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Abstract

Let G be a finite abelian group. The Davenport constant D(G) is the maximal
length of minimal zero-sum sequences over G. For groups of the form Cr−1

2 ⊕ C2k

the Davenport constant is known for r 6 5. In this paper, we get the precise value
of D(C5

2 ⊕C2k) for k > 149. It is also worth pointing out that our result can imply
the precise value of D(C4

2 ⊕ C2k).

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Let G be an additively written finite abelian group. A sequence α over G is a multi-set
with elements from G, i.e., α = g1 · · · g`, where the repetition of elements are allowed
and their order are disregarded. The number ` is called the length of α, also denoted by
|α| sometimes. In particular ` = 0 when α is empty. One can also write a sequence as
α =

∏
g∈G g

vg(α), where vg(α) ∈ Z>0 is called the multiplicity of g in α. A sequence T is
called a subsequence of α if vg(T ) 6 vg(α) for every g ∈ G, and T is a proper subsequence
of α if vg(T ) < vg(α) for at least one g. Althrough this paper, when we refer to sequences
or subsequences, we always mean nonempty ones unless otherwise stated. A zero-sum
sequence is a sequence such that the sum of all its elements is equal to the zero element
of G. A minimal zero-sum sequence is a zero-sum sequence over G such that none of its
proper subsequences is zero-sum. The Davenport constant of G is defined as the maximal
length of all minimal zero-sum sequences over G, denoted by D(G).

In general it is a hard problem to determine this constant D(G), so far its actual value
is only known for a few types of groups. For a finite abelian group G, we have |G| = 1 or
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G = Cn1 ⊕ Cn2 · · · ⊕ Cnr with 1 < n1|n2 · · · |nr. Set

D∗(G) := 1 +
r∑
i=1

(ni − 1).

It is known that D(G) > D∗(G) for all finite abelian groups G, and the equality happens if
G is a p-group or G is of rank one or two. Also the equality D(G) = D∗(G) is conjectured
to be true for groups G of rank three or G = Cr

n (see, e.g.,[4] Conjecture 3.5). For more
results, one can refer [1, 2, 5, 6]. In particular, van Emde Boas [1] proved the following
result:

Lemma 1 ([1]). Let p be a prime and m, n be positive integers. If G = Cmpn ⊕H with
H being a finite abelian p-group and pn > D∗(H), then D(G) = D∗(G).

It is interesting to study the Davenport constant for the case pn < D∗(H) in the
above lemma. Hence, the groups of the form G = Cr−1

2 ⊕C2k draws much attention. For
sufficiently large r, A. Plagne and W. Schmid [9] got an upper bound of D(G). For r 6 4,
it is known that D(G) = D∗(G). For r = 5 and k > 70, F. Chen and S. Savchev [11]
proved that D(G) = D∗(G) + 1 if k is odd, otherwise, D(G) = D∗(G). Actually for r > 5
and k odd it is known that D(G) > D∗(G), and a lower bound for the gap between these
two constants is given in [8], (see also [3, 7]). In [10], W. Schmid also studied the inverse
problem of D(G) for r = 3. In this paper, we determine the precise value of D(C5

2 ⊕ C2k)
for k > 149.

Theorem 2. For each k > 149, the Davenport constant of the group C5
2 ⊕ C2k is

D(C5
2 ⊕ C2k) =

{
2k + 5 = D∗(C5

2 ⊕ C2k), if k is even.

2k + 6 = D∗(C5
2 ⊕ C2k) + 1, if k is odd.

In [11], the authors mainly research the structure of long minimal zero-sum sequences
over Cr−1

2 ⊕ C2k with k > d3r−1
r+1

(2r − 1)e − r + 2 (the condition imposed on k occurs in
section 5 of [11]). In this paper, we improve their method and have the same condition
imposed on k. Besides, most of the proofs that follow require k to be relatively large as
compared to r: the modest k > 2r2 suffices for the purpose. Fix

k0 = max{2r2, d3r − 1

r + 1
(2r − 1)e − r + 2}

and let k > k0. To prove Theorem 2, we need the following result which is of general
interest for the study of Davenport’s constant of groups of the form Cr−1

2 ⊕ C2k.

Theorem 3. Let G = Cr−1
2 ⊕C2k with k > k0 and let α be a minimal zero-sum sequence

of length D(G). If D(G) > D∗(G) and there exists a unit block U |α with d(U) > r − 3,
then k is odd.
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Remark: For a unit block and d(U) in Theorem 3, one can see Definition 7 and the
definition of Defect in section 2, respectivrly.

For determining the precise value of D(C5
2 ⊕ C2k), we suppose D(G) > D∗(G) and let

α be a minimal zero-sum sequence of length D(G) over G, where G = D(Cr−1
2 ⊕C2k) with

r > 6. In section 2, we improve Chen’s result “2 6 d(WF ) 6 r − 2” to “3 6 d(WF ) 6
r− 2”. In section 3, we prove that if d(WF ) = r− 2 or r− 3, then k is odd, i.e., Theorem
3. Besides, we completely characterize the structure of α with d(WF ) = r − 2 or r − 3.
In section 4, let r = 6, and then we have r − 3 = 3 6 d(WF ) 6 r − 2, i.e., k is odd by
Theorem 3. Hence, we have D(C5

2 ⊕C2k) = D∗(C5
2 ⊕C2k) for k even. By the structure of

α with d(WF ) = r− 2 or r− 3, we can easily prove that D(C5
2 ⊕C2k) 6 D∗(C5

2 ⊕C2k) + 1
for k odd. It has been known that D(Cr−1

2 ⊕ C2k) > D∗(Cr−1
2 ⊕ C2k) + 1 for k odd and

r > 5. The proof is complete.

2 Preliminaries

Let
α = g1 · · · · · g` =

∏
g∈G

gvg(α)

be a sequence over G. Denote by Supp(α) = {g : vg(α) > 1}. The sum and the sumset of
a sequence α are denoted by σ(α) and

∑
(α) respectively. For a subsequence β of α we say

that α is divisible by β or β divides α, and write β|α. The complementary subsequence of
β is denoted by αβ−1. For subsequences β, γ of α, if their union βγ is still a subsequence
of α, then we say that β, γ are disjoint subsequences of α, and call βγ the product of β, γ.

Let a sequence α be the product of its disjoint subsequences α1, . . . , αm. We say that
the αi’s form a decomposition of α with factors α1, . . . , αm and write α =

∏m
i=1 αi. Quite

often we study the sequence with terms σ(α1), . . . , σ(αm). For convenience of speech it
is also said to be a decomposition of α with factors α1, . . . , αm; sometimes we call terms
α1, . . . , αm themselves.

Let H be a subgroup of G. Each sequence over G with sum in H is called an H-block.
For a sequence that is an H-block, an H-decomposition of the sequence is a decomposition
whose factors are H-blocks. An H-block is minimal if its projection onto the factor
group G/H under the natural homomorphism is a minimal zero-sum sequence. An H-
decomposition whose factors are minimal H-blocks is called an H-factorization.

Let G = Cr−1
2 ⊕ C2k and a ∈ G be an element of order 2k. We consider the subgroup

〈a〉 of G. For convenience, “〈a〉-block”, “〈a〉-decomposition” and “〈a〉-factorization” are
usually abbreviated to “block”, “decomposition”, “factorization”. However
decomposition also keeps its general meaning, a partition of a sequence into arbitrary
disjoint subsequences. The context excludes ambiguity. Denote by t the coset t + 〈a〉,
and u ∼ v if u = v. For a sequence γ =

∏
ti over G, denote by γ the sequence

∏
ti over

G/〈a〉, and 〈γ〉 the subgroup of G/〈a〉 generated by all terms γ. For any 〈a〉-block B,
there exists a unique x ∈ [1, 2k] such that σ(B) = xa. Write xa(B) := x. Let α be a
minimal zero-sum sequence and α =

∏n
i=1Bi be a 〈a〉-decomposition of α. We call {a} a

basis of
∏n

i=1Bi if
∑n

i=1 xa(Bi) = 2k. We have the following important proposition.
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Proposition 4 ([11], Proposition 4.1). Let G = Cr−1
2 ⊕ C2k where r > 2, and let α be a

minimal zero-sum sequence over G with length |α| > k + d3r−1
r+1

(2r − 1)e+ 1. There exists
an order-2k term a of α with the following properties:

(i) Every 〈a〉-decomposition of α has basis {a}.
(ii) If B|α is a minimal 〈a〉-block, then 0 < xa(B) < k.
(iii) If B|α is a 〈a〉-block and B = B1 · · ·Bm is a 〈a〉-decomposition of B, then xa(B) =

xa(B1) + · · ·+ xa(Bm).
(iv) If α = B1 · · ·Bm is a 〈a〉-factorization of α, then xa(α) = 2k = xa(B1) + · · · +

xa(Bm) with each xa(Bi) ∈ (0, k).
(v) Every 〈a〉-block B|α with xa(B) = 1 is minimal.

For the rest of the paper, we let α be a minimal zero-sum sequence of maximal
length in Cr−1

2 ⊕ C2k. Obviously α has Proposition 4. It follows since by
k > k0 = max{2r2, d3r−1

r+1
(2r − 1)e − r + 2} > d3r−1

r+1
(2r − 1)e − r + 2

|α| = D(G) > D∗(G) = 2k + r − 1 > k +
⌈3r − 1

r + 1
(2r − 1)

⌉
+ 1.

Fix an order 2k term a of α as Proposition 4 predicted. Recall two unconventional
notations from [11].

The DEFECT. For every 〈a〉-block B|α, define d(B) = |B| − xa(B) and call d(B)
the defect of B. As indicated in Proposition 4, the defect is additive: for each 〈a〉-
decomposition B =

∏m
i=1Bi of B one has d(B) =

∑m
i=1 d(Bi). In particular the entire α

is an 〈a〉-block with defect d(α) = |α| − xa(α) = |α| − 2k and |α| = 2k + d(α).
The δ-QUANTITY. Let B|α be a 〈a〉-block and X|B a proper subsequence. Then

X ′ = BX−1 is also proper; sometimes we say that B = XX ′ is a proper decomposition
of B. As σ(X) and σ(X ′) are in the same 〈a〉-coset, they differ by a multiple of a.
Hence there is a unique integer δB(X) ∈ [0, k] such that σ(X ′) = σ(X) + δB(X)a or
σ(X) = σ(X ′) + δB(X)a. This δB(X) is called δ-quantity of B = XX ′, and is denoted by
δ(X) for short.

If, e.g., σ(X ′) = σ(X) + δ(X)a, then σ(X) + σ(X ′) = xa(B)a leads to the relations
2σ(X ′) = (xa(B) + δ(X))a and 2σ(X) = (xa(B) − δ(X))a. As 2σ(X) ∈ 2G and 2a
generates 2G, we see that δ(X) and xa(B) are of the same parity. It follows that there is
an element e in the 〈a〉-coset σ(X) such that 2e = 0 and

{σ(X), σ(X ′)} =
{
e+

1

2
(xa(B)− δ(X))a, e+

1

2
(xa(B) + δ(X))a

}
.

Define the lower member X∗ of the decomposition B = XX ′ (of the pair X, X ′). Namely
let X∗ := X or X ′ according as σ(X) = e+ 1

2
(xa(B)− δ(X))a or σ(X ′) = e+ 1

2
(xa(B)−

δ(X))a. Thus σ(X∗) = e+ 1
2
(xa(Bi)− δ(Xi))a. Note that if δ(X) = 0, then either one of

X and X ′ can be taken as X∗.
For the two notions, we have the following frequently-used results.

Lemma 5 ([11], Corollary 5.3). Every 〈a〉-block in α has nonnegative defect.
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Lemma 6 ([11], Lemma 4.2). Let B1, . . . , Bm be disjoint blocks in α with
xa(B1) + · · · + xa(Bm) < k, and let Bi = XiX

′
i be proper decompositions, i = 1, . . . ,m,

such that
∑m

i=1 σ(Xi) = 0. Then
(i) The product of the lower members X∗1 , . . . , X

∗
m is a block dividing B1 · · ·Bm with

a-coordinate

xa(X
∗
1 · · ·X∗m) =

1

2

( m∑
i=1

xa(Bi)−
m∑
i=1

δ(Xi)
)
.

In addition
∑m

i=1 δ(Xi) 6
∑m

i=1 xa(Bi)− 2.

(ii) For each i = 1, . . . ,m there exists an element ei ∈ σ(Xi) such that 2ei = 0,

{σ(Xi), σ(X ′i)} =
{
ei +

1

2
(xa(Bi)− δ(Xi))a, ei +

1

2
(xa(Bi) + δ(Xi))a

}
,

and e1, . . . , em satisfy e1 + · · ·+ em = 0.

Definition 7. An (`, s)-block means a minimal 〈a〉-block B with length ` and sum sa with
` > s. That is d(B) > 0 is assumed. Obviously, ` 6 r. The phrase ”B is an (`, s)-block”
is shortened to ”B is (`, s)” whenever convenient. We write (∗, s)-block or (`, ∗)-block if
` or s is irrelevant. Furthermore a unit block is a product of (∗, 1)-blocks.

We have the following corollary from Lemma 6.

Corollary 8. Let U | α be a unit block, and B1, . . . , Bm be disjoint minimal blocks in αU−1

with positive defect such that xa(U) +
∑m

i=1 xa(Bi) < k. If there exist a decomposition
U = Y Y ′ and proper decompositions Bi = XiX

′
i(1 6 i 6 m) such that Y X1 · · ·Xm is an

〈a〉-block, then
∑m

i=1 δ(Xi) 6
∑m

i=1 xa(Bi)− 2.

Proof. If U = Y Y ′ is not proper, then Lemma 6 (i) completes our proof. Now suppose
that U = Y Y ′ is a proper decomposition. Let U = U1 · · ·Un be a decomposition of U
such that Ui is (∗, 1), and let Y = Y1 · · ·Yn be a decomposition of Y such that Yi | Ui.
Let U ′ be the product of the Ui’s such that Yi is neither empty nor equal to Ui. Without
loss of generality, suppose U ′ = U1 · · ·Un′ for some n′ 6 n. Then δ(Yi) > 1 for 1 6 i 6 n′

since δ(Yi) shares the same parity with xa(Ui). By Lemma 6 (i), we deduce that

n′ +
m∑
i=1

δ(Xi) 6
n′∑
i=1

δ(Yi) +
m∑
i=1

δ(Xi) 6 n′ +
m∑
i=1

xa(Bi)− 2.

That is
∑m

i=1 δ(Xi) 6
∑m

i=1 xa(Bi)− 2.

For circumstances it is convenient to introduce the following notation. For any sequence
X, there exist an element e ∈ σ(X) of order 2 and a unique integer in (−k−1

2
, k+1

2
], denoted

by x′a(X), such that σ(X) = e+x′a(X)a. In particular x′a(b) is defined for b ∈ G by treating
b as a sequence of length one. Note that x′a(B) may not coincide with xa(B) if B is a
block. However xa(B) ≡ x′a(B) ≡

∑
b|B x

′
a(b) mod k. In particular, if B = T1 · · ·T` is a
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decomposition with each x′a(Ti) ∈ [0, k+1
2

] and
∑`

i=1 x
′
a(Ti) 6 k+1

2
, then it is easy to see

that xa(B) =
∑`

i=1 x
′
a(Ti), which will be used repeatedly in this paper.

For minimal blocks B1, . . . , Bm of α and proper decompositions Bi = XiX
′
i satisfying

the hypothesis of Lemma 6 or Corollary 8, by
∑m

i=1 δ(Xi) 6
∑m

i=1 xa(Bi)−2 and xa(Bi) 6
|Bi| 6 r we obtain

(1− r)(m− 1)

2
+ 1 6

1

2

∑
i 6=j

(δ(Xi)− xa(Bi)) + 1 6
1

2
(xa(Bj)− δ(Xj))

6
1

2
(xa(Bj) + δ(Xj)) 6 xa(Bj)− 1 +

1

2

∑
i 6=j

(xa(Bi)− δ(Xi))

6r − 2 +
(r − 1)(m− 1)

2
.

When m is small such that r − 2 + (r−1)(m−1)
2

6 k+1
2

, then

1

2

∑
i 6=j

(δ(Xi)− xa(Bi)) + 1 6 x′a(Xj) 6 xa(Bj)− 1 +
1

2

∑
i 6=j

(xa(Bi)− δ(Xi)). (1)

In particular if m = 1, we get 1 6 x′a(X) 6 r − 2. This bound will be frequently used in
the next section.

The following lemma together with Proposition 4 (v) ensure that there are (∗, 1)-blocks
dividing α, hence there exist unit blocks dividing α. Actually, we may get that every term
of α which is not an element of 〈a〉 is contained in a (∗, 1)-block.

Lemma 9 ([11], Lemma 5.1). Let G be a finite abelian group and α a minimal zero-sum
sequence of maximum length over G. For each term t|α and each element g ∈ G there is
a subsequence of α that contains t and has sum g. In particular

∑
(α) = G.

Note that if
∑

(α) = G, then 〈α〉 = G. Some results concerning unit blocks dividing
α are given below.

Lemma 10 ([11], Lemma 4.8). For each unit block U |α, the subgroup 〈U〉 of G/〈a〉 has
rank d(U). Consequently d(U) 6 r − 1.

Lemma 11 ([11], Lemma 4.11). (i) Let U be a (l, 1)-block and B be a (m, 2)-block in α.
If U,B are disjoint blocks such that ū ∈ 〈B〉 for every term u|U , then the product UB is
divisible by a (∗, 1)-block V with d(V ) > d(U). Moreover if m > 5, then d(V ) > d(U) can
be strengthened to d(V ) > d(U) + 1.

(ii) Let U be a (l, 1)-block and B be a (m, 3)-block in α. If U,B are disjoint blocks
such that ū ∈ 〈B〉 for every term u|U , and UB is not divisible by a unit block V with
d(V ) > d(U), then l = 2 and UB is divisible by a (m, 2)-block.

Lemma 12 ([11], Corollary 4.12). Suppose that G has rank r > 5. Let U1, U2 be both
(2, 1)-blocks and B be a (r, 3)-block such that U1, U2, B are disjoint in α. Then the product
U1U2B is divisible by a unit block V with d(V ) > d(U1U2).
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Fix the notation WF for the product of all (∗, 1)-blocks in a factorization F of α. Let
d∗(α) = max{d(WF ) : F is a factorization of α}.

Definition 13. A factorization F of α is canonical if d(WF ) = d∗(α).

Lemma 14 ([11]). Let F be a canonical factorization of α. Then
(i) The complementary block αW−1

F of WF is not divisible by a unit block. More
generally let B1, . . . , Bm be blocks in F , and let d be the combined defect of the (∗, 1)-
blocks among them. Then the product B1 · · ·Bm is not divisible by a unit block V with
defect d(V ) > d.

(ii) 2 6 d(WF ) 6 r − 2 and d(αW−1
F ) > 2.

We can strengthen Lemma 14 (ii) if r > 4 and D(G) > D∗(G).

Lemma 15. Let r > 4 and D(G) > D∗(G). If α is a longest minimal zero-sum sequence
over G and F is a canonical factorization of α, then d(WF ) > 3.

Proof. Suppose to the contrary d(WF ) < 3. Then d(WF ) = 2 by Lemma 14 (ii). It follows
that every term of α which is not an element of 〈a〉 is a term of a (2, 1) or (3, 1)-block
dividing α. We show first that there is a (3, 1)-block dividing α. Let F be a canonical
factorization of α. Then either WF is (3, 1) or WF = UV where U, V are (2, 1)-blocks.
If WF is (3, 1), then we are done. For the latter case, there exist 〈a〉-cosets g1 + 〈a〉 and
g2 + 〈a〉 such that all terms of U and V are contained in g1 + 〈a〉 and g2 + 〈a〉 respectively.
Then for any term g of α with g 6∈ 〈g1, g2, a〉, there is a (∗, 1)-block U ′ containing g.
Obviously U ′ is not a (2, 1)-block, or else UV and U ′ are disjoint and d(UV U ′) = 3 > 2
which contradicts d(WF ) = 2. Hence U ′ is a (3, 1)-block. This proves the existence of a
(3, 1)-block.

Now let U = u1u2u
′
2 be a (3, 1)-block dividing α. Since r > 4 and

∑
(α) = G, there

is a term u3 of α with u3 6∈ 〈u1, u2, a〉. Let U1 | α be a (∗, 1)-block containing u3. Then
U1 is (3, 1), or else U1 is (2, 1) implying that U and U1 are disjoint and d(UU1) > 2, a
contradiction. Obviously U1 and U can not be disjoint. Then we must have | gcd(U,U1)| =
1. Without loss of generality, suppose gcd(U,U1) = u1. Write U1 = u1u3u

′
3. Similarly,

there exists u4 6∈ 〈u1, u2, u3, a〉 such that a (3, 1)-block U2 contains u4 and | gcd(U2, U)| =
| gcd(U2, U1)| = 1. It follows that gcd(U2, U) = u1, since otherwise gcd(U2, U1) is empty.
Continue this process we will find u1, . . . , ur−1 such that ui 6∈ 〈u1, . . . , ui−1, a〉 for all
2 6 i 6 r−1 and u1uiu

′
i are (3, 1)-blocks. Additionally we derive that vu1(α) = 1, and for

any term u 6∈ 〈u1, a〉, u can not be a term of a (2, 1)-block, instead there is a (3, 1)-block
u1uu

′ dividing α.
If there are two terms g1 and g2 belonging to the same 〈a〉-coset other than 〈a〉 and

u1 + 〈a〉, then g1g2 is an 〈a〉-block and g1g2 is not (2, 1), hence xa(g1g2) = 2. In particular,
if g 6∈ 〈u1, a〉 and vg(α) > 2, then g + g = 2a, and hence x′a(g) = 1.

Consider the following decomposition of α:

α = S0 · S1 · S2 · S ′2 · S3 (2)
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where S0 consists of terms of α that are elements of 〈a〉, S1 consists of terms of α that
are elements of u1 + 〈a〉, S2 =

∏r−1
i=2 ui, S

′
2 =

∏r−1
i=2 u

′
i and S3 = α(S0S1S2S

′
2)
−1.

For a term g of S0, we have g = a according to Lemma 5. So σ(S0) = |S0|a. Write
ui = ei + x′a(ui)a with 2ei = 0 for 1 6 i 6 r− 1. Then σ(S2S

′
2) = |S2|(e1 + (1− x′a(u1))a).

Since u1u2u
′
2 and u1u3u

′
3 are (3, 1)-blocks, V := u2u

′
2u3u

′
3 is an minimal 〈a〉-block with

d(V ) > 0. We have 2(1− x′a(u1)) ≡ xa(V ) = 2 or 4 mod 2k. So x′a(u1) = 0 or − 1 since
x′a(u1) ∈ (−k−1

2
, k+1

2
]. We distinguish the following two cases to complete our proof:

Case 1: x′a(u1) = 0. Claim that Supp(S3) ⊂ Supp(S2S
′
2). Assume to the contrary there

is a term u0 of S3 with u0 - S2S
′
2. Then there exists a term u′0 of S3 with u′0 - S2S

′
2 such that

u1u0u
′
0 is (3, 1). It is easy to see either u0 or u′0 is an element of 〈u2, . . . , ur−1, a〉. Without

loss of generality, suppose u0 ∈ 〈u2, . . . , ur−1, a〉. Then there must exist a minimal block
B | u0S2 containing u0. For any ui | B (0 6 i 6 r − 1), C := Bu−1i u1u

′
i is also a minimal

block with length |B| + 1 satisfying that xa(C) ≡ xa(B) + 1 − 2x′a(ui) mod 2k. So by
1 6 xa(C) 6 |B|+ 1 6 r we derive that 2−r

2
6 x′a(ui) 6

r−1
2

. Replacing ui | B by u′i for all
ui with 1 6 x′a(ui) 6

r−1
2

, we get a new sequence dividing α, which by abuse of notation,
is still denoted by B. Then B or Bu1 is a minimal block. Noting that − r−3

2
6 x′a(u

′
i) 6 0

if 1 6 x′a(ui) 6
r−1
2

, we have 2−r
2

6 x′a(b) 6 0 for each b | B. Thus

0 >
∑
b|B

x′a(b) > |B| ·
2− r

2
>

(2− r)(r − 1)

2
> −k − 1

2
.

If B is a minimal block, it follows from xa(B) ≡
∑

b|B x
′
a(B) mod k and Proposition 4 (ii)

that xa(B) > k
2
> r > |B|, which contradicts Lemma 5. By the same argument we derive

xa(Bu1) >
k
2
> r > |Bu1| if Bu1 is a minimal block, which also contradicts Lemma 5.

Thus the claim is true. So for every u0 | S3, vu0(α) > 2, and hence u0 ∈ a+ 〈e1, . . . , er−1〉.
We then derive that σ(S3) ∈ |S3|a+ 〈e1, . . . , er−1〉.

If |S1| = 1, i.e., S1 = u1 = e1, then 0 = σ(α) ∈ (|S0| + |S2| + |S3|)a + +〈e1, . . . , er−1〉,
which implies |S0| + |S2| + |S3| = 2k. From |α| = |S0| + |S1| + 2|S2| + |S3| > D∗(G), it
follows that |α| = 1 + |S2|+ 2k = r − 1 + 2k > D∗(G), a contradiction.

If |S1| > 2, then for any e1 + xa contained in S1 · e−11 , (e1 + xa) · e1 is a minimal
〈a〉-block, so x = 1 or 2 from Lemma 5.

If e1 + 2a | S1, then |S1| = 2, since otherwise there is a minimal block (e1 + 2a)(e1 +
xa) | S1 with x = 1 or 2, which contradicts Lemma 5. Thus σ(S1) = |S1|a. So 2k =
|S0| + |S1| + |S2| + |S3|. From |α| = |S0| + |S1| + 2|S2| + |S3| > D∗(G), it follows that
|α| = |S2|+ 2k = r − 2 + 2k > D∗(G), a contradiction.

If x = 1 for any e1 + xa contained in S1 \ {e1}, then 2k = |S0|+ |S1| − 1 + |S2|+ |S3|.
From |α| = |S0| + |S1| + 2|S2| + |S3| > D∗(G), it follows that
|α| = |S2| + 2k + 1 = r − 1 + 2k > D∗(G), a contradiction. This finishes the proof for
case 1.

Case 2: x′a(u1) = −1. Let u0 be a term of S3. If vu0(α) = 1, there exists u′0 | S3

such that u1u0u
′
0 is (3, 1), so u0 + u′0 = e1 + 2a. If vu0(α) > 2, by u0 6∈ 〈u1, a〉 we have

u0 ∈ a + 〈e1, . . . , er−1〉. Let S ′3 be products of pairs ss′ | S3 such that u1ss
′ is (3, 1) and
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at least one of s and s′ is of multiplicity one, and let S ′′3 = S3S
′−1
3 . Then

σ(S3) = σ(S ′3) + σ(S ′′3 ) ∈ |S ′3|a+ |S ′′3 |a+ 〈e1, . . . , er−1〉 = |S3|a+ 〈e1, . . . , er−1〉.

If |S1| = 1, then 2k = |S0| − |S1|+ 2|S2|+ |S3|. From |α| = |S0|+ |S1|+ 2|S2|+ |S3| >
D∗(G), it follows that |α| = 2k + 2 > D∗(G), which is impossible.

If |S1| > 2, then from Lemma 5 it follows that for any e1 + xa contained in S1(e1 −
a)−1, (e1 + xa)(e1 − a) is a 〈a〉-block with x − 1 = 1 or 2, i.e., x = 2 or 3. It follows
that |S1| = 2, since otherwise there is a minimal block of the form (e1 + xa)(e1 + ya)
contained in S1(e1 − a)−1 with negative defect. So σ(S1) = a or 2a. It yields that
2k = |S0|+2|S2|+ |S3|+x−1 with x = 2 or 3. From |α| = 2+ |S0|+2|S2|+ |S3| > D∗(G),
it follows that |α| = 2 + 2k + 1− x > D∗(G), which is impossible. This ends the proof of
Case 2 and proves the lemma.

Lemma 16. Let F be a canonical decomposition of α and r > 6.
(i) F does not contains a (r, 3)-block.
(ii) If U is a (l, 1)-block and B is a (r − t, 2)-block in F such that U,B are disjoint

and |〈U〉 ∩ 〈B〉| > 1, then d r−t
2
e 6 t+ 1.

Proof. (i) Suppose to the contrary that F contains a (r, 3)-block B, and let U |WF be a
(∗, 1)-block. By Lemma 11 (ii), WF contains only (2, 1)-blocks. Note that there are at
least two of them by Lemma 14 (ii). Let U1 and U2 be such blocks. Lemma 12 states
that the product U1U2B is divisible by a unit block V with d(V ) > d(U1U2), which yields
a contradiction. So F does not contains a (r, 3)-block.

(ii) Suppose d r−t
2
e > t + 1. Since 〈B〉 is a subgroup of G/〈a〉 with index 2r−1

2r−t−1 = 2t

and |〈U〉∩〈B〉| > 1, there exists a proper decomposition U = X1 · · ·Xv with σ(Xi) ∈ 〈B〉
and |Xi| 6 t+ 1. By xa(B) = 2, Lemma 6 implies δ(Xi) = 1 and σ(Xi) ∈ {ei, ei + a} for
1 6 i 6 v, where ei ∈ σ(Xi) is of order two. Since xa(U) = 1, there is at least one Xi,
say X1, such that σ(X1) = e1 + a and σ(UX−11 ) = e1, or else multiplying

∑v
i=1 σ(Xi) = a

by 2 yields the impossible 2a = 0. Consider the proper decompositions U = X1(UX
−1
1 )

and B = Y Y ′, where σ(X1) ∼ σ(Y ) and Y ′ = BY −1. Lemma 6 implies that δ(Y ) = 0
and σ(Y ) = σ(Y ′) = e1 + a. By symmetry let |Y | > |Y ′|. We have that V = (UX−11 )Y
is a block with sum e1 + (e1 + a) = a and length `′ = ` − |X1| + |Y |. Note that `′ > 1
since |X1| < `, so V is an (`′, 1)-block dividing UB. Since d r−t

2
e > t + 1, |X1| 6 t + 1

and |Y | > d r−t
2
e, we have `′ > ` − (t + 1) + d r−t

2
e > ` + 1. So d(V ) > ` > d(U), a

contradiction.

3 Proof of Theorem 3

In this section we mainly prove Theorem 3. The following lemma is a key ingredient.

Lemma 17. Let a1a
′
1 be a subsequence of α such that x′a(a1a

′
1) = 1. If there exists a

subsequence T in α(a1a
′
1)
−1 such that x′a(a1T ) = x′a(a

′
1T ), then k is odd and x′a(a1) =

x′a(a
′
1) = k+1

2
.
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Furthermore,
(i) let T1 = a1a2 and T2 = b1b2b3 be two disjoint subsequences of α such that x′a(a1a2) =

x′a(b1b2b3) = 1. If 1 6 x′a(aib2b3), x
′
a(aib1) 6

k+1
2

for i = 1, 2, then k is odd and x′a(a1) =
x′a(a2) = k+1

2
.

(ii) let T1, . . . , T` be ` disjoint subsequences of α of length 2 such that x′a(T1) = · · · =
x′a(T`) = 1. If ` = 2 or 3 and 1 6 x′a(t1 · · · t`) 6 k+1

2
for any ti | Ti (1 6 i 6 `), then k is

odd. In particular, if ` = 2, then x′a(t) = k+1
2

for any t|T1T2.

Proof. Since x′a(a1T ) = x′a(a
′
1T ), we have that x′a(a1) + x′a(T ) ≡ x′a(a

′
1) + x′a(T ) (mod k),

i.e., x′a(a1) ≡ x′a(a
′
1) (mod k). It follows x′a(a1a

′
1) = 1 ≡ x′a(a1) + x′a(a

′
1) ≡ 2x′a(a1) (mod

k). This implies that x′a(a1) = x′a(a
′
1) = k+1

2
and k is odd. We complete the proof of the

first assertion.
(i) Since x′a(a1a2) = x′a(b1b2b3) = 1 and 1 6 x′a(aib2b3), x

′
a(aib1) 6

k+1
2

for i = 1, 2, we
have x′a(a1a2b1b2b3) = x′a(a1a2) + x′a(b1b2b3) = 2 = x′a(a1b2b3) + x′a(a2b1) = x′a(a2b2b3) +
x′a(a1b1). It follows that x′a(a1b2b3) = x′a(a2b2b3) = 1. The first assertion completes our
proof.

(ii) Set Ti = tit
′
i for 1 6 i 6 `. If ` = 2, then by x′a(T1) = x′a(T2) = 1 and 1 6

x′a(a1a2) 6 k+1
2

for any a1 | T1, a2 | T2, we have x′a(tt
′) = 1 for any tt′|T1T2, since

otherwise x′a(T1T2) = x′a(T1) + x′a(T2) = 2 = x′a(tt
′) + x′a(T1T2(tt

′)−1) > 2. In particular,
x′a(t1t2) = x′a(t

′
1t2) = 1. The first assertion implies that k is odd and x′a(t1) = x′a(t

′
1) = k+1

2
.

Similarly, x′a(t2) = x′a(t
′
2) = k+1

2
.

If ` = 3, then by x′a(T1) = x′a(T2) = x′a(T3) = 1 and 1 6 x′a(a1a2a3) 6 k+1
2

for
any ai | Ti (i = 1, 2, 3), we have x′a(a1a2a3) = 1 or 2 for any ai | Ti, since otherwise
x′a(T1T2T3) = x′a(T1) + x′a(T2) + x′a(T3) = 3 = x′a(a1a2a3) + x′a(T1T2T3(a1a2a3)

−1) > 4. In
addition, it is easy to see that there exist a1 | T1, a2 | T2, a3 | T3 such that x′a(a1a2a3) = 1.
Without loss of generality, suppose x′a(t1t2t3) = 1. If x′a(t1t2t3t

′
i(ti)

−1) = 1 for some
i ∈ [1, 3], the first assertion completes our proof. If x′a(t1t2t3t

′
i(ti)

−1) = 2 for all i ∈ [1, 3],
then modular k x′a(t1t2t3) + 1 = 2 = x′a(t1t2t3t

′
i(ti)

−1) ≡ x′a(ti) + 1 + x′a(t1t2t3(ti)
−1) ≡

x′a(t
′
i) + x′a(t1t2t3(ti)

−1), i.e., x′a(ti) + 1 ≡ x′a(t
′
i). It follows that x′a(tit

′
i) = 1 ≡ x′a(ti) +

x′a(t
′
i) ≡ 2x′a(ti) + 1 (mod k), i.e., x′a(ti) = 0 or k

2
. This implies x′a(t1t2t3) = 1 ≡

x′a(t1)+x′a(t2)+x′a(t3) ≡ 0 or k
2

(mod k), which is impossible. This proof is complete.

Lemma 18. Let U | α be a unit block, and B | αU−1 be a minimal block with positive
defect. Then r(〈UB〉) > r(〈U〉) + 1.

Proof. If r(〈UB〉) < r(〈U〉) + 1, then r(〈UB〉) = r(〈U〉), i.e., 〈B〉 ⊂ 〈U〉. For any b | B,
there is a proper subsequence Y | U such that Y · b is a block. Hence by (1) one deduces
1 6 x′a(b) 6 r − 2 for all b | B. It follows that

k > (r − 2)|B| >
∑
b|B

x′a(b) = xa(B) > |B|,

a contradiction to d(B) > 0. Hence r(〈UB〉) > r(〈U〉) + 1.
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Lemma 19. Let U |α be a unit block, B,C be two disjoint minimal blocks with positive
defect in αU−1 such that 〈C〉 ⊂ 〈UB〉. Let B2 and C2 be sequences (possibly empty)
consisting of terms b | B with b ∈ 〈U〉 and c | C with c ∈ 〈U〉 respectively. Set B1 = BB−12

and C1 = CC−12 .
(i) If r(〈UB〉) = r(〈U〉) + 1, then 0 6 x′a(c1) 6

3r−5
2

for any c1 | C1. In addition there
exists c1 | C1 such that x′a(c1) = 0, i.e., c1 is of order 2.

(ii) If r(〈UB〉) = r(〈U〉) + 2 and there exists some c1 | C1 such that x′a(c1) < 0, then
r(〈UC〉) = r(〈U〉) + 1, and

(a) C1 = (e + k1a)(e′ + k2a), where k1 + k2 = 1 and e, e′ ∈ 〈UC〉 \ 〈U〉 satisfying
2e = 2e′ = 0;

(b) C2 = (e1 + a) · · · (e|C2| + a), where ei ∈ 〈U〉 has order 2 for 1 6 i 6 |C2|;

(c) there does not exist a minimal block D with positive defect in α(UBC)−1 such that
〈D〉 ⊂ 〈UB〉.

Proof. (i) For each term c2 of C2, since 〈C2〉 ⊂ 〈U〉, there exists a subsequence Y | U
such that Y c2 is a block. Then (1) yields 1 6 x′a(c2) 6 r − 2. Similarly we have
1 6 x′a(b2) 6 r − 2 for b2 | B2.

Since r(〈UB〉) = r(〈U〉) + 1, by 〈C〉 ⊂ 〈UB〉 and Lemma 18 there exists e such that
〈UB〉 = 〈UC〉 = 〈U, e〉. Obviously all terms of B1 and C1 are elements of e + 〈U〉, and
|B1|, |C1| > 0. For c1 | C1 and b1 | B1, b1c1 is a block or there exists proper Y | U such
that Y b1c1 is a block. Applying (1) we derive that

δ(b1)− xa(B)

2
+ 1 6 x′a(c1) 6

3r − 5

2
.

Thus we get x′a(c1) 6
3r−5
2

. To show 0 6 x′a(c1), we suppose there exists c1 | C1 such that

x′a(c1) 6 −1. Then δ(b1)−xa(B)
2

+ 1 6 −1 for each b1 | B1, which yields

2 6
1

2
(xa(B)− δ(b1)) 6

1

2
(xa(B) + δ(b1)) 6 xa(B)− 2.

Hence 1 6 x′a(b1) 6 r − 3. It follows that

2|B1|+ |B2| 6
∑
b1|B1

x′a(b1) +
∑
b2|B2

x′a(b2) 6 r(r − 2) 6 k.

Consequently xa(B) =
∑

b1|B1
x′a(b1) +

∑
b2|B2

x′a(b2) > |B|, a contradiction to d(B) > 0.

Therefore 0 6 x′a(c1) 6 3r−5
2

for all c1 | C1. It is left to show there exists c1 such that
x′a(c1) = 0.

Assume to the contrary that x′a(c1) > 1 for all c1 | C1. Then by 1 6 x′a(c2) 6 r − 2
for c2 | C2 and 1 6 x′a(c1) 6

3r−5
2

for c1 | C1 we get k >
∑

c|C x
′
a(c) = xa(C) > |C|, which

contradicts d(C) > 0. As a result there exists c1 | C1 with x′a(C1) = 0.
(ii) Since r(〈UB〉) = r(〈U〉)+2, there are e1, e2 of order 2 such that 〈UB〉 = 〈U, e1, e2〉.

Let c1 be a fixed term of C1 with x′a(c1) < 0. Without loss of generality, one may suppose
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c1 ∈ e1 + 〈U〉. Write B1 = A1A2A3 with Supp(A1), Supp(A2) and Supp(A3) being subsets
of e1 + 〈U〉, e2 + 〈U〉 and e1 + e2 + 〈U〉 respectively. By symmetry we can suppose
|A2| 6 |A3|. Consider the decomposition B = A1A2A

′
3A
′′
3, where A′3 is any subsequence

of A3 with |A′3| = |A2| and A′′3 = A3A
′−1
3 . It is easy to see that |A′′3| is even.

Take X = a1 with a1 | A1 or X = a2a3 with a2 | A2, a3 | A′3. Then there exists a Y | U
such that XY c1 is a block. Then (1) and x′a(c1) < 0 gives us

3− r
2

6
δ(X)− xa(B)

2
+ 1 6 x′a(c1) 6 −1. (3)

This implies δ(X) 6 xa(B)− 4 and hence

2 6
1

2
(xa(B)− δ(X)) 6

1

2
(xa(B) + δ(X)) 6 xa(B)− 2.

It follows that 2 6 x′a(X) 6 xa(B)−2. For any T | A′′3 of length two, we have σ(T ) ∈ 〈U〉
and hence there exists a Y | U such that Y T is a block. One deduces from (1) that
1 6 x′a(T ) 6 r − 2. It is worth mentioning that if there exist two disjoint subsequences
of A′′3 of length two, say T1, T2, such that x′a(T1) = x′a(T2) = 1, then by Lemma 17 (ii) we
have x′a(g) = k+1

2
for any g|T1T2.

Assume r(〈UC〉) = r(〈U〉) + 2. Then 〈UC〉 = 〈UB〉, and hence 〈B〉 ⊂ 〈UC〉. For each
b1 | B1, there exist Z | C and Y | U such that ZY b1 is a block, where Y is empty if Zb1
is already a block. Then by (1)

1− r − 1

2
6
δ(Z)− xa(C)

2
+ 1 6 x′a(b1) 6

3r − 5

2
. (4)

So there is no b1 | B1 with x′a(b1) = k+1
2

, and hence there exists at most one T | A′′3
satisfying x′a(T ) = 1. Write A2A

′
3 = Q1 · · ·Qs with each Qi consisting of exactly one term

from A2 and one from A′3. Let A′′3 = T1T2 · · ·Tt be any decomposition of A′′3 with |Ti| = 2
for all 1 6 i 6 t. To sum up, we have

k >
∑
b2|B2

x′a(b2) +
∑
a1|A1

x′a(a1) +
s∑
i=1

x′a(Qi) +
t∑
i=1

x′a(Ti)

>|B2|+ 2|A1|+ 2|A2|+ |A′′3| − 1 = |B|+ |A1| − 1.

It follows that |B| + |A1| − 1 6 xa(B). To have |B| > xa(B), one must have |A1| = 0,
one of T1, . . . , Tt, say T1, satisfies x′a(T1) = 1 and others satisfy x′a(Ti) = 2, as well as
x′a(Qi) = 2 for 1 6 i 6 s. By r(〈UB〉) = r(〈U〉) + 2 and |A1| = 0, we have |A2|, |A3| > 0.
Since A′3 is arbitrarily chosen, we get x′a(a2a3) = 2 for any a2 | A2 and a3 | A3. It follows
that all x′a(a3) are equal for a3 | A3. Their common value x ∈ (−k−1

2
, k+1

2
] satisfies the

congruence x′a(T1) = 1 ≡ 2x (mod k), i.e., x = k+1
2

, contradicting (4). Hence

r(〈UC〉) = r(〈U〉) + 1.
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Recall that c1 ∈ e1 + 〈U〉. From r(〈UC〉) = r(〈U〉) + 1 we get Supp(C1) ⊂ e1 + 〈U〉,
which derives σ(c1c′1) ∈ 〈U〉 for all c′1 | C1. Then there exists a Y | U such that Y c1c

′
1

is a block. Consequently 1 6 x′a(c1c
′
1) 6 r − 2 by (1). By the same argument used

to derive (4), we can obtain 3−r
2

< x′a(c
′
1) < 3r−5

2
, which together with (3) gives us

3− r < x′a(c1) + x′a(c
′
1) 6

3r−7
2

. It implies x′a(c1c
′
1) = x′a(c1) + x′a(c

′
1) and hence

2 6 1− x′a(c1) 6 x′a(c
′
1) 6 r − 2− x′a(c1) 6

3r − 7

2
< k.

It follows that C1 = c1c
′
1 with x′a(C1) = 1 and x′a(c2) = 1 for any c2 | C2, since otherwise

k > xa(C) =
∑

c|C x
′
a(c) > |C|, i.e., d(C) 6 0.

Assume to the contrary that there exists a minimal block D with positive defect in
α(UBC)−1 such that 〈D〉 ⊂ 〈UB〉. Let D2 be a sequence (possibly empty) consisting of
terms d | D with d ∈ 〈U〉. Set D1 = DD−12 . Then (1) yields 1 6 x′a(d2) 6 r − 2 for
d2 | D2. For any d1 | D1, there exists a proper X | B1 such that either Xd1 is a block or
XY d1 is a block for some proper Y | U . Applying (1) we derive that

δ(X)− xa(B)

2
+ 1 6 x′a(d1) 6

3r − 5

2
.

Obviously, there exists d1 | D1 such that x′a(d1) 6 0, since otherwise 1 6 x′a(d1) 6 3r−5
2

for all d1 | D1, and then xa(D) =
∑

d1|D1
x′a(d1) +

∑
d2|D2

x′a(d2) > |D|, a contradiction

to d(D) > 0. If d1 ∈ e1 + 〈U〉, by Supp(C1) ⊂ e1 + 〈U〉 we get that c1d1 is a block or
there exists a proper Y | U such that Y c1d1 is a block, where c1 | C1 with x′a(c1) < 0. By
x′a(d1) 6 0 and x′a(c1) < 0, we have δ(d1) > xa(D) and δ(c1) > xa(C). It follows from
Corollary 8 that xa(D)+xa(C)+1 6 δ(d1)+δ(c1) 6 xa(D)+xa(C)−2, a contradiction. If
d1 ∈ e2+〈U〉 or d1 ∈ e1+e2+〈U〉, then for any b1 | B1, one of {σ(b1c1), σ(b1d1), σ(b1c1d1)}
is contained in 〈U〉, where c1 | C1 with x′a(c1) < 0. Then there exists a proper Y | U such
that one of {Y b1c1, Y b1d1, Y b1c1d1} is a block. By x′a(d1) 6 0, x′a(c1) < 0 and Corollary
8, we have δ(b1) 6 xa(B)− 2. It implies that

1 6
1

2
(xa(B)− δ(b1)) 6

1

2
(xa(B) + δ(b1)) 6 xa(B)− 1.

Hence, 1 6 x′a(b1) 6 xa(B)− 1 for all b1 | B1. Since 1 6 x′a(b2) 6 r − 2 for all b2 | B2, we
have that xa(B) =

∑
b1|B1

x′a(b1) +
∑

b2|B2
x′a(b2) > |B|, a contradiction to d(B) > 0. The

proof is completed.

Lemma 20. Let U |α be a unit block, and write rU := r(〈U〉). For 1 6 i 6 3, let Bi be
disjoint minimal blocks with positive defect in αU−1 such that r(〈UBi〉) = rU + 1 and

r(〈UB1B2B3〉) = r(〈UBiBj〉) = rU + 2 for 1 6 i < j 6 3.

Denote by Vi the longest subsequence of Bi with Supp(Vi) ⊂ 〈U〉, and V ′i = BiV
−1
i . Then

1 6 x′a(v) 6 r − 2 for all v | Vi and 0 6 x′a(v) 6 2r − 3 for all v | V ′i . In particular, there
exists some v | V ′i with x′a(v) = 0.
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Proof. For v | Vi, there exists a proper subsequence W | U such that Wv is a block.
Applying (1) to the decompositions Vi = v ·Viv−1 and U = W · (UW−1) one deduces that
1 6 x′a(v) 6 r − 2.

For 1 6 i 6 3, let vi be any term of V ′i . Then σ(v1v2v3) ∈ 〈U〉. So there exists a
subsequence W | U such that Wv1v2v3 is a block, where W is empty if v1v2v3 is a block.
Then by (1) we derive

3− r 6 δ(vh)− xa(Bh)

2
+
δ(vj)− xa(Bj)

2
+ 1 6 x′a(vi) 6 2r − 3 <

k + 1

2
, (5)

where 1 6 h, i, j 6 3 are different integers. Hence 3− r 6 x′a(vi) 6 2r − 3.
Assume that there is a v1 | V ′1 with x′a(v1) 6 −1. Then by (5) we have

δ(v2)− xa(B2)

2
+
δ(v3)− xa(B3)

2
+ 1 6 −1

for all v2 | V ′2 and v3 | V ′3 .
If x′a(v2) > 1 for all v2 | V ′2 , then |B2| > xa(B2) > |V2| + |V ′2 | = |B2|, contradiction

to d(B2) > 0. If x′a(v2) 6 0 for some v2 | V ′2 , then δ(v2) > xa(B2). It follows that
δ(v3) 6 xa(B3)− 4, and hence

2 6
1

2
(xa(B3)− δ(v3)) 6

1

2
(xa(B3) + δ(v3)) 6 xa(B3)− 2.

Thus 2 6 x′a(v3) 6 xa(B3) − 2 for all v3 | V ′3 . This together with 1 6 x′a(v3) 6 r − 2 for
v3 | V3 implies that xa(B3) > |V3|+ 2|V ′3 | > |B3|, a contradiction. Hence we conclude that
x′a(v1) > 0 for all v1 | V ′1 . Similarly we can prove x′a(v) > 0 for v dividing V ′2 or V ′3 .

Finally, if there exists no v | V ′i with x′a(v) = 0, then 1 6 x′a(v) 6 2r− 3 for all v | V ′i .
Consequently xa(Bi) =

∑
v|Vi x

′
a(v) +

∑
v|V ′i

x′a(v) > |Bi|, a contradiction. This proves the

existence of v | V ′i with x′a(v) = 0.

Lemma 21. Let U |α be a unit block. If there is a minimal block B|αU−1 with d(B) > 2
and r(〈UB〉) = r(〈U〉) + 1. Then k is odd.

Proof. Since r(〈UB〉) = r(〈U〉) + 1, there is an e | B such that 〈UB〉 = 〈U, e〉. Write
B = B1B2 with Supp(B1) ⊂ e + 〈U〉 and Supp(B2) ⊂ 〈U〉. Then |B1| > 2 is even and
each pair of terms of B1 has sum in 〈U〉. Consider any decomposition B1 = T1 · · ·Tm with
|Ti| = 2. For each Ti | B1, since σ(Ti) ∈ 〈U〉, there exists a subsequence W of U such that
TiW is a block. Then from (1) it follows that 1 6 x′a(Ti) 6 r− 2. On the other hand, we
can similarly get 1 6 x′a(b2) 6 r − 2 for any b2 | B2. If there exists at most one Ti, say
T1, such that x′a(T1) = 1, then 2 6 x′a(Ti) 6 r − 2 for 2 6 i 6 m. It follows that

xa(B) =
m∑
i=1

x′a(Ti) +
∑
b|B2

x′a(b) > 1 + 2(m− 1) + |B2| = |B| − 1,

contradicting d(B) > 2. So there exist Ti and Tj such that x′a(Ti) = x′a(Tj) = 1. Then
Lemma 17 (ii) tells that k is odd.
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Lemma 22. Let U |α be a unit block with d(U) = r − 2. Then there exists exactly one
minimal block with positive defect in αU−1.

Proof. Since d(α) = |α| − 2k > r and d(U) = r − 2, by the additivity of defect we have
d(αU−1) = d(α) − d(U) > 2, i.e., there exists at least one minimal block with positive
defect in αU−1. Assume to the contrary that there exist two disjoint minimal blocks B
and C with positive defect in αU−1. Combining Lemma 10 with Lemma 18 yields that
r(〈UB〉) > r(〈U〉) + 1 = d(U) + 1 = r − 1 and r(〈UB〉) 6 r(G) = r − 1. Then 〈UB〉 = G.
Similarly, 〈UC〉 = G. By Lemma 19 (i) there exist b1 and c1 of order 2 of G \ 〈U〉
contained in B and C respectively. Then δ(b1) = xa(B) and δ(c1) = xa(C). Since 〈U〉 is
an index-2 subgroup of G, there exists a Y | U such that Y b1c1 is a 〈a〉-block. It follows
from Corollary 8 that δ(b1)+δ(c1) = xa(B)+xa(C) 6 xa(B)+xa(C)−2, a contradiction.
This proves the lemma.

Lemma 23. Let U |α be a unit block with d(U) = r − 3. Then there exists at most two
disjoint minimal blocks in αU−1 with positive defect.

Furthermore if there exist two minimal blocks B,C in αU−1 with positive defect, then
〈UB〉 6= 〈UC〉 and one of the following two holds:

(i) if 〈UB〉 and 〈UC〉 do not contain each other, then r(〈UB〉) = r(〈UC〉) = r − 2.
(ii) if 〈UC〉 ⊂ 〈UB〉, then r(〈UB〉) = r(〈UC〉) + 1 = r − 1, d(B) > 2, d(C) = 1 and

C = (e′1 + k1a) · (e′2 + k2a) · (e′3 + a) · · · · · (e′|C| + a),

where k1 + k2 = 1, k1 6 0, (e′1 + k1a) | C1 and e′i ∈ G has order two.

Proof. Suppose that there exist two disjoint minimal blocks B,C in αU−1 with positive
defect. Let B2 and C2 be sequences (possibly empty) consisting of terms b | B with
b ∈ 〈U〉 and c | C with c ∈ 〈U〉 respectively. Set B1 = BB−12 and C1 = CC−12 .

Claim: Suppose 〈UC〉 ⊂ 〈UB〉.

(a) If there exists some c1 | C1 such that x′a(c1) < 0, then r(〈UB〉) = r(〈U〉) + 2 = r − 1.
In particular, 〈UB〉 = G.

(b) If x′a(c1) > 0 for any c1 | C1, then 0 6 x′a(c1) 6 3r−5
2

for any c1 | C1. In addition,
there exists c1 | C1 such that x′a(c1) = 0, i.e., c1 is of order 2

(a) Suppose to the contrary r(〈UB〉) < r − 1. By Lemma 18 we have r(〈UB〉) >
r(〈U〉) + 1 = d(U) + 1 = r− 2. Then r(〈UB〉) = r− 2 = r(〈U〉) + 1. By Lemma 19 (i) we
get 0 6 x′a(c1) 6

3r−5
2

for any c1 | C1, a contradiction.

(b) Since 〈UC〉 ⊂ 〈UB〉, by (1) we get 1 6 x′a(b2), x
′
a(c2) 6 r − 2 for all b2 | B2 and

c2 | C2. In addition, for any c1 | C1 there exist proper X | B and Y | U (Y may be empty)
such that XY c1 is a block. Applying (1) we derive that

δ(X)− xa(B)

2
+ 1 6 x′a(c1) 6

3r − 5

2
.

the electronic journal of combinatorics 30(1) (2023), #P1.498 15



Hence, 0 6 x′a(c1) 6
3r−5
2
. If 1 6 x′a(c1) 6

3r−5
2

for all c1 | C1, then by 1 6 x′a(c2) 6 r − 2
for c2 | C2 we get k >

∑
c|C x

′
a(c) = xa(C) > |C|, which contradicts d(C) > 0. We

complete the proof of the claim.
Step 1 : 〈UB〉 6= 〈UC〉.
Assume to the contrary that 〈UB〉 = 〈UC〉, i.e., 〈B〉 ⊂ 〈UC〉 and 〈C〉 ⊂ 〈UB〉. If there

exists some c1 | C1 such that x′a(c1) < 0, then by Claim (a) we have r(〈UB〉) = r(〈U〉)+2.
It follows from Lemma 19 (ii) that r(〈UC〉) = r(〈U〉)+1, which implies that 〈UB〉 6= 〈UC〉.

If x′a(c1) > 0 for any c1 | C1, then Claim (b) yields 0 6 x′a(b1), x
′
a(c1) 6 3r−5

2
for

all b1 | B1, c1 | C1 and there exists e | B1, e
′ | C1 such that e, e′ are of order 2. If

r(〈UB〉) = r− 2, by Lemma 18 we have r(〈UB〉) = r− 2 > r(〈U〉) + 1 = d(U) + 1 = r− 2,
i.e., r(〈UB〉) = r(〈U〉)+1 = r−2. Then there exists e1 such that 〈UB〉 = 〈UC〉 = 〈U, e1〉.
It follows that e, e′ ∈ e1 + 〈U〉. Then ee′ is a block. Since δ(e) = xa(B) and δ(e′) = xa(C),
applying Corollary 8 we derive that xa(B) + xa(C) = δ(e) + δ(e′) 6 xa(B) + xa(C)− 2, a
contradiction.

Since r(〈UB〉) > r(〈U〉)+1 = r−2 and r(〈UB〉) 6 r(G) = r−1, we have r(〈UB〉) = r−2
or r − 1. Then it suffices to prove our result if r(〈UB〉) = r − 1. By 〈UC〉 = 〈UB〉 there
exist e1, e2 such that 〈UB〉 = 〈UC〉 = 〈U, e1, e2〉 = G. It follows that there exists exactly
one element of order 2 in B1, C1 respectively. Assume to the contrary that there exist two
elements c1, c

′
1 of order 2 in C1. Let b1 be an element of order 2 in B1. Obviously, one

of {c1c′1, b1c1, b1c′1, b1c1c′1} is contained in 〈U〉. Since δ(b1) = xa(B) and δ(c1) = δ(c′1) =
δ(c1c

′
1) = xa(C), by Corollary 8 we get that either xa(C) = δ(c1c

′
1) 6 xa(C) − 2 or

xa(B)+xa(C) = δ(b1)+δ(X) 6 xa(B)+xa(C)−2 for Xb1 ∈ {b1c1, b1c′1, b1c1c′1} contained
in 〈U〉. This is a contradiction. Let e and e′ are elements of order 2 in B1, C1 respectively.
Then we have x′a(e) = x′a(e

′) = 0 and x′a(b) > 1, x′a(c) > 1 for all b | B1e
−1 and c | C1e

′−1.
Hence, by 0 6 x′a(b1), x

′
a(c1) 6

3r−5
2

for all b1 | B1, c1 | C1 and 1 6 x′a(b2), x
′
a(c2) 6 r − 2

for all b2 | B2, c2 | C2, we get

k + 1

2
>

3r − 5

2
(r − 1) >

∑
b|Be−1

x′a(b) = xa(B) > |B| − 1 > xa(B) and

k + 1

2
>

3r − 5

2
(r − 1) >

∑
c|Ce′−1

x′a(c) = xa(C) > |C| − 1 > xa(C).

It follows that |B| = xa(B) + 1, |C| = xa(C) + 1 and x′a(b) = x′a(c) = 1 for all b | Be−1
and c | Ce′−1, which implies that d(B) = d(C) = 1. In addition, by the proof of
r(〈UB〉) = r − 2, it is easy to see that e and e′ can not be contained in the same 〈U〉-
coset, i.e., e 6= e′. Since d(αU−1) > 3, there exists a minimal block D in α(UBC)−1 with
positive defect. Since 〈UB〉 = G, we have 〈D〉 ⊂ 〈UB〉. Repeat the reasoning of C and we
have that 〈UB〉 = 〈UD〉 = 〈U, e1, e2〉 = G, d(D) = 1 and there exists exactly one element
of order 2 in D1. Set e′′ is the order-2 element of D1 and we have that e, e′, e′′ are pairwise
distinct contained in 〈e1, e2〉. Hence, σ(ee′e′′) = 0. Since δ(e) = xa(B), δ(e′) = xa(C) and
δ(e′′) = xa(D), by Corollary 8 we get that xa(B) +xa(C) +xa(D) = δ(e) + δ(e′) + δ(e′′) 6
xa(B) + xa(C) + xa(D)− 2, a contradiction.
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By step 1 it is easy to see that any two disjoint minimal blocks B,C in αU−1 with
positive defect satisfy 〈UB〉 6= 〈UC〉.

Step 2: If 〈UC〉 ⊂ 〈UB〉, then (ii) holds and there exist exactly two disjoint minimal
blocks in αU−1 with positive defect.

If there exists some c1 | C1 such that x′a(c1) < 0, then by 〈UC〉 ⊂ 〈UB〉 and Claim
(a) we have r(〈UB〉) = r(〈U〉) + 2 and 〈UB〉 = G. It follows from Lemma 19 (ii) that
(1) r(〈UB〉) = r(〈UC〉) + 1 = r(〈U〉) + 2 = r − 1; (2) C = (e′1 + k1a) · (e′2 + k2a) · (e′3 +
a) · · · (e′|C| + a), where k1 + k2 = 1, k1 < 0 and e′i ∈ G has order two, and this implies

d(C) = 1; (3) there does not exist a minimal block D with positive defect in α(UBC)−1

(〈D〉 ⊂ 〈UB〉 = G), which implies that d(B) = d(α)− d(U)− d(C) > 2 by the additivity
of defect. Hence, our result is true.

Now suppose x′a(c1) > 0 for any c1 | C1. Since 〈UC〉 ⊂ 〈UB〉 and 〈UC〉 6= 〈UB〉,
by Lemma 18 we have r(〈UB〉) > r(〈UC〉) + 1 > r(〈U〉) + 2 = d(U) + 2 = r − 1. By
r(〈UB〉) 6 r(G) = r − 1, we derive that r(〈UB〉) = r(〈UC〉) + 1 = r(〈U〉) + 2 = r − 1,
〈UB〉 = G and there exists e1, e2 such that 〈UB〉 = 〈U, e1, e2〉 and 〈UC〉 = 〈U, e1〉. By
(1) and Claim (b) we get 1 6 x′a(c2) 6 r − 2, 0 6 x′a(c1) 6 3r−5

2
for all c2 | C2, c1 | C1,

and there exists c1 | C1 such that x′a(c1) = 0. It follows that there exists exactly one
element of order 2 in C1. Assume to the contrary that there exist two elements c1, c

′
1 of

order 2 in C1. It follows from 〈UC〉 = 〈U, e〉 that c1, c′1 ∈ e1 + 〈U〉. Then c1c
′
1 is a block.

Since δ(c1c
′
1) = xa(C), applying Corollary 8 we derive that xa(C) = δ(c1c

′
1) 6 xa(C)− 2,

a contradiction. Let e′1 be the element of order 2 in C1. Then we have xa(e
′
1) = 0

and xa(c) > 1 for all c | C1e
′
1
−1. Hence, by 0 6 x′a(c1) 6 3r−5

2
for all c1 | C1 and

1 6 x′a(c2) 6 r − 2 for all c2 | C2, we get

k + 1

2
>

3r − 5

2
(r − 1) >

∑
c|Ce′1

−1

x′a(c) = xa(C) > |C| − 1 > xa(C).

It follows that |C| = xa(C)+1 and x′a(c) = 1 for all c | Ce′1
−1, which implies that d(C) = 1

and C = e′1 · (e′2 + a) · (e′3 + a) · · · · · (e′|C| + a), where e′i ∈ G has order two.

If there does not exist minimal blocks in α(UBC)−1 with positive defect, then by the
additivity of defect, d(B) = d(α)−d(U)−d(C) > 2. Hence, it suffices to prove that there
does not exist minimal blocks in α(UBC)−1 with positive defect. Assume to the contrary
that there exists a minimal block D in α(UBC)−1 with positive defect. Let D2 be the
sequence (possibly empty) consisting of terms d | D with d ∈ 〈U〉. Set D1 = DD−12 . By
step 1 we can see that 〈UD〉 6= 〈UB〉 and 〈UD〉 6= 〈UC〉. Since 〈UB〉 = G, we have
〈UD〉 ⊂ 〈UB〉. By the proof of the structure of C, we can derive that

D = (e′′1 + k′1a) · (e′′2 + k′2a) · (e′′3 + a) · · · · · (e′′|D| + a),

where k′1 + k′2 = 1, k′1 6 0, (e′′1 + k′1a) | D1 and e′′i ∈ G has order two. Since r(〈UB〉) =
r − 1, 〈UB〉 = G, we have r − 1 > r(〈UD〉) > r(〈U〉) + 1 = r − 2, i.e., r(〈UD〉) =
r − 2. Since 〈UB〉 = 〈U, e1, e2〉, 〈UC〉 = 〈U, e1〉 and 〈UD〉 6= 〈UC〉, we must have either
〈UD〉 = 〈U, e2〉 or 〈UD〉 = 〈U, e1 + e2〉. By e′1 ∈ e1 + 〈U〉 and e′′1 + k′1a ∈ e2 + 〈U〉 or
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e1 + e2 + 〈U〉, we have that for any b1 | B1 there exists a proper Y | U such that one of
{Y b1e′1, Y b1(e′′1 +k′1a), Y b1e

′
1(e
′′
1 +k′1a)} is a block. By δ(e′1) = xa(C), δ(e′′1 +k′1a) > xa(D)

and Corollary 8, we get that

δ(b1) + xa(C) = δ(b1) + δ(e′1) 6 xa(B) + xa(C)− 2 or

δ(b1) + xa(D) 6 δ(b1) + δ(e′′1 + k′1a) 6 xa(B) + xa(D)− 2 or

δ(b1) + xa(C) + xa(D) 6 δ(b1) + δ(e′1) + δ(e′′1 + k′1a) 6 xa(B) + xa(C) + xa(D)− 2.

This implies δ(b1) 6 xa(B)− 2 and hence

1 6
1

2
(xa(B)− δ(b1)) 6

1

2
(xa(B) + δ(b1)) 6 xa(B)− 1.

It follows that 1 6 x′a(b1) 6 xa(B)− 1 for any b1 | B1. By (1) we have 1 6 x′a(b2) 6 r− 2
for any b2 | B2. Hence, k >

∑
b1|B1

x′a(b1) +
∑

b2|B2
x′a(b2) = xa(B) > |B|, a contradiction

to d(B) > 0. We complete the proof of step 2.
By step 2 we can suppose that any two disjoint minimal blocks B,C in αU−1 with

positive defect satisfy that 〈UB〉 and 〈UC〉 do not contain each other.
Step 3: If 〈UB〉 and 〈UC〉 do not contain each other, then (i) holds and there exist

exactly two disjoint minimal blocks in αU−1 with positive defect.
Since 〈UB〉 * 〈UC〉 and 〈UC〉 * 〈UB〉, we have r(〈UB〉), r(〈UC〉) < r(〈UBC〉) 6

r(G) = r − 1. By r(〈UB〉), r(〈UC〉) > r(〈U〉) + 1 = r − 2, we derive that r(〈UB〉) =
r(〈UC〉) = r − 2 and r(〈UBC〉) = r − 1.

Suppose that there exists a minimal block D in α(UBC)−1 with positive defect. Let
D2 be the sequence (possibly empty) consisting of terms d | D with d ∈ 〈U〉. Set
D1 = DD−12 . By step 2 we can see that any two of {〈UB〉, 〈UC〉, 〈UD〉} do not contain
each other. Hence, r(〈UD〉) = r− 2 and r(〈UBC〉) = r(〈UBD〉) = r(〈UCD〉) = r− 1. By
r(〈U〉) = r − 3 and Lemma 20, we get that 1 6 x′a(v2) 6 r − 2, 0 6 x′a(v1) 6 2r − 3 for
all v2 | B2C2D2, v1 | B1C1D1, and there exist some b1 | B1, c1 | C1, d1 | D1 with x′a(b1) =
x′a(c1) = x′a(d1) = 0. In addition, there exist e1, e2 such that G = 〈U, e1, e2〉. Without loss
of generality, we can suppose 〈UB〉 = 〈U, e1〉, 〈UC〉 = 〈U, e2〉 and 〈UD〉 = 〈U, e1 +e2〉. It
follows that b1 = e1, c1 = e2 and d1 = e1 + e2. Hence, b1c1d1 is a block and δ(b1) = xa(B),
δ(c1) = xa(C), δ(d1) = xa(D). By Corollary 8 we have xa(B) + xa(C) + xa(D) =
δ(b1) + δ(c1) + δ(d1) 6 xa(B) + xa(C) + xa(D)− 2, a contradiction.

Lemma 24. If there is a unit block U of α with d(U) = r − 3, then k is odd.

Proof. Since d(U) = r−3, from Lemma 23 it follows that there exist at most two disjoint
minimal blocks in αU−1 with positive defect. Since r(〈U〉) = r− 3, there exist e1, e2 such
that G = 〈U, e1, e2〉. We consider the following two cases to complete our proof:

Case 1 : There exist two disjoint minimal blocks B,C in αU−1 with positive defect.
Let B2 and C2 be sequences (possibly empty) consisting of terms b | B with b ∈ 〈U〉

and c | C with c ∈ 〈U〉 respectively. Set B1 = BB−12 and C1 = CC−12 . By the additivity
of defect d(B) + d(C) = d(α)− d(U) > 3. By d(B) > 0 and d(C) > 0, we have d(B) > 2
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or d(C) > 2. If 〈UB〉 and 〈UC〉 do not contain each other, then Lemma 23 (i) tells us
that r(〈UB〉) = r(〈UC〉) = r(〈U〉) + 1 = r − 2. Lemma 21 yields that k is odd.

If 〈UC〉 ⊂ 〈UB〉, then by Lemma 23 (ii) we have that r(〈UB〉) = r(〈UC〉) + 1 = r− 1,
d(B) > 2, d(C) = 1 and

C = (e′1 + k1a) · (e′2 + k2a) · (e′3 + a) · · · · · (e′|C| + a),

where k1 + k2 = 1, k1 6 0, (e′1 + k1a) | C1 and e′i ∈ G has order two. It follows that
〈UB〉 = G = 〈U, e1, e2〉. Without loss of generality, we can suppose 〈UC〉 = 〈U, e1〉 with
Supp(C1) ⊂ e1 + 〈U〉. Write B1 = A1A2A3 with Supp(A1), Supp(A2) and Supp(A3) being
subsets of e1 + 〈U〉, e2 + 〈U〉 and e1 + e2 + 〈U〉 respectively. By
symmetry we can suppose |A2| 6 |A3|. Consider the decomposition B = A1A2A

′
3A
′′
3,

where A′3 is any subsequence of A3 with |A′3| = |A2| and A′′3 = A3A
′−1
3 . It is easy to see

that |A′′3| is even and |A2|+ |A3| > 2 is also even.
Take X = a1 with a1 | A1 or X = a2a3 with a2 | A2, a3 | A3. Then there exists a Y | U

such that XY (e′1 + k1a) is a block. Then (1) and x′a(e
′
1 + k1a) 6 0 give us

3− r
2

6
δ(X)− xa(B)

2
+ 1 6 x′a(e

′
1 + k1a) 6 0.

This implies δ(X) 6 xa(B)− 2 and hence

1 6
1

2
(xa(B)− δ(X)) 6

1

2
(xa(B) + δ(X)) 6 xa(B)− 1.

It follows that 1 6 x′a(X) 6 xa(B) − 1. It is worth mentioning that if there exist two
disjoint subsequences T1, T2 of A2A3 of length two such that x′a(T1) = x′a(T2) = 1, then
by Lemma 17 (ii) and 1 6 x′a(a2a3) 6 xa(B) − 1 for all a2 | A2, a3 | A3 we have that k
is odd. In addition, it is easy to see that the above conditional assumption must hold.
Assume to the contrary and then for a decomposition A2A3 = T1 · · ·T` with each |Ti| = 2,
there exists at most one Ti, say T1, such that x′a(T1) = 1 and 2 6 x′a(Ti) 6 xa(B)− 1 for
2 6 i 6 `. For any T = b2 | B2 or T | Ai of length two (i = 2, 3), we have σ(T ) ∈ 〈U〉
and hence there exists a Y | U such that Y T is a block. One deduces from (1) that
1 6 x′a(T ) 6 r − 2. It follows from d(B) > 2 that

|B| − 2 > xa(B) =
∑
a1|A1

x′a(a1) +
∑̀
i=1

x′a(Ti) +
∑
b2|B2

x′a(b2)

> |A1|+ |B2|+ |A2|+ |A3| − 1 = |B| − 1.

This is a contradiction.
Case 2 : There exists exactly one minimal block B in αU−1.
Then d(B) = d(α) − d(U) > 3. Since r(〈UB〉) > r(〈U〉) + 1 = r − 2 and r(〈UB〉) 6

r(G) = r − 1, by Lemma 21 we can suppose r(〈UB〉) = r − 1. It follows that 〈UB〉 =
G = 〈U, e1, e2〉. Let B2 be a sequence (possibly empty) consisting of terms b | B with
b ∈ 〈U〉. Set B1 = BB−12 . Write B1 = A1A2A3 with Supp(A1), Supp(A2) and Supp(A3)
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being subsets of e1 + 〈U〉, e2 + 〈U〉 and e1 + e2 + 〈U〉 respectively. Take T = b2 | B2

or T = a1a2a3 for ai | Ai (i = 1, 2, 3) or T | Ai of length two for 1 6 i 6 3, we have
σ(T ) ∈ 〈U〉 and hence there exists a Y | U such that Y T is a block. One deduces from (1)
that 1 6 x′a(T ) 6 r− 2. It is easy to see that at least two Ai are nonempty for 1 6 i 6 3,
and either all |Ai| are even or all |Ai| are odd.

If all |Ai| are even, then let Ai = Ti1 · · ·Titi be a product of some subsequences of length
two. We can find three subsequences of length two, say T1, T2, T3, such that x′a(T1) =
x′a(T2) = x′a(T3) = 1. Assume to the contrary there exist at most two subsequences of
length two, say T1, T2, such that x′a(T1) = x′a(T2) = 1. Since 1 6 x′a(Tij) 6 r − 2 for all
Tij, we have 2 6 x′a(Tij) 6 r − 2 except for T1, T2. By d(B) > 3 we have that

|B| − 3 > xa(B) =
∑

Tij 6=T1,T2

x′a(Tij) + x′a(T1) + x′a(T2) +
∑
b2|B2

x′a(b2)

> |A1|+ |A2|+ |A3| − 2 + |B2| = |B| − 2.

This is a contradiction. If there exist two Ti, say T1, T2, in {T1, T2, T3} contained in the
same Aj for 1 6 j 6 3, then for any t1 | T1, t2 | T2 there exists a Y | U such that
Y t1t2 is a block. It follows from (1) that 1 6 x′a(t1t2) 6 r − 2. From Lemma 17 (ii)
one deduces that k is odd. If T1, T2, T3 are contained in distinct Aj respectively, then by
1 6 x′a(a1a2a3) 6 r − 2 for any ai | Ai (i = 1, 2, 3), Lemma 17 (ii) yields that k is odd.

If all |Ai| are odd, then let Aia
−1
i = Ti1 · · ·Titi be a product of some subsequences of

length two for ai | Ai. By Lemma 17 (i) we can suppose that either 2 6 x′a(Tij) 6 r − 2
for all Tij or 2 6 x′a(a1a2a3) 6 r − 2 for any ai | Ai (i = 1, 2, 3). If the former holds, then
by d(B) > 3 we have

|B| − 3 > xa(B) = x′a(a1a2a3) +
∑
i,j

x′a(Tij) +
∑
b2|B2

x′a(b2)

> 1 + 2(
|B1| − 3

2
) + |B2| = |B| − 2.

This is a contradiction. If the latter holds, then by Lemma 17 (ii) we can suppose that
there exists at most one Tij in each Ai, say Ti1, such that x′a(Ti1) = 1. By 1 6 x′a(a1a2a3) 6
r − 2 for any ai | Ai (i = 1, 2, 3) and Lemma 17 (ii) we can again suppose that at most
two of {x′a(T11), x′a(T21), x′a(T31)} equal 1. It follows from d(B) > 3 that

|B| − 3 > xa(B) = x′a(a1a2a3) +
∑
i,j

x′a(Tij) +
∑
b2|B2

x′a(b2)

> 2 + 2 + 2(
|B1| − 3

2
− 2) + |B2| = |B| − 3.

Then we must have that x′a(a1a2a3) = 2 for any ai | Ai (i = 1, 2, 3) and there exist
exactly two of {x′a(T11), x′a(T21), x′a(T31)}, say T11, T21, such that x′a(T11) = x′a(T21) = 1.
Set T11 = t1t

′
1 | A1 and we have x′a(t1a2a3) = x′a(t

′
1a2a3) = 2 for a2 | A2, a3 | A3. Lemma

17 implies that k is odd. We complete the proof.

Proof of Theorem 3: Immediately from Lemma 21 and Lemma 24.
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4 Proof of Theorem 2

Proof of Theorem 2. Set C5
2 ⊕C2k = 〈e〉⊕G1, where 2e = 0 and G1

∼= C4
2 ⊕C2k. We have

known that D(C4
2 ⊕ C2k) = 2k + 5, if k is odd with k > 70. Thus there exists a zero-sum

free sequence T of length 2k + 4 over G1, if k is odd with k > 70. It follows that S = eT
is a zero-sum free sequence of length 2k + 5 over C5

2 ⊕ C2k, i.e, D(C4
2 ⊕ C2k) > 2k + 6, if

k is odd with k > 70.
Suppose that a group C5

2 ⊕C2k with k > 149 satisfies the excessive inequality D(C5
2 ⊕

C2k) > D∗(C5
2 ⊕ C2k) = 2k + 5. Let r = 6 be the rank of C5

2 ⊕ C2k, let α be an
arbitrary minimal zero-sum sequence of maximum length over this group, and let a | α
be a distinguished term, i.e., a is a generator of C2k. Then d(α) > 6. By Lemma 15 and
Lemma 14 (ii), we have r − 3 = 3 6 d(WF ) 6 r − 2 = 4. It follows from Theorem 3
that k is odd. Hence, if k > 149 is even, then D(C5

2 ⊕ C2k) = D∗(C5
2 ⊕ C2k) = 2k + 5.

Let WF = T1T2 . . . Tm be a product of (∗, 1)-blocks Ti. By Proposition 4 we have that
xa(WF ) = xa(T1) + xa(T2) + · · · + xa(Tm) = m. It follows from Lemma 18 that for any
(`, s)-block B with positive defect in αW−1

F , we have 2 6 s < ` 6 r − 1 = 5, since

otherwise ` = 6 and then r(C5
2 ⊕ C2k) = 5 = r(〈B〉) 6 r(〈WFB〉) 6 r(C5

2 ⊕ C2k), i.e.,
r(〈B〉) = r(〈WFB〉).

If d(WF ) = 4, then d(αW−1
F ) > 2 and |WF | = xa(WF ) + d(WF ) = m+ 4. By Lemma

22 there exists exactly a (`, s)-block B with 2 6 s < ` 6 5 in αW−1
F . Thus α = WFBα

′

with d(αW−1
F ) = d(B) = `− s > 2, where α′ is a product of some minimal block D with

d(D) = 0. It follows that 5 > ` > s + 2 > 4 and xa(α
′) = |α′|. This implies that B is

(5, 3), (5, 2), or (4, 2). Combining with Lemma 16 yields that B is not (5, 2), i.e., B is
(s+ 2, s) with 2 6 s 6 3. Since xa(α

′) = |α′| and xa(α) = 2k, by Proposition 4 we have

xa(α) = 2k = xa(WF ) + xa(B) + xa(α
′) = m+ s+ |α′|.

Hence,

|α| = |WF |+ |B|+ |α′| = (m+ 4) + (s+ 2) + (2k − s−m) = 2k + 6.

If d(WF ) = 3, then d(αW−1
F ) > 3 and |WF | = xa(WF ) + d(WF ) = m + 3. By

Lemma 23 there exist at most two disjoint minimal blocks with positive defect in αW−1
F .

If there exists exactly a (`, s)-block B with positive defect in αW−1
F , then 2 6 s < ` 6 5

and d(B) = d(αW−1
F ) > 3. It follows that ` = s + 3 = 5, i.e., B is (5, 2). This is a

contradiction to Lemma 16.
If there exist a (`, s)-block B and a (`1, s1)-block C with positive defects in αW−1

F

such that B,C are disjoint, then 2 6 s < ` 6 5 and 2 6 s1 < `1 6 5. Set α = WFBCα
′,

where α′ is a product of some minimal block D with d(D) = 0. It follows from Lemma
23 that either d(B) > 2, d(C) = 1 or

r(〈WFB〉) = r(〈WFC〉) = 4, 〈C〉 * 〈WFB〉 and 〈B〉 * 〈WFC〉.

If the former holds, then `1− s1 = 1 and 4 6 s+ 2 6 ` 6 5, i.e., B is (5, 3), (5, 2) or (4, 2).
Combining with Lemma 16 yields that B is not (5, 2), i.e., B is (s+ 2, s) with 2 6 s 6 3.
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Since xa(α) = 2k and xa(α
′) = |α′|, by Proposition 4 we have

xa(α) = 2k = xa(WF ) + xa(B) + xa(C) + xa(α
′) = m+ s+ s1 + |α′|.

Hence,

|α| = |WF |+ |B|+ |C|+ |α′| = (m+ 3) + (s+ 2) + `1 + (2k −m− s− s1) = 2k + 6.

If the latter holds, then 2 6 s 6 ` 6 5 and 2 6 s1 6 `1 6 5, i.e., B and C are contained
in {(4, 2), (4, 3), (5, 2), (5, 3), (5, 4)}. By Lemma 16 B is not (5, 2). If B is (5, 3), then
r(〈B〉) = 4 = r(〈WFB〉), a contradiction to Lemma 18. Hence, B is (4, 2), (4, 3) or (5, 4).
Similarly, C is (4, 2), (4, 3) or (5, 4). From d(αW−1

F ) = d(B) + d(C) > 3 it is easy to see
that one of B,C must be (4, 2). Without loss of generality, suppose B is (4, 2).

If C is (4, 3) or (5, 4), then by xa(α) = 2k, xa(α
′) = |α′| and Proposition 4 we have

xa(α) = 2k = xa(WF ) + xa(B) + xa(C) + xa(α
′) = m+ 2 + s1 + |α′|.

Hence,

|α| = |WF |+ |B|+ |C|+ |α′| = (m+ 3) + 4 + `1 + (2k − s1 −m− 2) = 2k + 6.

If C is (4, 2), then by d(WF ) = r(〈WF 〉) = 3 and r(G) = 5, there exist e0, e
′
0, e1, e2, e3

such that G = 〈e1, e2, e3, e0, e′0〉, where 〈WF 〉= 〈e1, e2, e3〉. Since
r(〈WFB〉) = r(〈WFC〉) = 4, 〈C〉 * 〈WFB〉 and 〈B〉 * 〈WFC〉, without loss of
generality we can suppose 〈WFB〉 = 〈WF , e0〉 and 〈WFC〉 = 〈WF , e

′
0〉. Let B2 and C2

be sequences (possibly empty) consisting of terms b | B with b ∈ 〈WF 〉 and c | C with
c ∈ 〈WF 〉 respectively. Set B1 = BB−12 and C1 = CC−12 . It is easy to see that
Supp(B1) ⊂ e0 + 〈WF 〉, Supp(C1) ⊂ e′0 + 〈WF 〉 and |B1|, |C1| ∈ {2, 4}. Let X = b1b

′
1 | B1

or X = c1c
′
1 | C1 or X = b2 | B2 or X = c2 | C2 and we have σ(X) ∈ 〈WF 〉. Then there

is a proper subsequence Y | WF such that Y X is a block. By (1) one deduces
1 6 x′a(X) 6 r − 2 = 4. It follows that |B2| = 0, since otherwise |B2| = |B1| = 2 and
then xa(B) = 2 = x′a(b1b

′
1) + x′a(b2) + x′a(b

′
2) > 2, where B1 = b1b

′
1 and B2 = b2b

′
2. Set

B = b1b2b3b4 with all bi ∈ e0 + 〈WF 〉 and we have 1 6 x′a(bibj) 6 4 for 1 6 i < j 6 4.
Then xa(B) = 2 = x′a(bibj) + x′a(B(bibj)

−1) > 2 i.e., x′a(bibj) = 1. It follows from Lemma
17 (ii) that x′a(bi) = k+1

2
for 1 6 i 6 4. Without loss of generality, we can set

B = e0 + (e′1 +
k + 1

2
a)(e′2 +

k + 1

2
a)(e′3 +

k + 1

2
a)(e′1 + e′2 + e′3 +

k + 1

2
a),

where each e′i is of order two with 〈e′1, e′2, e′3〉 = 〈WF 〉 = 〈e1, e2, e3〉. Similarly, we can set

C = e′0 + (e′′1 +
k + 1

2
a)(e′′2 +

k + 1

2
a)(e′′3 +

k + 1

2
a)(e′′1 + e′′2 + e′′3 +

k + 1

2
a),

where each e′′i is of order two with 〈e′′1, e′′2, e′′3〉 = 〈WF 〉 = 〈e1, e2, e3〉.
We claim that at least one of {e′′1 + e′′2, e

′′
1 + e′′3, e

′′
2 + e′′3} equal to e′i + e′j for some 1 6

i < j 6 3. If not, then we have {e′′1 + e′′2, e
′′
1 + e′′3, e

′′
2 + e′′3} ⊂ {e′1, e′2, e′3, e′1 + e′2 + e′3}.
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Since e′′1, e
′′
2, e
′′
3 are distinct, we have that e′′1 + e′′2, e

′′
1 + e′′3, e

′′
2 + e′′3 are distinct. Thus two of

{e′′1 + e′′2, e
′′
1 + e′′3, e

′′
2 + e′′3} are contained in {e′1, e′2, e′3}, say e′′1 + e′′2 = e′1 and e′′1 + e′′3 = e′2,

which implies that (e′′1 + e′′2) + (e′′1 + e′′3) = e′′2 + e′′3 = e′1 + e′2. This is a contradiction.
Without loss of generality, let e′′1 + e′′2 = e′1 + e′3. Furthermore, we have e′′1 + e′′2 = e′1 + e′3.
Assume to contrary that e′′1+e′′2 = e′1+e′3+ka. Take X = (e0+e′1+ k+1

2
a)(e0+e′3+ k+1

2
a) | B

and Z = (e′0+e′′1 + k+1
2
a)(e′0+e′′2 + k+1

2
a) | C. Then σ(XZ) = (k+2)a, i.e., XZ is (4, k+2).

Lemma 5 implies that 4 > k + 2, which is impossible. Hence,

σ((e0 + e′1+
k + 1

2
a)(e0 + e′2 +

k + 1

2
a)

(e′0 + e′′1 +
k + 1

2
a)(e′0 + e′′2 +

k + 1

2
a)) = e′2 + e′3 + 2a.

(6)

Take X = (e0 + e′2 + k+1
2
a)(e0 + e′3 + k+1

2
a) | B. Since σ(X) ∈ 〈WF 〉, there exists a

proper Y | WF such that Y X is a block. From σ(X) = (e′2 + e′3 + ka) + a it is easy to see
that x′a(X) = 1 and δ(X) = 0. Set σ(X) = e+a with e = e′2+e′3+ka. Let Y = Y ∗1 · · ·Y ∗m,
where Y ∗i | Ti. Since each Ti is a (∗, 1)-block, we have δ(Y ∗i ) > 1 is odd. Since δ(X) = 0,
xa(B) = 2 and xa(WF ) = m, by Lemma 6 (i) we have that

m 6
m∑
i=1

δ(Y ∗i ) = δ(Y ) + δ(X) 6 xa(WF ) + xa(B)− 2 = m,

i.e., δ(Y ) = m. It follows from Lemma 6 (ii) that

{σ(Y ), σ(WFY
−1)} = {e+

1

2
(xa(WF )− δ(Y ))a, e+

1

2
(xa(WF ) + δ(Y ))a} = {e, e+ma}.

Then σ(Y ) = e. Combining (6) yields that

σ(Y (e0 + e′1 +
k + 1

2
a)(e0 + e′2 +

k + 1

2
a)

(e′0 + e′′1 +
k + 1

2
a)(e′0 + e′′2 +

k + 1

2
a)) = e+ e′2 + e′3 + 2a = (k + 2)a,

i.e, Y (e0 + e′1 + k+1
2
a)(e0 + e′2 + k+1

2
a)(e′0 + e′′1 + k+1

2
a)(e′0 + e′′2 + k+1

2
a) = (|Y |+ 4, k + 2).

Since d(WF ) = 3 and d(Ti) > 1, by the additivity of defect, we have d(WF ) = 3 =
|WF | − xa(WF ) = |WF | −m =

∑m
i=1 d(Ti) > m. This implies that m 6 3 and |WF | 6 6.

By Lemma 5 we have that |Y |+4 > k+2, i.e., k−2 6 |Y | 6 |WF | 6 6. This is impossible
and the proof is completed.
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