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Abstract

In this paper, we construct a bijection from a set of bounded free Motzkin paths
to a set of bounded Motzkin prefixes that induces a bijection from a set of bounded
free Dyck paths to a set of bounded Dyck prefixes. We also give bijections between
a set of bounded cornerless Motzkin paths and a set of t-core partitions, and a set
of bounded cornerless symmetric Motzkin paths and a set of self-conjugate t-core
partitions. As an application, we get explicit formulas for the number of ordinary
and self-conjugate t-core partitions with a fixed number of corners.

Mathematics Subject Classifications: 05A19, 05A17

1 Introduction

The main result of this paper is finding a bijection between two sets of paths in a bounded
strip, which have been studied by several researchers (for example, see [1, 5, 6, 7, 10, 13]).
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A Motzkin path of length n is a path from (0, 0) to (n, 0) which stays weakly above the
x-axis and consists of steps u = (1, 1), d = (1,−1), and f = (1, 0), called up, down, and
flat steps, respectively. A free Motzkin path of length n is a path which starts at (0, 0) or
(0, 1), ends at (n, 0), and consists of u, d, and f . A Motzkin path with no restrictions on
the end point is called a Motzkin prefix. For a given path, a peak is a point preceded by
an up step and followed by a down step and a valley is a point preceded by a down step
and followed by an up step. We say that a path is cornerless if it has no peaks or valleys.

For non-negative integers m, r, and k, let F(m, r, k) be the set of free Motzkin paths
of length m + r with r flat steps that are contained in the strip −⌊k

2
⌋ ! y ! ⌊k+1

2
⌋. We

denote M(m, r, k) the set of Motzkin prefixes of length m + r with r flat steps that are
contained in the strip 0 ! y ! k. We define Lk to be one of the boundaries of each path
depending on the value of k. More specifically, for P ∈ F(m, r, k), denote Lk by

y =

!
⌊k+1

2
⌋ if k is odd,

−⌊k
2
⌋ if k is even.

Let F(m, r, k) (resp. M(m, r, k)) be the set of paths in F(m, r, k) (resp. M(m, r, k))
which touch the line Lk (resp. y = k) so that

F(m, r, k) =
k"

i=0

F(m, r, i) and M(m, r, k) =
k"

i=0

M(m, r, i).

Our main theorem states the following.

Theorem 1. For given non-negative integers m, r, and k, there is a bijection between the
sets F(m, r, k) and M(m, r, k).

To prove Theorem 1, we construct a map φm,k and show that it is bijective in Sections
2.1 and 2.2.

Using the adjacency matrices of path graphs, Cigler [5] showed that

|An,k| = |Bn,k| =
#

j∈Z

(−1)j
$

n

⌊n+(k+2)j
2

⌋

%

and expected the existence of a simple bijection between An,k and Bn,k, where An,k is the
set of paths of length n which consist of u and d only, start at (0, 0), end on height 0 or −1,
and are contained in the strip −⌊k+1

2
⌋ ! y ! ⌊k

2
⌋ of width k, and Bn,k is the set of paths

of length n which consist of u and d only, start at (0, 0) and are contained in the strip
0 ! y ! k. Recently, Gu and Prodinger [10] and Dershowitz [7] found bijections between
An,k and Bn,k independently. We note that Theorem 1 with no flat step (equivalently,
r = 0) gives a new bijection between An,k and Bn,k since F(n, 0, k) can be obtained from
An,k by mirroring left and right and flipping along the x-axis, and M(n, 0, k) = Bn,k as it
is. We should mention that the bijection φm,k is inspired by the bijection due to Gu and
Prodinger, but there is a property that φm,k holds whereas Gu and Prodinger’s does not.
This property is described in Section 2.3.
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Let F c(m, r, k) be the set of cornerless free Motzkin paths in F(m, r, k) that never
start with a down (resp. up) step for odd (resp. even) m and Mc(m, r, k) be the set of
cornerless Motzkin prefixes in M(m, r, k) that end with a flat step. In Section 3.1, we
show that φm,k induces a bijection between F c(m, r, k) and Mc(m, r, k).

In Section 3.2, we combinatorially interpret t-core partitions by cornerless Motzkin
paths. We describe a bijection between a set of cornerless Motzkin paths and a set of
t-core partitions. As an application of this bijection, we count the number of t-core
partitions with m corners. In Section 3.3, we also count the number of self-conjugate t-
core partitions with m corners by constructing bijections between any pair of the following
sets: a set of cornerless free Motzkin paths, a set of cornerless symmetric Motzkin paths,
and a set of self-conjugate t-core partitions.

2 Bijection

In this section, we recursively define a map

φm,k :
"

r!0

F(m, r, k) →
"

r!0

M(m, r, k),

according to the values of m and k, and then show that it is bijective. For simplicity, we
define some notations first. For a path P = p1p2 . . . pn, where each pi denotes the ith step
in P , let

P := p1p2 . . . pn and
←−
P := pnpn−1 . . . p1,

where u := d, d := u, and f := f .

2.1 Map φm,k

Now we define the map. Let P be a path in the set F(m, r, k) for some r " 0, and γ " 0
denote the maximum number such that fγ is a suffix of P .

Case 0. If k = 0 or k = 1, then the map is defined as

φm,k(P ) :=
←−
P .

We show the bijection φm,1 in Figure 1.

Now assume k > 1. A special step of P is the first step ending on the line Lk. We
write P as

P = AfαsfβBfγ, (1)

where s is the special step, α " 0 (resp. β " 0) is the maximum number of consecutive
flat steps right before (resp. after) the step s, A denotes the prefix of P before the subpath
fαs, and B denotes the subpath between the subpaths sfβ and fγ. Note that A and B
never end with a flat step (See Figure 2).
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fβ

B fγ

fγ ←−
B

fβ
↕

(a) For odd m

f ε u
fβ

B fγ

fγ ←−
B

fβ

d f ε

↕

(b) For even m

Figure 1: The bijections φm,1 in Case 0

A

fαs
fβ

B fγ

k+1
2

−k−1
2

Lk

(a) For odd k

A

fαs
fβ

B
fγ

k
2

−k
2 Lk

(b) For even k

Figure 2: The division of P for k > 1

Let the last vertex on the line Lk (resp. y = k) be the turning point of a path in
F(m, r, k) (resp. M(m, r, k)). We call the first step after the turning point starting from
the x-axis and heading away from the line Lk the break step, and denote it by b. If P has
the break step b, let δ " 0 be the maximum number of consecutive flat steps right before
the step b and we write B as B1f

δbB2.

Case 1. Let m and k have the same parity with k > 1.

i) If there is no break step, then we write P as (1) and define the map as

φm,k(P ) :=

!
Q if k is odd,

Q if k is even,
(2)

where
Q := fγBfαsAfβ.

Note that φm,k(P ) ends on the line y = k.

ii) If there is the break step b, then P can be written as

P = AfαsfβB1f
δbB2f

γ. (3)

Note that B1 is a subpath starting from the line Lk and ending at the x-axis
with a down (resp. up) step, and B2 is a subpath starting from the line
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y = (−1)k and ending at the x-axis with a non-flat step for odd (resp. even)
k. Define

φm,k(P ) :=

!
QC if k is odd,

QC if k is even,
(4)

where

Q := fγB1f
αsAfβb and C :=

!
φm′,k′(B2f

δ) if k is odd,

φm′,k′(B2f
δ) if k is even.

Note that m′ is odd in this case. The bijection in Case 1 is illustrated in
Figure 3.

A

fαs
fβ

B fγ

k+1
2

−k−1
2

Lk

fγ B

fαs A

fβ

k

k+1
2

↕

(a) Case 1–i) for odd m and k

A

fαs
fβ

B1 f δ

b B2

fγ

k+1
2

−k−1
2

Lk

fγ B1

fαs A

fβ

b

C

k

k+1
2

↕

(b) Case 1–ii) for odd m and k

A

fαs
fβ

B fγ

k
2

−k
2 Lk

fγ B

fαs A

fβ

k

k
2

↕

(c) Case 1–i) for even m and k

A

fαs
fβ

B1
f δ

b B2

fγ

k
2

−k
2 Lk

fγ B1

fαs A

fβ

b

C

k

k
2

↕

(d) Case 1–ii) for even m and k

Figure 3: The bijection φm,k in Case 1

Case 2. Let m and k have different parity with k > 1. In this case we write A as A1aA2,
where a is the first up (resp. down) step starting from the x-axis (resp. y = 1)
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in P for odd (resp. even) k. Here, A1 and A2 can be empty. Note that if A2 is
non-empty, then it never ends with a flat step. Similar to the map in Case 1–ii),
we define the map as (4), where Q and C are given as follows.

i) If there is no break step, then P can be written as

P = A1aA2f
αsfβBfγ, (5)

and we set

Q := fγBfαsA2f
βa and C :=

!
φm′,k′(A1) if k is odd,

φm′,k′(A1) if k is even.
(6)

ii) If there is the break step b, then P can be written as

P = A1aA2f
αsfβB1f

δbB2f
γ, (7)

and we set

Q := fγB1f
αsA2f

βa and C :=

!
φm′,k′(A1bB2f

δ) if k is odd,

φm′,k′(A1bB2f
δ) if k is even.

(8)

Note that m′ is even in this case. The bijection in Case 2–ii) is illustrated in
Figure 4. By regarding B1 as B and f δbB2 as ∅ in this figure, we see the bijection
in Case 2–i).

Lemma 2. For given non-negative integers m and k, the map φm,k is well-defined.

Proof. Let P ∈ F(m, r, k). In Case 0, it is clear that φm,k(P ) =
←−
P ∈ M(m, r, k). Now

consider Case 1–i). In this case, for a path P as in (1), we define φm,k(P ) as (2). If k is odd
(resp. even), then A is a subpath of P that starts from the line y = 1 (resp. x-axis), ends
on the line y = (−1)k−1⌊(k−1)/2⌋, and is contained in the strip −⌊(k−1)/2⌋ ! y ! ⌊k/2⌋,
while B is a subpath that starts from the line y = (−1)k−1⌊(k + 1)/2⌋, ends on the x-
axis, and is contained in the strip −⌊k/2⌋ ! y ! ⌊(k + 1)/2⌋. Hence, the prefix fγBfα

(resp. fγBfα) of φm,k(P ) is a Motzkin prefix that ends at the line y = ⌊(k + 1)/2⌋ and
is contained in the strip 0 ! y ! k, and the remaining subpath sAfβ (resp. sAfβ) starts
from the line y = ⌊(k + 1)/2⌋, ends on the line y = k, and is contained in the strip
1 ! y ! k for odd (resp. even) k. Therefore, φm,k(P ) ∈ M(m, r, k).

For the remaining cases, we write A as A1aA2 and B as B1f
δbB2 if necessary. Now

we use the induction on k. For any k′ < k, suppose that φm′,k′(P
∗) ∈ M(m′, r′, k′) for

any paths P ∗ ∈ F(m′, r′, k′). Let P ∈ F(m, r, k), φm,k(P ) is defined as QC or QC, where
Q and C are of the forms in (4), (6), or (8). In any cases, similar to Case 1–i), Q or Q
is a prefix of φm,k(P ) that starts from the x-axis, touches the line y = k, ends on the
line y = k − 1, and is contained in the strip 0 ! y ! k. Since C ∈ M(m′, r′, k′) with
k′ < k, C is a suffix of φm,k(P ) that starts from the line y = k − 1 and is contained in
the strip k − k′ − 1 ! y ! k − 1 by the induction hypothesis. Thus, we conclude that
φm,k(P ) ∈ M(m, r, k).

the electronic journal of combinatorics 30(1) (2023), #P1.52 6



A1

a A2

fαs
fβ

B1 f δ

b
B2

fγ

k+1
2

−k−1
2

Lk

fγ B1

fαs A2

fβ

a

C

k+1
2

k

A1

b
B2 f δ

↕

(a) For even m and odd k

A1

a
A2

fαs
fβ

B1

f δ
b

B2 fγ

k
2

−k
2 Lk

fγ B1

fα
s

A2

fβ

a

C
k
2

k

A1

b
B2 f δ

↕

(b) For odd m and even k

Figure 4: The bijection φm,k in Case 2–ii)

Example 3. For given free Motzkin paths, let us apply the map φm,k.

(a) For the path
P1 = fduduufdfduufdff ∈ F(10, 6, 2),

by applying Case 1–ii) and Case 0, we get

φ10,2(P1) = ffuduufdfdufuddf ∈ M(10, 6, 2)

since A = ∅, β = δ = 0, and C = φ1,1(B2f
δ) in (3), and φ1,1(fd) =

←−
fd = uf .

(b) For the path

P2 = fduduufudfdduufudfdffdfufuddfuf ∈ F(20, 11, 3),
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by applying Case 2-ii), we obtain

φ20,3(P2) = fufuuddfdufufudffduddfufudfduuf ∈ M(20, 11, 3)

since A2 = ∅, β = 0, and C = φ10,2(A1bB2f
δ) = φ10,2(P1) in (7), where P1 is the

path given in (a).

See Figure 5 for further details.

fα
s

B1
b B2

fγ1

−1 L2

↔ fγ B1

fα s b

C

2

0

(a) A bijection φ10,2 in Case 1–ii)

A1

a
fαs

B1

fδ

b B2

fγ

2

−1

L3

↕

fγ
B1

fαs a

C

3

0

(b) A bijection φ20,3 in Case 2–ii)

Figure 5: Examples of the map φm,k

2.2 Map ψm,k

Now we define a map

ψm,k :
"

r!0

M(m, r, k) →
"

r!0

F(m, r, k)

and show that ψm,k = φ−1
m,k. Let S be a path in the set M(m, r, k) for some r " 0.

Case 0. For k = 0 or 1, we define ψm,k(S) =
←−
S .

Recall that the last vertex on the line y = k is called the turning point of a path in
M(m, r, k). We define a critical point of S as the rightmost point on the x-axis which
locates before the turning point.
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Case I. For k > 1, assume that S is a path which ends on the line y = k. Note that m
and k have the same parity and we write

S = fγB∗fαu∗A∗fβ,

where u∗ is the first up step starting from the line y = ⌊(k+1)/2⌋ after the critical
point of S, γ " 0 (resp. β " 0) is the maximum number of consecutive initial
(resp. final) flat steps of P , and α " 0 is the maximum number of consecutive
flat steps before the step u∗. Hence, B∗ (resp. A∗) is the subpath of S such
that it starts from the x-axis (resp. y = ⌊(k + 1)/2⌋ + 1), ends on the line
y = ⌊(k + 1)/2⌋ (resp. y = k), and is contained in the strip 0 ! y ! k (resp.
1 ! y ! k). We define

ψm,k(S) :=

!
A∗fαu∗fβB∗fγ if k is odd,

A∗fαu∗fβB∗fγ if k is even.
(9)

Case II. Suppose that S is a path which does not end on the line y = k for k > 1. In this
case, we write

S = fγB∗fαu∗A∗fβd∗C∗,

where u∗, A∗, B∗,α, β, γ is defined as in Case I, d∗ is the last down step starting
from the line y = k, and C∗ is a suffix of S after the step d∗. Note that
C∗ ∈ M(m′, r′, k′) for some k′ < k since C∗ is contained in the strip 0 ! y ! k−1.

i) Let m and k have the same parity, which follows that m′ is odd. We write
ψm′,k′(C

∗) = B•f δ, where δ " 0 is the maximum number of consecutive flat
steps at the suffix of ψm′,k′(C

∗). We set

ψm,k(S) :=

!
A∗fαu∗fβB∗f δd∗B•fγ if k is odd,

A∗fαu∗fβB∗f δd∗B•fγ if k is even.
(10)

ii) Let m and k have different parity. In this case, m′ is even. We divide two
cases whether ψm′,k′(C

∗) goes above the x-axis or not.

If ψm′,k′(C
∗) does not go above the x-axis, then we write ψm′,k′(C

∗) = A•

and define

ψm,k(S) :=

!
A•d∗A∗fαu∗fβB∗fγ if k is odd,

A•d∗A∗fαu∗fβB∗fγ if k is even.
(11)

If ψm′,k′(C
∗) goes above the x-axis, then we write ψm′,k′(C

∗) = A•u•B•f δ,
where u• is the first up step starting from the x-axis and δ " 0 is the
maximum number of consecutive flat steps at the suffix of ψm′,k′(C

∗). We
define

ψm,k(S) :=

!
A•d∗A∗fαu∗fβB∗f δu•B•fγ if k is odd,

A•d∗A∗fαu∗fβB∗f δu•B•fγ if k is even.
(12)
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Lemma 4. The map ψm,k is the inverse map of φm,k.

Proof. For k = 0 or 1, it is clear that ψm,k(φm,k(P )) = P for any path P ∈ F(m, r, k) by
the construction.

From now on, we set k > 1. Let P ∈ F(m, r, k) when m and k have the same
parity and there is no break step in P so that P is represented as P = AfαsfβBfγ.
When k is odd (resp. even), it follows from (2) and (9) that ψm,k(φm,k(P )) = P since
A = A∗ (resp. A = A∗), s = u∗ (resp. s = u∗), and B = B∗ (resp. B = B∗), where
S = φm,k(P ) ∈ M(m, r, k).

Now, we assume that ψm′,k′(S
∗) ∈ F(m′, r′, k′) for any path S∗ ∈ M(m′, r′, k′) with

k′ < k. Let P ∈ F(m, r, k) when m and k have the same parity and there is a break
step b in P so that P is represented as P = AfαsfβB1f

δbB2f
γ. For odd (resp. even) k,

according to (4) and (10), ψm,k(φm,k(P )) = P since A = A∗ (resp. A = A∗), s = u∗ (resp.
s = u∗), B1 = B∗ (resp. B1 = B∗), b = d∗ (resp. b = d∗), and B2 = B• (resp. B2 = B•).

Similarly, by (6), (8), (11), and (12), we can see that ψm,k(φm,k(P )) = P , where
P ∈ F(m, r, k) when m and k have different parity with k > 1.

Example 5. For given Motzkin prefixes,

S1 = uufufdddufuuf ∈ M(9, 4, 3),

S2 = uufuufdddfdfuuudfddf ∈ M(14, 6, 4),

S3 = fuuufuduufuffdddfddfuuufufdddufuuf ∈ M(23, 11, 6),

we have

ψ9,3(S1) = ufddfdfuuudfd ∈ F(9, 4, 3),

ψ14,4(S2) = dfdfuuuufddfdfuuudfd ∈ F(14, 6, 4),

ψ23,6(S3) = ufufddduddfdfdffuuuuufddfdfuuudfdf ∈ F(23, 11, 6).

See Figure 6 for further details.

2.3 A property of φm,k

For a free Motzkin path P , a maximal subpath in P with no down (resp. up) step is
called an upward (resp. downward) run if it contains at least one up (resp. down) step.
Let run(P ) denote the total number of runs in P . If P has no flat step, then the total
number of peaks and valleys of P is counted by run(P ) − 1. For example, the path
P = uufufdddufuuf has two upward runs, uufuf and ufuuf , and one downward run
fddd so that run(P ) = 3. Note that run(P ) = 0 if and only if P is empty or a path
consisting of flat steps only, and run(P ) = run(P ). For a path P ∈ F(m, r, k), the
following proposition shows that run(P ) and run(φm,k(P )) are differ by at most 1.

Proposition 6. For positive integers m and k, let P ∈ F(m, r, k) be given.

the electronic journal of combinatorics 30(1) (2023), #P1.52 10



B∗ u∗fβ
3

0

↕

u∗fβ

B∗

2

−1

L3

(a) A bijection ψ9,3 in Case I

B∗ fαu∗
A∗

fβ

d∗

C∗

4

0

↕

A∗

fαu∗

fβ

B∗ d∗ B•
2

−2 L4

(b) A bijection ψ14,4 in Case II–i)

fγ

B∗ fαu∗ A∗

fβ

d∗

C∗

6

0

↕

A•
d∗

A∗

fαu∗

fβ

B∗ u•
B• fγ

3

−3 L6

(c) A bijection ψ23,6 in Case II–ii)

Figure 6: Examples of the map ψm,k

(a) If P starts with an upward run, then

run(φm,k(P )) = run(P )− {1− (−1)m}/2.

(b) If P starts with a downward run, then

run(φm,k(P )) = run(P )− {1 + (−1)m}/2.

Proof. As erasing any number of flat steps do not change the number of runs, it suffices
to show that this proposition holds when r = 0. We prove it by using induction on k.

For the initial step with k = 1, we consider Case 0. Recall that φm,1(P ) =
←−
P . If P

starts with an up step, m must be even and run(
←−
P ) = run(P ). When P starts with a

down step, m is odd and run(
←−
P ) = run(P ).
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Now we assume k > 1 and suppose that this proposition holds for any P ∗ ∈ F(m′, 0, k′)
with k′ < k. Here we give a detailed proof for (a) and the proof for (b) comes out similarly.

Suppose that P ∈ F(m, 0, k) starts with an up step and let S = φm,k(P ). We need to
show that run(S) is given by run(P )− 1 (resp. run(P )) if m is odd (resp. even).

In Case 1–i), we write P = AuB (resp. P = AdB) and S = BuA (resp. S = BuA),
where B (resp. B) ends with an up step if m is odd (resp. even). If A is empty, then m
must be odd so that run(S) = run(B) = run(P ) − 1 as we desire. Now assume that A
starts with an up step. In this case, run(P ) = run(A) + run(B) and

run(S) =

!
run(A) + run(B)− 1 if m is odd,

run(A) + run(B) if m is even,

so we are done.
In Case 1–ii), we write P = AuB1dB2 (resp. P = AdB1uB2) and B2 ∈ F(m′, 0, k′)

(resp. B2 ∈ F(m′, 0, k′)) for some k′ < k and odd m′, where m is odd (resp. even). Let
r := run(A) + run(B1). Note that if m is odd (resp. even), then

run(P ) =

!
r + run(B2) if B2 starts with an up (resp. down) step,

r + run(B2)− 1 if B2 starts with a down (resp. up) step.

In this case, if m is odd (resp. even), then S = B1uAdC (resp. S = B1uAdC), where
C = φm′,k′(B2) (resp. C = φm′,k′(B2)). By the induction hypothesis, if m is odd (resp.
even), then

run(C) =

!
run(B2) if B2 starts with an up (resp. down) step,

run(B2)− 1 if B2 starts with a down (resp. up) step.

Hence, if m is odd, then run(S) = r + run(C)− 1 so that

run(S) =

!
r + run(B2)− 1 if B2 starts with an up step,

r + run(B2)− 2 if B2 starts with a down step,

which means that run(S) = run(P ) − 1. Similarly, we show that run(S) = run(P ) for
even m.

The proofs of Case 2–i) and Case 2–ii) are similar, so we only prove Case 2–ii). We
divide this case into two cases depending on the parity of m.

When m is odd, we write P = A1dA2dB1uB2 and S = B1uA2dC, where A1 starts
with an up step and C = φm′,k′(A1uB2) for some k′ < k and even m′. Note that run(P ) =
run(A1)+run(dA2dB1)+run(uB2)−2, run(S) = run(B1uA2d)+run(C)−1, and run(C) =
run(A1uB2)− 1 by the induction hypothesis. We have

run(P ) =

!
run(A1) + run(dA2dB1) + run(B2)− 1 if B2 starts with a down step,

run(A1) + run(dA2dB1) + run(B2)− 2 if B2 starts with an up step,
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and

run(S) =

!
run(B1uA2d) + run(A1) + run(B2)− 2 if B2 starts with a down step,

run(B1uA2d) + run(A1) + run(B2)− 3 if B2 starts with an up step.

Since run(dA2dB1) = run(B1uA2d) whenever A2 starts with u or d, we get run(S) =
run(P )− 1.

For even m, we write P = uA2uB1dB2 and S = B1uA2dC, where C = φm′,k′(uB2)
for some k′ < k and even m′. We have A1 = ∅ because P starts with u. We also get
run(S) = run(P ) in a similar manner.

Remark 7. Proposition 6 confirms that | run(P ) − run(φm,k(P ))| ! 1, which shows that
the map φm,k is structurally distinguishable from the map from Gu and Prodinger [10].
For example, Gu and Prodinger’s map sends

P = dduuuuudddddduuu (→ S = uuuuuuddduuuddud,

which shows that their map has paths satisfying | run(P ) − run(S)| = 2 (one can obtain
this example by putting A = dddddduuu, B = uu, C = du, and D = ∅ in Figure 2.5 in
[10]).

Let F(m, r, k; i) denote the set of paths in F(m, r, k) with ⌈i/2⌉ downward (resp.
upward) runs for odd (resp. even) m, and let M(m, r, k; i) denote the set of paths in
M(m, r, k) with i runs. By Proposition 6, it is straightforward to get the following
corollary.

Corollary 8. For non-negative integers i and m of the same (resp. different) parity,
the map φm,k induces a bijection between the set M(m, r, k; i) and the set of paths in
F(m, r, k; i) that end with a downward (resp. upward) run.

Remark 9. It is clear that the set of paths in M(m, 0, k; i) is in bijection with the set
of symmetric Dyck paths of length 2m with i peaks which touch the line y = k and is
contained in the strip 0 ! y ! k. By Corollary 8, the set of symmetric Dyck paths of
length 2m with i peaks corresponds to the set of paths in ∪kF(m, 0, k; i) that end with a
downward (resp. upward) run whenever i and m have the same (resp. different) parity.
This one-to-one correspondence gives a combinatorial proof of the well-known fact that
the number of symmetric Dyck paths of length 2m with i peaks is given by

$⌊m−1
2

⌋
⌊ i−1

2
⌋

%$⌊m
2
⌋

⌊ i
2
⌋

%
. (13)

3 Cornerless free Motzkin paths

In this section, we combinatorially interpret cornerless Motzkin paths as a t-core parti-
tions. First let us consider the restriction of the map φm,k.
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3.1 Restriction to cornerless free Motkzin paths

Recall that F c(m, r, k) is the set of cornerless free Motzkin paths in F(m, r, k) that never
start with a down (resp. up) step for odd (resp. even) m and Mc(m, r, k) is the set of
cornerless Motzkin prefixes in M(m, r, k) that end with a flat step. Now we show that the
map φm,k, defined in Section 2.1, gives a one-to-one correspondence between these sets.

Proposition 10. For given non-negative integers m, r, and k, φm,k induces a bijection
between the sets F c(m, r, k) and Mc(m, r, k).

Proof. Let P ∈ F(m, r, k) and φm,k(P ) ∈ M(m, r, k). For k = 0 or 1, P ∈ F c(m, r, k)

when it is cornerless and starts with a flat step, and
←−
P ∈ Mc(m, r, k) when it is cor-

nerless and ends with a flat step. Hence, P ∈ F c(m, r, k) if and only if φm,k(P ) =
←−
P ∈

Mc(m, r, k).
Let m and k have the same parity and there is no break step in P with k > 1.

It follows from (1) and (2) that P ∈ F c(m, r, k) and φm,k(P ) ∈ Mc(m, r, k) have the
same restriction such that A and B are cornerless, A does not start with a down (resp.
up) step for odd (resp. even) m, and β > 0. Hence, P ∈ F c(m, r, k) if and only if
φm,k(P ) ∈ Mc(m, r, k).

For the remaining cases, we assume that φm′,k′ induces a bijection between F c(m
′, r′, k′)

andMc(m
′, r′, k′) for k′ < k. We consider the case whenm and k have the same parity and

there is a break step b in P . By (3) and (4), P ∈ F c(m, r, k) and φm,k(P ) ∈ Mc(m, r, k)
have the same condition such that A and B1 are cornerless, A does not start with a down
(resp. up) step, B2f

δ (resp. B2f
δ) ∈ F c(m

′, r′, k′) for some k′ < k when m is odd (resp.
even), and β > 0. Hence, P ∈ F c(m, r, k) if and only if φm,k(P ) ∈ Mc(m, r, k).

Similarly, we can show that P ∈ F c(m, r, k) if and only if φm,k(P ) ∈ Mc(m, r, k) when
m and k have different parity by considering (5), (6), (7), and (8).

3.2 Cornerless Motkzin paths and t-cores

A partition λ = (λ1,λ2, . . . ,λℓ) is a non-increasing positive integer sequence. The Young
diagram of λ is an array of boxes arranged in left-justified rows with λi boxes in the ith
row. An inner corner of a Young diagram is a box that can be removed from the Young
diagram and the rest of the Young diagram is still the Young diagram of a partition. We
say that λ has m corners if its Young diagram has m inner corners. For a given Young
diagram, the hook length of a box at the position (i, j), denoted by h(i, j), is the number
of boxes on the right, in the below, and itself. For a partition λ, the beta-set of λ, denoted
by β(λ), is the set of hook lengths of boxes in the first column of the Young diagram of
λ. A partition is called a t-core if its Young diagram has no box of hook length t. We
mainly consider t-core partitions with m corners and use the abacus diagram introduced
by James and Kerber [12] to count them. The t-abacus diagram is a diagram to be the
bottom and left-justified diagram with infinitely many rows labeled by i ∈ N ∪ {0} and
t columns labeled by j = 0, 1, . . . , t − 1 whose position (i, j) is labeled by ti + j. The
t-abacus of a partition λ is obtained from the t-abacus diagram by placing a bead on each
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position labeled by h, where h ∈ β(λ). A position without bead is called a spacer. The
following lemma is useful to determine whether a given partition is a t-core or not.

Lemma 11. [12, Lemma 2.7.13] A partition λ is a t-core if and only if h ∈ β(λ) implies
h − t ∈ β(λ) whenever h > t. Equivalently, λ is a t-core if and only if the t-abacus of λ
has no spacer below a bead in any column.

From the above lemma, we easily obtain a simple bijection between the set of t-core
partitions and the set of non-negative integer sequences (n0, n1, . . . , nt−1), where n0 = 0
and nj is the number of beads in column j for j = 1, . . . , t−1. Using the bijection between
the bar graphs and cornerless Motzkin paths, introduced by Deutsch and Elizalde [8], we
give a path interpretation of the t-core partitions restricted by the number of corners and
the first hook length h(1, 1).

Theorem 12. For non-negative integers t, m, and k, there is a bijection between any pair
of the following sets.

(a) The set of t-core partitions with m corners such that h(1, 1) < kt.

(b) The set of non-negative integer sequences (n0, n1, . . . , nt−1) satisfying that n0 = 0,
ni ! k for all i, and

t#

i=1

|ni − ni−1| = 2m,

where we set nt := 0.

(c) The set of cornerless Motzkin paths of length 2m + t− 1 with t− 1 flat steps that
are contained in the strip 0 ! y ! k.

Proof. Let A,B, and C be the set described in (a), (b), and (c), respectively. Set the
maps φ1 : A → B and φ2 : B → C. For a partition λ ∈ A, let ni be the number of beads
in the ith column of the t-abacus of λ. Given λ ∈ A, define φ1(λ) = (n0, n1, . . . , nt−1).
Then, by the definition of the t-abacus and the fact that h(1, 1) < kt, it is given that
n0 = 0 and ni ! k for each i. Moreover, we get one inner corner for each maximal
sequence of consecutive numbers in the beta-set β(λ). Note that

&t
i=1 max(ni − ni−1, 0)

counts the number of hook lengths which is the smallest among each maximal sequence
of consecutive numbers in the beta-set, so we get

&t
i=1 |ni − ni−1| = 2m. Let ψ1 : B → A

and n = (n0, n1, . . . , nt−1) ∈ B. Define ψ1(n) = λ, where λ is the partition obtained
from the t-abacus diagram with ni beads in the ith column. We place the beads on the
elements of β(λ) in the t-abacus diagram. Then, since column 0 has no bead and each
ni ! k for all i, the largest element in β(λ) is less than kt, meaning that λ is a t-core
partition with h(1, 1) < kt. Also, the fact that the sum of |ni − ni−1| is 2m implies that
there are m piles of beads which are placed on m maximal consecutive numbers, so λ has
m corners.

For n = (n0, n1, . . . , nt−1) ∈ B, let φ2(n) = Pn, where Pn be the cornerless Motzkin
path which starts at (0, 0), ends at (2m + t − 1, 0), and has t − 1 flat steps at height
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n1, n2, · · · , nt−1 with proper up and/or down steps connecting those flat steps. Due to
the fact that ni ! k, it is given that Pn is contained in the strip 0 ! y ! k.

Let ψ2 : C → B and P ∈ C. Define ψ2(P ) = (n0, n1, . . . , nt−1), where n0 = 0 and, for
1 ! i ! t − 1, each ni represents the height of the ith flat step in P . We know that P
is contained in the strip 0 ! y ! k, which implies ni ! k. On the path P , there are 2m
many up and down steps. The number |ni − ni−1| represents the difference of the height
of the (i− 1)st flat step and the ith flat step, so it counts the number of up or down steps
in between those two flat steps. Since

&t
i=1 max(ni − ni−1, 0) =

&t
i=1 |min(ni − ni−1, 0)|,

we get
&t

i=1 |ni − ni−1| = 2m.

For example, there are sixteen 4-core partitions with 2 corners. By letting t = 4
and m = 2 in Theorem 12, we get the correspondence between these partitions, abaci,
non-negative integer sequences, and cornerless Motzkin paths as described in Figure 7.

We denote that a partition λ is a (t1, t2, . . . , tp)-core if λ is a ti-core for all i =
1, . . . , p. It is known that the number of t-core partitions is infinite, and the number
of (t1, t2, . . . , tp)-cores is finite for relatively prime t1, . . . , tp. Huang and Wang [11] enu-
merated the number of (t, t + 1)-cores, (t, t + 1, t + 2)-cores with the fixed number of
corners, where these results are generalized to (t, t + 1, · · · , t + p)-cores in [4]. As far as
we know, it seems new to get the formula for the number of t-core partitions with the
fixed number of corners, which we enumerate this by using the path interpretation.

Proposition 13. The number of t-core partitions with m corners is given by

cc(t,m) :=

min(m,⌊t/2⌋)#

i=1

N(m, i)

$
t+ 2m− 2i

2m

%
,

where N(m, i) = 1
m

'
m
i

('
m
i−1

(
denotes the Narayana number.

Proof. By Theorem 12, cc(t,m) is equal to the number of cornerless Motzkin paths of
length 2m+ t− 1 with t− 1 flat steps. Let a Dyck path consisting of m up steps and m
down steps with i peaks be given. The number of ways of inserting t − 1 flat steps such
that the resultant path becomes a cornerless Motzkin path is

'
t+2m−2i

2m

(
since we have to

insert at least one flat steps at the positions of i peaks and i− 1 valleys. As the number
of Dyck paths consisting of m up steps and m down steps with i peaks is counted by the
Narayana number N(m, i), the proof is followed.

The numbers of t-core partitions withm corners for 2 ! t ! 6 and 1 ! m ! 8 are given
in Table 1. Clearly, cc(2,m) = 1, cc(3,m) = 2m + 1, and cc(4,m) = (5m2 + 5m + 2)/2.
See sequences A063490 and A160747 in [14] for more the values of cc(t,m) for t = 5 and
t = 6, respectively.

3.3 Cornerless symmetric Motzkin paths and self-conjugate t-cores

For a partition λ, its conjugate is the partition λ′ = (λ′
1,λ

′
2, . . . ), where each λ′

j is the
number of boxes in the jth column of the Young diagram of λ. A partition λ is called
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∗ (4,4,2,2) ↔ 0 1 2 3
4 5 6 7 ↔ [0,0,2,2] ↔

(2,2,2,1,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,2,2,2] ↔ !

(3,3,1,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,1,2,2] ↔

(5,2,2) ↔ 0 1 2 3
4 5 6 7 ↔ [0,0,1,2] ↔

(6,3) ↔ 0 1 2 3
4 5 6 7 ↔ [0,0,0,2] ↔

(3,3,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,2,2,0] ↔

(4,2,2) ↔ 0 1 2 3
4 5 6 7 ↔ [0,0,2,1] ↔

(2,2,1,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,2,2,1] ↔

∗ (4,1,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,1,1,2] ↔

(5,2) ↔ 0 1 2 3
4 5 6 7 ↔ [0,0,2,0] ↔ !

(3,1,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,1,2,1] ↔ !

(4,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,1,2,0] ↔

(2,1,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,2,1,1] ↔

∗ (3,1,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,2,1,0] ↔

(4,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,2,0,0] ↔

∗ (2,1) ↔ 0 1 2 3
4 5 6 7 ↔ [0,1,0,1] ↔ !

Figure 7: 4-cores with 2 corners and the corresponding objects

t\m 1 2 3 4 5 6 7 8
2 1 1 1 1 1 1 1 1
3 3 5 7 9 11 13 15 17
4 6 16 31 51 76 106 141 181
5 10 40 105 219 396 650 995 1445
6 15 85 295 771 1681 3235 5685 9325

Table 1: The numbers cc(t,m) of t-cores with m corners

self-conjugate if λ = λ′. Let MD(λ) denote the set of the main diagonal hook lengths of
λ. Note that if λ is a self-conjugate partition, then the elements in MD(λ) are all distinct
and odd. Similar to Lemma 11, Ford, Mai, and Sze [9] gave a useful result to determine
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whether a given partition is a self-conjugate t-core or not.

Proposition 14. [9, Proposition 3] Let λ be a self-conjugate partition. Then λ is a t-core
if and only if both of the following hold:

(a) For h > t, if h ∈ MD(λ), then h− 2t ∈ MD(λ).

(b) If h1, h2 ∈ MD(λ), then h1 + h2 ∕≡ 0 (mod 2t).

We slightly modify the t-abacus to get the t-doubled abacus, which is useful when we
deal with a self-conjugate t-core partition. Let the t-doubled abacus diagram is a left-
justified diagram with infinitely many rows labeled by i ∈ Z and ⌊t/2⌋ columns labeled
by j = 0, 1, . . . , ⌊t/2⌋ − 1 whose position (i, j) is labeled by |2(ti+ j) + 1|. The t-doubled
abacus of a self-conjugate partition λ is obtained from the t-doubled abacus diagram by
placing a bead on each position labeled by h, where h ∈ MD(λ). From Proposition 14,
we have the following lemma.

Lemma 15. A self-conjugate partition λ is a t-core if and only if the t-doubled abacus
diagram of λ satisfies both of the following.

(a) If a bead is placed on position (i, j) with i > 0 (resp. i < 0), then a bead is also
placed on position (0, j) (resp. (−1, j)) and there is no spacer between them in any
column j.

(b) A bead can be placed on at most one of the two positions (−1, j) and (0, j) in any
column j.

From the above lemma, we easily obtain a simple bijection between the set of self-
conjugate t-core partitions and the set of integer sequences (n0, . . . , n⌊t/2⌋−1), where the
number of beads in column j is denoted by either nj or −nj for j = 0, 1, . . . , ⌊t/2⌋− 1 if a
bead is placed in position (0, j) or not, respectively. Now we give a path interpretation of
the self-conjugate t-core partitions restricted by the number of corners and the first hook
length h(1, 1). We define

Fc(m, r, k) :=
k"

i=0

F c(m, r, i) and Mc(m, r, k) :=
k"

i=0

Mc(m, r, i).

Theorem 16. For non-negative integers t, m, and k, there is a bijection between any pair
of the following sets.

(a) The set of self-conjugate t-cores with m corners such that h(1, 1) < kt.

(b) The set of integer sequences (n0, n1, . . . , n⌊t/2⌋−1) satisfying that for odd (resp. even)
m, n0 is positive (resp. non-positive); for all i, −⌊k/2⌋ ! ni ! ⌊(k + 1)/2⌋; and

⌊t/2⌋#

i=0

|ni − ni−1| =
!
m+ 1 for odd m,

m for even m,

where we set n−1 := 0 and n⌊t/2⌋ := 0.
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(c) The set of cornerless free Motzkin paths in Fc(m, ⌊t/2⌋, k).

(d) The set of cornerless Motzkin prefixes in Mc(m, ⌊t/2⌋, k).

(e) The set of cornerless symmetric Motzkin paths of length 2m+ t− 1 with t− 1 flat
steps that are contained in the strip 0 ! y ! k.

Proof. Let A,B,C,D, and E be the set described in (a), (b), (c), (d), and (e), respectively.
By similar argument to the proof of Proposition 10, we know that there is a bijection
between C and D. Now we set φ1 : A → B,φ2 : B → C, and φ3 : D → E and show that
φ1,φ2,φ3 are bijections.

Given λ ∈ A, let φ1(A) = (n0, n1, . . . , n⌊t/2⌋−1), where each ni is the highest or lowest
row that the bead is placed in the ith column depending on the sign of ni. We get that
1 ∈ MD(λ) when the number of corners m is odd and 1 ∕∈ MD(λ) otherwise. Thus, n0 is
positive when m is odd and non-positive otherwise. This map gives a bijection between
A and B.

Let n = (n0, n1, . . . , n⌊t/2⌋−1). For odd (resp. even) m, let φ2(n) be the cornerless free
Motzkin path that starts at (0, 1) (resp. (0, 0)), ends at (m + ⌊t/2⌋, 0), has ith flat step
at height ni−1 with proper up and down steps between them. Then, the map φ2 describes
a bijection between B and C.

Denote a path by P = p1p2 · · · pm+⌊t/2⌋ ∈ D. We set

φ3(P ) =

!
p1p2 · · · pm+⌊t/2⌋pm+⌊t/2⌋ · · · p2p1 if t is odd,

p1p2 · · · pm+⌊t/2⌋−1pm+⌊t/2⌋pm+⌊t/2⌋−1 · · · p2p1 if t is even.

Then, the map φ3 is a bijective.

Note that Figure 7 shows that there are four self-conjugate 4-core partitions with 2
corners and four cornerless symmetric Motzkin paths of length 7 with 3 flat steps, which
are marked by ∗ and (, respectively. The correspondences between the sets described in
Theorem 16 for t = 4,m = 2 and t = 5,m = 3 are given in Figure 8.

Although the number of self-conjugate (t, t+1, · · · , t+p)-cores with the fixed number
of corners is unknown in general, it is enumerated in [2, 3] when p = 1, 2, and 3. The
number of self-conjugate t-core partitions with m corners can be counted by using these
path interpretations.

Proposition 17. The number of self-conjugate t-core partitions with m corners is given by

scc(t,m) :=

min(m,⌊t/2⌋)#

i=1

$⌊m−1
2

⌋
⌊ i−1

2
⌋

%$⌊m
2
⌋

⌊ i
2
⌋

%$
⌊ t
2
⌋+m− i

m

%

for m > 0 and scc(t, 0) = 1. In addition, scc(t,m) = scc(t+ 1,m) for even t.

Proof. By Theorem 16, scc(t,m) also counts the number of cornerless symmetric Motzkin
paths of length 2m + t − 1 with t − 1 flat steps. Let a symmetric Dyck path consisting
of m up steps and m down steps with i peaks with 2i ! t be given. The number of ways
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(4,4,2,2) ↔ 1 3
7 5

↔ [-1,-1] ↔ ↔ ↔

(4,1,1,1) ↔ 1 3
7 5

↔ [-1,0] ↔ ↔ ↔

(3,1,1) ↔ 1 3
7 5

↔ [0,-1] ↔ ↔ ↔

(2,1) ↔ 1 3
7 5

↔ [0,1] ↔ ↔ ↔

(a) t = 4 and m = 2

(7,7,4,4,2,2,2) ↔
1113
1 3
9 7

↔ [2,2] ↔ ↔ ↔

(7,3,3,1,1,1,1) ↔
1113
1 3
9 7

↔ [1,2] ↔ ↔ ↔

(6,3,3,1,1,1) ↔
1113
1 3
9 7

↔ [2,1] ↔ ↔ ↔

(6,2,1,1,1,1) ↔
1113
1 3
9 7

↔ [2,0] ↔ ↔ ↔

(4,2,1,1) ↔
1113
1 3
9 7

↔ [1,-1] ↔ ↔ ↔

(b) t = 5 and m = 3

Figure 8: Examples of self-conjugate t-cores with m corners and the corresponding objects

inserting t − 1 flat steps such that the resultant path becomes a cornerless symmetric
Motzkin path is

'⌊t/2⌋+m−i
m

(
. The proof is followed since the number of symmetric Dyck

paths consisting of m up steps and m down steps with i peaks is given by (13).

The numbers of self-conjugate t-core partitions with m corners for 2 ! t ! 11 and
1 ! m ! 8 are given in Table 2. Clearly, scc(2,m) = scc(3,m) = 1, scc(4,m) =
scc(5,m) = ⌊3m/2⌋+1, and scc(6,m) = scc(7,m) = (10m(m+1)+(−1)m(2m+1)+7)/8.

t\m 1 2 3 4 5 6 7 8
2,3 1 1 1 1 1 1 1 1
4,5 2 4 5 7 8 10 11 13
6,7 3 9 15 27 37 55 69 93
8,9 4 16 34 76 124 216 309 471
10,11 5 25 65 175 335 675 1095 1875

Table 2: The numbers scc(t,m) of self-conjugate t-cores with m corners
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