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Abstract

In combinatorics on words, a word w over an alphabet Σ is said to avoid a
pattern p over an alphabet ∆ if there is no factor f of w such that f = h(p) where
h : ∆∗ → Σ∗ is a non-erasing morphism. A pattern p is said to be k-avoidable if
there exists an infinite word over a k-letter alphabet that avoids p. A pattern is
doubled if every variable occurs at least twice. Doubled patterns are known to be 3-
avoidable. Currie, Mol, and Rampersad have considered a generalized notion which
allows variable occurrences to be reversed. That is, h(V R) is the mirror image of
h(V ) for every V ∈ ∆. We show that doubled patterns with reversal are 3-avoidable.
We also conjecture that (classical) doubled patterns that do not contain a square are
2-avoidable. We confirm this conjecture for patterns with at most 4 variables. This
implies that for every doubled pattern p, the growth rate of ternary words avoiding
p is at least the growth rate of ternary square-free words. A previous version of this
paper containing only the first result has been presented at WORDS 2021.
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1 Introduction

Themirror image of the word w = w1w2 . . . wn is the word wR = wnwn−1 . . . w1. A pattern
with reversal p is a non-empty word over an alphabet ∆ =

!
A,AR, B,BR, C, CR . . .

"
such

that {A,B,C, . . .} are the variables of p. An occurrence of p in a word w is a non-erasing
morphism h : ∆∗ → Σ∗ satisfying h(XR) = (h(X))R for every variable X and such that
h(p) is a factor of w. The avoidability index λ(p) of a pattern with reversal p is the size
of the smallest alphabet Σ such that there exists an infinite word w over Σ containing no
occurrence of p. A pattern p such that λ(p) ! k is said to be k-avoidable. To emphasive
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that a pattern is without reversal (i.e., it contains no XR), it is said to be classical. A
pattern is doubled if every variable occurs at least twice.

Our aim is to strengthen the following result.

Theorem 1. [3, 10, 11] Every doubled pattern is 3-avoidable.

First, we extend it to patterns with reversal.

Theorem 2. Every doubled pattern with reversal is 3-avoidable.

Then, we notice that all the known classical doubled patterns that are 2-unavoidable
contain a square, such as AABB, ABAB, or ABCCBADD.

Conjecture 3. Every square-free doubled pattern is 2-avoidable.

Notice that Conjecture 3 is related to but independent of the following conjecture.

Conjecture 4. [11, 13] There exist only finitely many 2-unavoidable doubled patterns.

The proof of Conjecture 3 for patterns up to 3 variables follows from the 2-avoidability
of ABACBC, ABCBABC, ABCACB and ABCBAC since every square-free doubled
pattern with 3 variables contains one of these patterns as factor. We were able to verify
it for patterns up to 4 variables.

Theorem 5. Every square-free doubled pattern with at most 4 variables is 2-avoidable.

Finally, we obtain a lower bound on the number of ternary words avoiding a doubled
pattern. The factor complexity of a factorial language L over Σ is f(n) = |L ∩ Σn|. The
growth rate of L over Σ is limn→∞ f(n)

1
n . We denote by GR3(p) the growth rate of ternary

words avoiding the doubled pattern p.

Theorem 6. For every doubled pattern p, GR3(p) " GR3(AA).

Let v(p) be the number of distinct variables of the pattern p. In the proof of Theorem 1,
the set of doubled patterns is partitioned as follows:

1. Patterns with v(p) ! 3: the avoidability index of every ternary pattern has been
determined [10].

2. Patterns shown to be 3-avoidable with the so-called power series method:

• Patterns with v(p) " 6 [3]

• Patterns with v(p) = 5 and prefix ABC or length at least 11 [11]

• Patterns with v(p) = 4 and prefix ABCD or length at least 9 [11]

3. Ten sporadic patterns with 4 ! v(p) ! 5 whose 3-avoidability cannot be deduced
from the previous results: they have been shown to be 2-avoidable [11] using the
method in [10].

The proofs of Theorems 2 and 6 use the same partition. Sections 3 to 5 are each is
devoted to one type of doubled pattern with reversal. Theorem 5 is proved in Section 6
Theorem 6 is proved in Section 7
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2 Preliminaries

A variable that appears only once in a pattern is said to be isolated. The formula f
associated to a pattern p is obtained by replacing every isolated variable in p by a dot.
The factors between the dots are called fragments. An occurrence of a formula f in a
word w is a non-erasing morphism h such that the h-image of every fragment of f is a
factor of w. As for patterns, the avoidability index λ(f) of a formula f is the size of the
smallest alphabet allowing the existence of an infinite word containing no occurrence of f .
Recently, the avoidability of formulas with reversal has been considered by Currie, Mol,
and Rampersad [6, 7] and Ochem [12].

A word w is d-directed if for every factor f of w of length d, the word fR is not a
factor of w.

Remark 7. If a d-directed word contains an occurrence h of X.XR for some variable X,
then |h(X)| ! d− 1.

Recall that a formula is nice if every variable occurs at least twice in the same fragment.
In particular, a doubled pattern is a nice formula with exactly one fragment.

The avoidability exponent AE(f) of a formula f is the largest real x such that ev-
ery x-free word avoids f . Every nice formula f with v(f) " 3 variables is such that
AE(f) " 1 + 1

2v(f)−3
[15].

Let ≃ be the equivalence relation on words defined by w ≃ w′ if w′ ∈
!
w,wR

"
. Avoid-

ing a pattern up to ≃ has been investigated for every binary formula [5]. Remark that for
a given classical pattern or formula p, avoiding p up to ≃ implies avoiding simultaneously
all the variants of p with reversal.

Recall that a word is (β+, n)-free if it contains no repetition with exponent strictly
greater than β and period at least n. Finally, the repetition threshold RT (n) is the
smallest real number α such that there exists an infinite α+-free word over Σn. We
denote by wk any infinite RT (k)+-free word over Σk (wk is often called a Dejean word).

A morphism is m given in the format m(0)/m(1)/...
We denote by b2, b3, b4, and b5, respectively, the fixed-point of the well-known mor-

phisms:

• 01/10 [17],

• 012/02/1 [8],

• 01/21/03/23 [2]

• 01/23/4/21/0 [1]

3 Formulas with at most 3 variables

For classical doubled patterns with at most 3 variables, all the avoidability indices are
known. There are many such patterns, so it would be tedious to consider all their variants
with reversal.
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However, we are only interested in their 3-avoidability, which follows from the 3-
avoidability of nice formulas with at most 3 variables [14].

Thus, to obtain the 3-avoidability of doubled patterns with reversal with at most
3 variables, we show that every minimally nice formula with at most 3 variables is 3-
avoidable up to ≃.

The minimally nice formulas with at most 3 variables, up to symmetries, are deter-
mined in [14] and listed in the following table. Every such formula f is avoided by the

image by a q-uniform morphism of either any infinite
#

5
4

+
$
-free word w5 over Σ5 or any

infinite
#

7
5

+
$
-free word w4 over Σ4, depending on whether the avoidability exponent of f

is smaller than 7
5
.

Formula f = fR AE(f) q d freeness

ABA.BAB yes 1.5 9 9
#

131
90

+
, 28

$

w4; 002112201/001221122/001220112/001122012

ABCA.BCAB.CABC yes 1.333333333 6 8
#

4
3

+
, 25

$

w5; 021221/021121/020001/011102/010222

ABCBA.CBABC yes 1.333333333 4 9
#

30
23

+
, 18

$

w5; 2011/1200/1120/0222/0012

ABCA.BCAB.CBC no 1.381966011 9 4
#

62
45

+
, 37

$

w5; 020112122/020101112/020001222/010121222/000111222

ABA.BCB.CAC1 yes 1.5 9 4
#

67
45

+
, 37

$

w4; 001220122/001220112/001120122/001120112

ABCA.BCAB.CBAC yes2 1.333333333 6 6
#

31
24

+
, 31

$

w5; 012220/012111/012012/011222/010002

ABCA.BAB.CAC yes 1.414213562 6 8
#

89
63

+
, 61

$

w4; 021210/011220/002111/001222

ABCA.BAB.CBC no 1.430159709 6 7
#

17
12

+
, 61

$

w4; 011120/002211/002121/001222

ABCA.BAB.CBAC no 1.381966011 8 7
#

127
96

+
, 41

$

w5; 01222112/01112022/01100022/01012220/01012120

ABCBA.CABC no 1.361103081 6 8
#

4
3

+
, 25

$

w5; 021121/012222/011220/011112/000102

ABCBA.CAC yes 1.396608253 6 13
#

4
3

+
, 25

$

w5; 022110/021111/012222/012021/011220

1The formula ABA.BCB.CAC seems to be also avoided up to ≃ by b3.
2We mistakenly said in [14] that ABCA.BCAB.CBAC is different from its reverse.
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In the table above, the columns indicate respectively, the considered minimally nice for-
mula f , whether f is equivalent to its reversed formula, the avoidability exponent of f ,
the value q such that the corresponding morphism is q-uniform, the value such that the
avoiding word is d-directed, the suitable property of (β+, n)-freeness used in the proof
that f is avoided. The second line contains the infinite ternary word avoiding f .
As an example, we show that ABCBA.CAC is avoided by g(w5), where

g = 022110/021111/012222/012021/011220. First, we check that g(w5) is
#

4
3

+
, 25

$
-free

using the main lemma in [10], that is, we check the
#

4
3

+
, 25

$
-freeness of the g-image of

every
#

5
4

+
$
-free word of length at most

2×4
3

4
3
−5
4

= 32. Then we check that g(w5) is 13-

directed by inspecting the factors of g(w5) of length 13. For contradiction, suppose that
g(w5) contains an occurrence h of ABCBA.CAC up to ≃. Let us write a = |h(A)|,
b = |h(B)|, c = |h(C)|.

Suppose that a " 25. Since g(w5) is 13-directed, all occurrences of h(A) are identical.

Then h(ABCBA) is a repetition with period |h(ABCB)| " 25. So the
#

4
3

+
, 25

$
-freeness

implies the bound 2a+2b+c
a+2b+c

! 4
3
, that is, a ! b+ 1

2
c.

In every case, we have
a ! max

!
b+ 1

2
c, 24

"
.

Similarly, the factors h(BCB) and h(CAC) imply

b ! max
!

1
2
c, 24

"

and
c ! max

!
1
2
a, 24

"
.

Solving these inequalities gives a ! 36, b ! 24, and c ! 24. Now we can check exhaustively
that g(w5) contains no occurrence up to ≃ satisfying these bounds.

Except for ABCBA.CBABC, the avoidability index of the nice formulas in the above
table is 3. So the results in this section extend their 3-avoidability up to ≃.

4 The power series method

The so-called power series method has been used [3, 11] to prove the 3-avoidability of
many classical doubled patterns with at least 4 variables and every doubled pattern with
at least 6 variables, as mentioned in the introduction.

Let p be such a classical doubled pattern and let p′ be a doubled pattern with reversal
obtained by adding some −R to p. Without loss of generality, the leftmost appearance
of every variable X of p remains free of −R in p′. Then we will see that p′ is also 3-
avoidable. The power series method is a counting argument that relies on the following
observation. If the h-image of the leftmost appearance of the variable X of p is fixed, say
h(X) = wX , then there is exactly one possibility for the h-image of the other appearances
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of X, namely h(X) = wX . This observation can be extended to p′, since there is also
exactly one possibility for h(XR), namely h(XR) = wR

X .
Notice that this straightforward generalization of the power series method from clas-

sical doubled patterns to doubled patterns with reversal cannot be extended to avoiding
a doubled pattern up to ≃. Indeed, if h(X) = wX for the leftmost appearance of the
variable X and wX is not a palindrome, then there exist two possibilities for the other
appearances of X, namely wX and wR

X .

5 Sporadic patterns

Up to symmetries, there are ten doubled patterns whose 3-avoidability cannot be deduced
by the previous results. They have been identified in [11] and are listed in Table 1.

Doubled pattern Avoidability exponent
ABACBDCD 1.381966011
ABACDBDC 1.333333333
ABACDCBD 1.340090632
ABCADBDC 1.292893219
ABCADCBD 1.295597743
ABCADCDB 1.327621756
ABCBDADC 1.302775638
ABACBDCEDE 1.366025404
ABACDBCEDE 1.302775638
ABACDBDECE 1.320416579

Table 1: The seven sporadic patterns on 4 variables and the three sporadic patterns on 5
variables

Let h be the 9-uniform morphism

020022221/011111221/010202110/010022112/000022121.

Using the same method as in Section 3, we show that h(w5) avoids up to ≃ these ten
sporadic patterns simultaneously. The suitable properties are that h(w5) is 7-directed and#

139
108

+
, 46

$
-free.

6 Square-free doubled patterns with at most 4 variables

Here we show Theorem 5, that is, every square-free doubled pattern with at most 4
variables is 2-avoidable. We list them as follows:

• Among patterns that are equal up to letter permutation, we only list the lexico-
graphically least.
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• If a pattern is distinct from its mirror image, we only list the lexicographically least
among the pattern and its mirror image.

• We do not include the seven sporadic patterns on 4 variables from Table 1, which
are 2-avoidable [11].

• We do not list patterns that contain an occurrence of a (strictly smaller) square-free
doubled pattern.

Table 2 contains every pattern p in this list with an infinite binary word avoiding p.
Let us detail how to read Table 2:

• If the avoiding word is a pure morphic word mω(0), then m is given.

• If the avoiding word is a morphic word f(mω(0)), then we write m; f .

• If the avoiding word is of the form f(wk), then we write wk; f .

The proofs that a (pure) morphic word avoids a pattern use Cassaigne’s algorithm [4] and
the proofs that a morphic image word a Dejean word avoids a pattern use the technique
described in Section 3.

7 Growth rate of ternary words avoiding a doubled pattern

Theorem 6 obviously holds for p = AA. Without loss of generality, we do not need to
consider a doubled pattern p that contains an occurrence of another doubled pattern. In
particular, p is square-free. So we need to show that GR3(p) is at least GR3(AA), which
is close to 1.30176 [16].

If p is 2-avoidable, then p is avoided by sufficiently many ternary words. By Lemma

4.1 in [10], λ(p) = 2 implies that GR3(p) " 2
1
2 > GR3(AA). Thus, Conjecture 3 implies

Theorem 6. By Theorem 5, we can assume that v(p) " 5. We can also rule out the three
sporadic patterns on 5 variables from Table 1, which are 2-avoidable [11].

According to the partition of the set of doubled patterns mentioned in the introduction,
there remains to consider the doubled patterns p whose 3-avoidability has been obtained
via the power series method. In that case, we even get GR3(p) > 2 > GR3(AA).

8 Conclusion

Unlike classical formulas, we know that there exist avoidable formulas with reversal of
arbitrarily high avoidability index [12]. Maybe doubled patterns and nice formulas are
easier to avoid. We propose the following open problems.

• Are there infinitely many doubled patterns up to ≃ that are not 2-avoidable?

• Is there a nice formula up to ≃ that is not 3-avoidable?
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Doubled pattern p Binary word avoiding p
ABCABDCBD w5; 0010101110/0010011000/0001111110/0001110101/0000011001
ABCACDCBD w5; 000101010111/000100110111/000011001111/000001011111/000000111111
ABCBABDBCBD b4; 01/00/10/11
ABCBADCBCD b4; 0000/0011/1111/1010
ABCBDACBCD b4; 01/00/10/11
ABCBDBCACBCD b2
ABCBDCBACBCD b4; 1000/0111/0110/0010
ABCDACBD w5; 00100110111111000/00100110111011000/

00011110110101010/00001111111011010/00001010101011111
ABCDBACBD w6; 010101111100/010010100000/001001110111/000111111101/000101010111/000100011011
ABCDBADC w5; 10001000101111101010110/00000110110101000111111/

00000101011100100111111/00000011101010010011111/00000011011000101011111
ABCDBCBACBD 001/011
ABCDCACBD b5; 0011110110000/0011010100110/0001111100111/0001110001000/0001101101111
ABCDCBABCD Every occurrence h of p is a repetition with period |h(ABCDCB)| ! 6 and exponent

|h(ABCDCBABCD)|
|h(ABCDCB)| = 2a+3b+3c+2d

a+2b+2c+d
= 3

2
+ a+d

2(a+2b+2c+d)
> 3

2
.

Thus, every
!

4
3
+
, 6

"
-free binary word avoids p [9].

ABCDCBCACBD b5; 00/01/10/110/111

ABACDCBCD w5; 10011011000/01011111000/00111010100/00100100111/00001111111
ABCABDBCD w5; 0010111111/0010011110/0010011100/0000010101/0000001101
ABCADBCBD w5; 001011010000/001001111000/000110011001/000011101010/000010111111
ABCADCBCD w5; 001101111000/001101101000/001001111111/000101110101/000001100101
ABCBADBDC w5; 0011111110110/0001010111100/0000101101110/0000011010111/0000001011111
ABCBDABCD w4; 1111/1101/0010/0000
ABCBDABDC w5; 101110000001/101100100001/011111110100/010001111110/010001101110
ABCBDACBD b5; 00/01/10/110/111
ABCBDADBC w5; 00110111010010/00110000000010/00011111111011/00011110101000/00010101100011
ABCBDADBDC b5; 111/101/000/011/001
ABCBDBABDBC b5; 00/01/10/110/111
ABCBDBABDC b5; 000/011/001/111/101
ABCBDBACBCD b4; 01/00/10/11
ABCBDBACD w5; 0001111101010/0001110111000/0001011111111/0000111001111/0000011011001
ABCBDBADBDC 011/100
ABCBDBADC w5; 00111101110000/00111011000010/00111010100000/00011001001111/00010101111111
ABCBDBCABCD b5; 00/01/10/110/111
ABCBDBCACBD b5; 00/01/10/110/111
ABCBDBCAD w5; 00011110110011/00011101101001/00011011010100/00010111111110/00000011111010
ABCBDBCBABCD b4; 000/111/10/01
ABCBDBCBACBCD b2
ABCBDBCBACBD b4; 00/01/10/11
ABCBDBCBACD 001/110
ABCBDCABCD b5; 00/10/111/01/011
ABCBDCABD w5; 10000000011/01111010010/01101100010/01011111110/00001010101
ABCBDCACBD b5; 111/101/000/100/110
ABCBDCBABCD b5; 00/01/10/110/111
ABCBDCBACBD b5; 00/01/10/110/111
ABCBDCBACD b5; 00/01/10/1100/111
ABCBDCBAD w5; 001101101100/001011111111/001001111100/000110010100/000001110100
ABCBDCBCABD b4; 000/111/10/01
ABCBDCBCAD w5; 1111100/1100110/0110101/0010010/0000101
ABCDADCB w5; 0000010001111110101000100111110111/0000010001111100100001100101101111/

0000001001111111010000110101111011/0000001001111110110100010101111011/
0000000101110010000111111010010111

ABCDBABDC w5; 0011111110101/0010110111010/0010101110000/0000111111001/0000110110001
ABCDBADBC w5; 01011111111/01001000111/00101000011/00011110101/00000001011
ABCDBCACBD b5; 101/000/110/111/100
ABCDBCBACD w5; 0110101/0100000/0011110/0001111/0000111
ABCDBCBAD w5; 00010111001010/00001111010101/00001110001010/00001100111111/00001100010110
ABCDBDAC w5; 00000011011011001110001111011010110000101111010100100101110111/

00000011011011000010011110110101000010101111010100100101110111/
00000010110011110101010011000111000010101111010100100101110111/
00000010101101101000100011111101000010101111010100100101110111/
00000010101011001110001111010011000010101111010100100101110111

ABCDBDADBC w5; 01111101/00111100/00111001/00110110/00000101
ABCDCACDB w5; 00110001000110/00101011111110/00011111010011/00010101011111/00000001010011

Table 2: Binary words avoiding doubled patterns
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A first step would be to improve Theorem 2 by generalizing the 3-avoidability of
doubled patterns with reversal to doubled patterns up to ≃. Notice that the results in
Sections 3 and 5 already consider avoidability up to ≃. However, the power series method
gives weaker results. Classical doubled patterns with at least 6 variables are 3-avoidable
because

1− 3x+

%
3x2

1− 3x2

&v

has a positive real root for v " 6. The (basic) power series for doubled patterns up to ≃
with v variables would be

1− 3x+

%
6x2

1− 3x2
− 3x2 + 3x4

1− 3x4

&v

.

The term 6x2

1−3x2 counts for twice the term 3x2

1−3x2 in the classical setting, for h(V ) and

h(V )R. The term 3x2+3x4

1−3x4 corrects for the case of palindromic h(V ), which should not be
counted twice. This power series has a positive real root only for v " 10. This leaves
many doubled patterns up to ≃ whose 3-avoidability must be proved with morphisms.

Looking at the proof of Theorem 2, we may wonder if a doubled pattern with reversal
is always easier to avoid than the corresponding classical pattern. This is not the case:
backtracking shows that λ(ABCARCRB) = 3, whereas λ(ABCACB) = 2 [10].

To get a more precise version of both conjectures 3 and 4, we plan to obtain the
(conjectured) list of all 2-unavoidable doubled patterns, which should be a finite list
containing no square-free pattern.

References

[1] G. Badkobeh and P. Ochem. Characterization of some binary words with few squares.
Theoret. Comput. Sci. 588 (2015), 73–80.

[2] K.A. Baker, G.F. McNulty, and W. Taylor. Growth problems for avoidable words,
Theoret. Comput. Sci. 69 (1989), 319–345.

[3] J. Bell, T. L. Goh. Exponential lower bounds for the number of words of uniform
length avoiding a pattern. Inform. and Comput. 205 (2007), 1295-1306.

[4] J. Cassaigne. An Algorithm to Test if a Given Circular HD0L-Language Avoids a
Pattern. IFIP Congress, pages 459–464, 1994.

[5] J. Currie and L. Mol. The undirected repetition threshold and undirected pattern
avoidance. Theor. Comput. Sci. 866 (2021), 56–69.

[6] J. Currie, L. Mol, and N. Rampersad. A family of formulas with reversal of high
avoidability index. International Journal of Algebra and Computation 27(5) (2017),
477–493.

[7] J. Currie, L. Mol, and N. Rampersad. Avoidance bases for formulas with reversal.
Theor. Comput. Sci. 738 (2018), 25–41.

the electronic journal of combinatorics 30(1) (2023), #P1.50 9



[8] M. Hall, Jr., “Generators and relations in groups–The Burnside problem”. In Lectures
on Modern Mathematics, Vol. 2, Wiley, New York, pp. 42–92.

[9] L. Ilie, P. Ochem, and J.O. Shallit. A generalization of repetition threshold. Theoret.
Comput. Sci. 92(2) (2004), 71–76.

[10] P. Ochem. A generator of morphisms for infinite words. RAIRO: Theoret. Informatics
Appl. 40 (2006), 427–441.

[11] P. Ochem. Doubled patterns are 3-avoidable. Electron. J. Combinatorics. 23(1)
(2016), #P1.19.

[12] P. Ochem. A family of formulas with reversal of arbitrarily high avoidability index.
Theoret. Comput. Sci. 896 (2021), 168–170.

[13] P. Ochem and A. Pinlou. Application of entropy compression in pattern avoidance.
Electron. J. Combinatorics. 21(2):#RP2.7, (2014).

[14] P. Ochem and M. Rosenfeld. On some interesting ternary formulas. Electron. J.
Combininatorics. 26(1):#P1.12 (2019).

[15] P. Ochem and M. Rosenfeld. Avoidability of palindrome patterns. Electron. J. Com-
bininatorics. 28(1):#P1.4, (2021).

[16] A. Shur. Growth rates of complexity of power-free languages. Theoret. Comput. Sci.
411(34-36) (2010), 3209–3223.
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