the perfect
matchings of P, x €}, when n is even with no vertically matched vertices. There are 4 of
these. The proof continues using the alternative proof of Theorem 8. O
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The Lucas polynomials are defined by the recurrence relation ly(z) = 2, [1(z) = x and
lni1(x) = zl,(z) + 1,1 (x). The first few polynomials are: ly(x) = 2%+ 2, I3(x) = 2° + 3z,
l4(x) = a* + 42% + 2, I5(x) = 2° + 5a® + 5z and lg(z) = 2° + 62* + 922 + 2.

Theorem 10. The characteristic polynomial of the matriz A(W,,) equals the polynomial
ln(z) —1—(=1)".

Proof. The independence polynomial of a graph G is the generating function of the num-
bers of independent sets of GG by size, while the matching polynomial of G is the generating
function of the numbers of matchings of G by size. In [7], using the result in [3], it is
proved that the independence polynomial of C,, equals [(x). Clearly, the independence
polynomial of C,, equals the matching polynomial of C,,.

Almost any perfect matching M in P, x C), corresponds to a unique k-matching of C,,.
The only perfect matchings that are missing are the perfect matchings of P, x C),, when
n = 2p and have no vertically matched vertices. There are exactly 4 such matchings,
corresponding to the 2 perfect matchings of C),.

By the alternative proof of Theorem 8, each k-matching of C,, corresponds to a quasi-
tree of W,, with k edges, except for the 2 perfect matchings of C, when n is even. The
coefficient Ej in Equation 2 equals the number of quasi-trees of W,, with k edges. Thus,
except for the constant term, the matching polynomial of (), and the characteristic poly-
nomial of A(W,,) have the same coefficients. O

3.2.2 Ribbon graph theory proof

Alternative proof of Theorem 7. For W,,, let B, be the set of chords with an odd label.
Then, if n = 2k, k > 2, the partial dual W5 is just the (embedding in the sphere
of the) wheel graph Wj. The reader may find the construction easy to understand by
looking at Figure 4 as Wg and F5 differ by only one edge. If n = 2k + 1, k > 1, let
B! be the set of chords with an even label. The partial dual W2o does not correspond
to a graph embedded in the sphere, but rather to a graph embedded in the torus. The
embedded graph is obtained from embedding F}, in a disk in the torus and then adding
an edge between the hub vertex and each of the minimum degree vertices in the rim (thus
creating two parallel edges) in such a way that we obtain a 2-cellular embedding of the
graph in the torus. Notice that if £ = 1, we add two edges between the hub and the vertex
in the rim. We will denote this ribbon graph as W!. An example of the embedding is
given in Figure 5.

The proof uses contraction and deletion in ribbon graphs. For n even, the graph is W,
embedded in the sphere. As deletion and contraction preserve the embedding, the proof
continues in the same manner as the proof by deletion and contraction in [16].

For n odd, let us choose an edge in W,, and label it e,. The corresponding chord
intersects two other chords. Let us label the associated edges e,_; and e;. Counting
the quasi-trees of W,, requires counting those that do not contain e, and those that do.
The first set of quasi-trees corresponds to the set of quasi-trees of W, \ e,,, which are
exactly those of F,,_;. The second set of quasi-trees corresponds to the set of quasi-trees
of W,,/e,. This ribbon graph is shown in the center of Figure 6. The argument continues
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Figure 5: The ribbon graph WY, embedded in the torus.

by using deletion and contraction in W, /e,,. The number of quasi-trees of W, /e, that
do not contain the edge e,,_; equals the number of quasi-trees of [F,,_3, as the edge e; is
in every quasi-tree. The number of quasi-trees that do contain the edge e,_; is the same
as the number of quasi-trees of the ribbon graph W, /e, /e,_1 that is W,,_5. Thus,

k(W) = k(F,—1) + k(F,—3) + k(W,,_5)
= fn—l + fn—S + ap—2

- ln—l + ap_2
=a, ]

€n
€n—1 €1 €n—1 €1
/en Jen/€x
—_— —_—

Figure 6: The graph on the left is W;, the graph on the center is W;/e,, and the graph
on the right is Wy /e, /e,_1.

4 The critical group for fans and wheels

For an abstract graph G on n + 1 vertices and a special vertex ¢, the classical critical
group is the abelian group K(G) = Z" /7" LY(G), where Z"L9(G) is the integer row-span
of the reduced Laplacian of G. The group does not depend on the choice of ¢q. For more
on the classical critical group of a graph see [20].

Let G = (V, E) be a ribbon graph with n edges, T = (V,T) a quasi-tree of G, and
B the bouquet G*. Then, in [24], it is proved that the group Z"/{I, + A(B)) does not
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depend on the choice of T or the selection of the ordered pairs for each chord in D(B).
The group obtained in this manner is called the critical group of the ribbon graph G and
is denoted by K (G). Also in [24], it is proven that any partial dual G of G has a critical
group isomorphic to the critical group of G.

Let B be a bouquet with n edges. If we regard the rows of Y = I, + A(B), as elements
of the free Z-module Z", the quotient module Z™/(Y), called the cokernel of Y, satisfies

M YYZ2L T OL/WL S - L), L.

The integers b; are called the invariant factors and satisfy that b; divides ;11 for 1 < i <
r — 1. The invariant factors can be computed by the formula b, = d;/d;_1, where d; =
ged{det(B) : Bis aiximinor of Y} and dy = 1. The subgroup K = Z/0/Z&---SZ/b,Z
is called the torsion subgroup. Notice that when Y is nonsingular, n —r = 0 and Z"/(Y")
is the finite abelian group K. Also, if K is not trivial and the first ¢ invariant factors are
equal to 1, then K =2 Z/b; 1 Z & --- & Z/b,Z. All these results can be consulted in the
beautiful exposition rendered in [34].
Computing the critical groups of fans is easy. We have the following:

>~

Theorem 11. The critical group of the fan ribbon graph ¥, is cyclic and K(F,)
Z/fn—i-lZ-

Proof. The (n—1) x (n— 1) submatrix obtained by deleting the first column and last row
of A(F,) + I,, has determinant 1. Then, d,_; = 1 and b,_; = 1. Thus, as by|bs| - - - |b,_1,
the group is cyclic and the result follows directly from Theorem 3. O]

This theorem is not surprising. As mentioned above, Fa,,; has a partial dual F5e
which is the (embedding in the sphere of the) fan graph Fjy,1. It was proved in [24] that
the critical group of a plane ribbon graph is isomorphic to the classical critical group of
the corresponding abstract graph. The critical group of the fan graph F,, is known to be
Z] fon, see [21].

Computing the critical group of W,, is not so straightforward. We can proceed as
above and notice that the (n — 2) X (n — 2) submatrix obtained by deleting the first
and last columns and the last two rows of I,, + A(W,,) has determinant 1. Thus, the
critical group of W,, has at most two generators. However, the explicit structure of
K(W,) is not so easy. The first groups are K(W3) = Z/27 & Z/27Z, K(W,) = Z/5Z,
K(Ws5) =2/11Z, K(Wg) = Z/AZ & 7./AZ, K(W;) = Z/29Z, K(Wg) = Z/37 & 7Z/15Z,
KWy) = Z/27 & 7./38%, K(Wo) = Z/11Z & Z/11Z. The heavy lifting was already
made in [2, Section 4] for, what turns out to be, an isomorphic group studied in a different
setting.

Theorem 12. The critical group of the wheel ribbon graph W,, is given by the following

ETPression.
KW,) =2 Z/a,Z &L/ (an/om)Z,

where oy, = ged{ fn, fu_1 — 1}.
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Proof. By moving the last row to the first row, we obtain the circulant matrix of the vector
(—=1,1,1,0,...,0). Therefore, the critical group of W,, has presentation (x1,...,x,|z; =
Tit1+ Tiya), where the subscripts are interpreted modulo n. The result now follows from
the work in [2]. O

4.1 The Eulerian digraph group of fans and wheels

Given a chord diagram D(B) with n chords, construct the following 2-in, 2-out Eulerian
digraph é(]B) First, consider the oriented cycle with vertices {1,2,...,2n} and arcs
{(,i4+1) : 1 <i<2n—1}U{(2n,1)}. Now, take the Eulerian digraph obtained by
identifying the vertices a; and b;, 1 < ¢ < n, corresponding to the chords in D(B). It
is implicitly proven in [6] that the number of Eulerian circuits in G(B) is equal to the
number of quasi-trees of B. Thus, we have the following theorem, also mention in [22, 23].

Theorem 13. The number of Eulerian circuits in G(B) is equal to det(A(B) + I,,).

The BEST theorem [1] implies that in a 2-regular connected digraph the number of
Eulerian circuits equals the number of arborescences, that is the number of rooted trees
at a fixed vertex ¢. This number is independent of the vertex ¢. The matrix-tree theorem
for digraphs and the previous comment imply that the number of arborescences equals
the common value of all the cofactors of the Laplacian matrix L(G) = 21, — A(G(B)),
where A(G(B)) is the adjacency matrix of the digraph G(B), see [33]

For the ribbon graph F,,, the matrix L(F,) is

2 -1 -1 --- 0 0
-1 2 0 -1 - 0

o ;
0 -1 2 0 -1 )
0 0 -1 2 -1

-1 0 0 -1 2

For the ribbon graph W, the matrix L(W,) = 2I,, — A(G(W,,)) is the circulant matrix
of the vector (2,0,—1,0,...,0,—1).

Proposition 14. The value of any cofactor of the matriz L(F,) equals the (n+1)-th Fi-
bonacci number. The value of any cofactor of L(W,,) equals the n-th associated Mersenne
number.

Let G = (V, F) be aribbon graph with n edges, T = (V,T') a quasi-tree of G, and B the
bouquet G*. The digraph Cj(IB%), and L(B), does not depend on T as it is shown in a more
general context in [13]. In [24], the torsion subgroup of the group K(G) = Z"/(L(B))
is proven to be isomorphic to K(G). We will call the group K(G) the Eulerian digraph
group of G and prove directly the corresponding results for fans and wheels.

Theorem 15. The Eulerian digraph group of the fan ribbon graph F, is K(F,) = 7 @
K(F,).
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Proof. We know that the group K (IF,) is the cyclic group Z/ f,+1Z. The determinant of
the matrix L(IF,,) is 0. The determinant of any (n—1) x (n—1) submatrix of L(FF,,) equals
fnt1 by Theorem 3 and Theorem 13. The determinant of the (n —2) x (n — 2) submatrix
obtained by deleting the first two columns and the last two rows of L(F,,) has determinant
1. Thus, d,, =0, d,, 1 = fny1 and d,,_o = 1. We conclude that the (torsion-free) rank is
1 and the torsion subgroup is cyclic of order f, 1. O]

Theorem 16. The Eulerian digraph group of the fan ribbon graph W, is K(W,) =
Z®KW,).

Proof. The determinant of the matrix L(W,,) is 0. The determinant of any (n—1) x (n—1)
submatrix of L(W,,) equals a,, by Theorem 7 and Theorem 13. The determinant of the
(n —3) x (n — 3) submatrix obtained by deleting the first three columns and first row and
last two rows of L(W,,) is (—=1)""3. Thus, d, =0, d,_1 = a, and d,,_3 = 1. We conclude
that the (torsion-free) rank is 1 and the torsion subgroup has order a,, and has at most
two generators.

Now, we show that the group K(W,) is a subgroup of K(W,), thus, proving the
assertion of the theorem as the order of K(W,) is a,. Recall that the matrix A(W,,) + I,
gives us a presentation (z1,..., o, | T; = T;41 + T;12), where the subscripts are interpreted
modulo n. From this set of relations we get a new set of relations: x; = x; 1+ ;1 0=2;10+
Tir3+Xir0= 2%, 0+x;13. Thus, we get 2x; = x;_o—x;,1. We get the same set of relations
from the matrix L(W,,) by first multiplying each odd row and odd column by —1. The
effect of these is to change the sign of the entries in the off-diagonal below the main
diagonal of the matrix L(W,). Second, make the change of variables y; = x,,1_;. Thus,
the image of A(W,,) + I, has a subspace isomorphic to the image of L(W,). We conclude
that the cokernel Z"/(L(W,)) contains as a subgroup the cokernel Z"/(A(W,,) + I,,) =
K(W,). O

5 Conclusion

The paper relates the Fibonacci and associated Mersenne numbers with the number of
quasi-trees of two families of ribbon graphs. This relation gives combinatorial interpreta-
tions for these well-known sequences of numbers. Two families of abelian groups whose
order are the Fibonacci and associated Mersenne numbers are also obtained.

Some of these results are well-known, but our approach is novel in using ribbon graphs.
Also, this approach provides a neat interpretation of Fibonacci and associated Mersenne
numbers as enumerations of substructures in symmetric structures.

Finding the Lucas numbers as the number of quasi-trees of a family of ribbon graphs is
a question that was not pursued in this paper. However, it seems like a natural question.
It is worth noticing that ribbon graphs give rise to a class of delta-matroids. Matroids
are a particular type of delta matroid. Thus, an even more general answer for all three
sequences might lie in the world of delta-matroids.
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